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Abstract. In Dynamic Ensemble Selection (DES), only the most competent clas-
sifiers are selected to classify a given query sample. A crucial issue faced in DES
is the definition of a criterion for measuring the level of competence of each base
classifier. To that end, a criterion commonly used is the estimation of the compe-
tence of a base classifier using its local accuracy in small regions of the feature
space surrounding the query instance. However, such a criterion cannot achieve
results close to the performance of the Oracle, which is the upper limit perfor-
mance of any DES technique. In this paper, we conduct a dissimilarity analysis
between various DES techniques in order to better understand the relationship be-
tween them and as well as the behavior of the Oracle. In our experimental study,
we evaluate seven DES techniques and the Oracle using eleven public datasets.
One of the seven DES techniques was proposed by the authors and uses meta-
learning to define the competence of base classifiers based on different criteria.
In the dissimilarity analysis, this proposed technique appears closer to the Oracle
when compared to others, which would seem to indicate that using different bits
of information on the behavior of base classifiers is important for improving the
precision of DES techniques. Furthermore, DES techniques, such as LCA, OLA,
and MLA, which use similar criteria to define the level of competence of base
classifiers, are more likely to produce similar results.

Keywords: Ensemble of classifiers, dynamic ensemble selection, dissimilarity
analysis, meta-learning.

1 Introduction

In recent years, ensembles of Classifiers (EoC) have been widely studied as an alter-
native for increasing efficiency and accuracy in pattern recognition [1,2]. Classifier en-
sembles involve two basic approaches, namely, classifier fusion and dynamic ensemble
selection. With classifier fusion approaches, each classifier in the ensemble is used, and
their outputs are aggregated to give the final prediction. However, such techniques [1,3]
present two main problems: they are based on the assumption that the base classifiers
commit independent errors, which rarely occurs to find in real pattern recognition ap-
plications.
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On the other hand, Dynamic Ensemble Selection (DES) techniques [4] rely on the
assumption that each base classifier1 is an expert in a different local region of the fea-
ture space. DES techniques work by measuring the level of competence of each base
classifier, considering each new test sample. Only the most competent(s) classifier(s)
is(are) selected to predict the class of a new test sample. Hence, the key issue in DES
is defining a criterion for measuring the level of competence of a base classifier. Most
DES techniques [5,6,7,8] use estimates of the classifier’s local accuracy in small regions
of the feature space surrounding the query instance as search criteria to carry out the
ensemble selection. However, in our previous work [7], we demonstrated that this crite-
rion is limited, and cannot achieve results close to the performance of the Oracle, which
represents the best possible result of any combination of classifiers [2]. In addition, as
reported by Ko et al. [5], addressing the behavior of the Oracle is much more complex
than applying a simple neighborhood approach, and the task of figuring out its behavior
based merely on the pattern feature space is not an easy one.

To tackle this issue, in [9] we proposed a novel DES framework in which multi-
ple criteria regarding the behavior of a base classifier are used to compute its level of
competence. In this paper, we conduct a dissimilarity analysis between different DES
techniques in order to better understand their relationship. The analysis is performed
based on the difference between the levels of competence of a base classifier estimated
by the criterion embedded in each DES technique. All in all, we compare the DES cri-
teria of seven state-of-the-art DES techniques, including our proposed meta-learning
framework. In addition, we also formalize the Oracle as an ideal DES technique (i.e., a
DES scheme which selects only the classifiers of the pool that predict the correct class
for the query instance) to be used in the analysis.

The dissimilarities between different DES criteria are computed in order to generate
a dissimilarity matrix, which is then, used to project each DES technique onto a two-
dimensional space, called the Classifier Projection Space (CPS) [10]). In the CPS, each
DES technique is represented by a point, and the distance between two points corre-
sponds to their degree of dissimilarity. Techniques that appear close together present
similar behavior (i.e., they are more likely to produce the same results), while those
appearing far apart in the two-dimensional CPS can be considered different. Thus, a
spatial relationship is achieved between different techniques. The purpose of the dis-
similarity analysis is twofold: to understand the relationship between different DES
techniques (i.e., whether or not the criteria used by DES techniques present a similar
behavior), and in order to determine which DES technique presents a behavior that is
closer to the behavior of the ideal DES scheme (Oracle).

This paper is organized as follows: Section 2 introduces the DES techniques from the
literature that are used in the dissimilarity analysis. The proposed meta-learning frame-
work is described in Section 3. Experiments are conducted in Section 4, and finally, our
conclusion is presented in the last section.

1 The term base classifier refers to a single classifier belonging to an ensemble or a pool of
classifiers.
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2 Dynamic Ensemble Selection Techniques

The goal of dynamic selection is to find an ensemble of classifiers, C′ ⊂ C contain-
ing the best classifiers to classify a given test sample xj . This is different from static
selection, where the ensemble of classifiers C′ is selected during the training phase,
and considering the global performance of the base classifiers over a validation dataset.
In dynamic selection, the classifier competence is measured on-the-fly for each query
instance xj .

The following DES techniques are described in this section: Overall Local Accuracy
(OLA) [6], Local Classifier Accuracy (LCA) [6], Modified Local Accuracy (MLA) [8],
KNORA-Eliminate [5], K-Nearest Output Profiles (KNOP) [11] and Multiple Classifier
Behavior (MCB) [12].

For the definitions below, let θj = {x1, . . . ,xK} be the region of competence of the
test sample xj (K is the size of the region of competence), defined on the validation
data, ci a base classifier from the pool C = {c1, . . . , cM} (M is the size of the pool),
wl the correct label of xj and δi,j the level of competence of ci for the classification of
the input instance xj .

Overall Local Accuracy (OLA)

In this method, the level of competence δi,j of a base classifier ci is simply computed
as the local accuracy achieved by ci for the region of competence θj . (Equation 1). The
classifier with the highest level of competence δi,j is selected.

δi,j =

K∑

k=1

P (wl | xk ∈ wl, ci) (1)

Local Classifier Accuracy (LCA)

This rule is similar to the OLA, with the only difference being that the local accuracy of
ci is estimated with respect to the output classes; wl (wl is the class assigned for xj by
ci) for the whole region of competence, θj (Equation 2). The classifier with the highest
level of competence δi,j is selected.

δi,j =

∑
xk∈wl

P (wl | xk, ci)
∑K

k=1 P (wl | xk, ci)
(2)

Modified Local Accuracy (MLA)

The MLA technique works similarly to the LCA. The only difference is that each in-
stance xk belonging to the region of competence θj is weighted by its Euclidean dis-
tance to the query sample xj . The classifier with the highest level of competence δi,j is
selected.
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KNORA-Eliminate (KNORA-E)

Given the region of competence θj , only the classifiers that achieved a perfect score,
considering the whole region of competence, are considered competent for the classi-
fication of xj . Thus, the level of competence δi,j is either "competent", δi,j = 1 or
"incompetent", δi,j = 0. All classifiers considered competent are selected.

Multiple Classifier Behavior (MCB)

Given the query pattern xj , the first step is to compute its K-Nearest-Neighborsxk, k =
1, . . . ,K . Then, the output profiles of each neighbor x̃k are computed and compared
to the output profile of the test instance x̃j according to a similarity metric DOutProf .
If DOutProf > threshold, the pattern is removed from the region of competence.
The level of competence δi,j is measured by the recognition performance of the base
classifier ci over the filtered region of competence. The classifier with the highest level
of competence δi,j is selected.

K-Nearest Output Profiles (KNOP)

This rule is similar to the KNORA technique, with the only difference being that KNORA
works in the feature space while KNOP works in the decision space using output profiles.
First, the output profiles’ transformation is applied over the input xj , giving x̃j . Next,
the similarity between x̃j and the output profiles from the validation set is computed and
stored in the setφj. The level of competence δi,j of a base classifier ci for the classification
of xj is defined by the number of samples in φj that are correctly classified by ci.

Oracle

The Oracle is classically defined in the literature as a strategy that correctly classifies
each query instance xj if any classifier ci from the pool of classifiers C predicts the
correct label for xj . In this paper, we formalize the Oracle as the ideal DES technique
which always selects the classifier that predicts the correct label xj and rejects other-
wise. The Oracle as a DES technique is defined in Equation 3:

{
δi,j = 1, if ci correctly classifies xj

δi,j = 0, otherwise
(3)

In other words, the level of competence δi,j of a base classifier ci is 1 if it predicts
the correct label for xj , or 0 otherwise.

3 Dynamic Ensemble Selection Using Meta-Learning

A general overview of the proposed meta-learning framework is depicted in Figure 1.
It is divided into three phases: Overproduction, Meta-training and Generalization. Each
phase is detailed in the following sections.
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Fig. 1. Overview of the proposed framework. It is divided into three steps 1) Overproduction 2)
Meta-training and 3) Generalization. [Adapted from [9]]

3.1 Overproduction

In this step, the pool of classifiers C = {c1, . . . , cM}, where M is the pool size, is
generated using the training dataset T . The Bagging technique [13] is used in this work
in order to build a diverse pool of classifiers.

3.2 Meta-Training

In this phase, the meta-features are computed and used to train the meta-classifier λ.
As shown in Figure 1, the meta-training stage consists of three steps: sample selection,
the meta-features extraction process and meta-training. A different dataset Tλ is used in
this phase to prevent overfitting.

Sample Selection. We focus the training of λ on cases in which the extent of consensus
of the pool is low. Thus, we employ a sample selection mechanism based on a threshold
hC , called the consensus threshold. For each xj,trainλ

∈ Tλ, the degree of consensus
of the pool, denoted by H (xj,trainλ

, C), is computed. If H (xj,trainλ
, C) falls below

the threshold hC , xj,trainλ
is passed down to the meta-features extraction process.

Meta-Features Extraction. In order to extract the meta-features, the region of com-
petence of xj,trainλ

, denoted by θj = {x1, . . . ,xK} must be first computed. The re-
gion of competence is defined in the Tλ set using the K-Nearest Neighbor algorithm.
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Then, xj is transformed into an output profile, x̃j by applying the transformation T ,
(T : xj ⇒ x̃j), where xj ∈ �D and x̃j ∈ ZM [11]. The output profile of a pattern xj

is denoted by x̃j = {x̃j,1, x̃j,2, . . . , x̃j,M}, where each x̃j,i is the decision yielded by
the classifier ci for xj . The similarity between x̃j and the output profiles of the instances
in Tλ is obtained through the Euclidean distance. The most similar output profiles are
selected to form the set φj =

{
x̃1, . . . , x̃Kp

}
, where each output profile x̃k is associ-

ated with a label wl,k . Next, for each base classifier ci ∈ C, five sets of meta-features
are calculated:

f1 - Neighbors’ hard classification: First, a vector with K elements is created. For
each instance xk, belonging to the region of competence θj , if ci correctly classifies
xk, the k-th position of the vector is set to 1, otherwise it is 0. Thus,K meta-features
are computed.

f2 - Posterior probability: First, a vector with K elements is created. Then, for each
instance xk, belonging to the region of competence θj , the posterior probability
of ci, P (wl | xk) is computed and inserted into the k-th position of the vector.
Consequently, K meta-features are computed.

f3 - Overall local accuracy: The accuracy of ci over the whole region of competence
θj is computed and encoded as f3.

f4 - Output profiles classification: First, a vector withKp elements is generated. Then,
for each member x̃k, belonging to the set of output profiles φj , if the label produced
by ci for xk is equal to the label wl,k of x̃k , the k-th position of the vector is set to
1, otherwise it is 0. A total of Kp meta-features are extracted using output profiles.

f5 - Classifier’s Confidence: The perpendicular distance between the input sample
xj,trainλ

and the decision boundary of the base classifier ci is calculated and en-
coded as f5. f5 is normalized to a [0− 1] range using the Min-max normalization.

A vector vi,j = {f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5} is obtained at the end of the process. It
is important to mention that a different vector vi,j is generated for each base classifier
ci. If ci correctly classifies xj,trainλ

, the class attribute of vi,j , αi,j = 1 (i.e., vi,j
corresponds to the behavior of a competent classifier), otherwise αi,j = 0. vi,j is stored
in the meta-features dataset (Figure 1).

Training. With the meta-features dataset, T ∗
λ , on hand, the last step of the meta-training

phase is the training of the meta-classifier λ. The dataset T ∗
λ is divided on the basis

of 75% for training and 25% for validation. A Multi-Layer Perceptron (MLP) neural
network with 10 neurons in the hidden layer is considered as the selector λ. The training
process for λ is performed using the Levenberg-Marquadt algorithm, and is stopped if
its performance on the validation set decreases or fails to improve for five consecutive
epochs.

3.3 Generalization

Given an input test sample xj,test from the generalization dataset G, first, the region of
competence θj and the set of output profiles φj , are calculated using the samples from
the dynamic selection dataset DSEL (Figure 1). For each classifier ci ∈ C, the five
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subsets of meta-features are extracted, returning the meta-features vector vi,j . Next, vi,j
is passed down as input to the meta-classifier λ, which decides whether ci is competent
enough to classify xj,test. In this case, the posterior probability obtained by the meta-
classifier λ is considered as the estimation of the level of competence δi,j of the base
classifier ci in relation to xj,test.

After each classifier of the pool is evaluated, the majority vote rule [2] is applied over
the ensemble C′, giving the label wl of xj,test. Tie-breaking is handled by choosing the
class with the highest a posteriori probability.

4 Experiments

We evaluated the generalization performance of the proposed technique using eleven
classification datasets, nine from the UCI machine learning repository, and two artifi-
cially generated using the Matlab PRTOOLS toolbox2. The experiment was conducted
using 20 replications. For each replication, the datasets were randomly divided on the
basis of 25% for training (T ), 25% for meta-training Tλ, 25% for the dynamic selection
dataset (DSEL) and 25% for generalization (G). The divisions were performed while
maintaining the prior probability of each class. The pool of classifiers was composed of
10 Perceptrons. The values of the hyper-parameters K , Kp and hc were set as 7, 5 and
70%, respectively. They were selected empirically based on previous publications [7,9].

4.1 Results

Table 1. Mean and standard deviation results of the accuracy obtained for the proposed meta-
learning framework and the DES systems in the literature. The best results are in bold. Results
that are significantly better (p < 0.05) are underlined.

Database Proposed KNORA-E MCB LCA OLA MLA KNOP Oracle
Pima 77.74(2.34) 73.16(1.86) 73.05(2.21) 72.86(2.98) 73.14(2.56) 73.96(2.31) 73.42(2.11) 95.10(1.19)

Liver Disorders 68.83 (5.57) 63.86(3.28) 63.19(2.39) 62.24(4.01) 62.05(3.27) 57.10(3.29) 65.23(2.29) 90.07(2.41)
Breast Cancer 97.41(1.07) 96.93(1.10) 96.83(1.35) 97.15(1.58) 96.85(1.32) 96.66(1.34) 95.42(0.89) 99.13(0.52)

Blood Transfusion 79.14(1.88) 74.59(2.62) 72.59(3.20) 72.20(2.87) 72.33(2.36) 70.17(3.05) 77.54(2.03) 94.20(2.08)
Banana 90.16(2.09) 88.83(1.67) 88.17(3.37) 89.28(1.89) 89.40(2.15) 80.83(6.15) 85.73(10.65) 94.75(2.09)
Vehicle 82.50(2.07) 81.19(1.54) 80.20(4.05) 80.33(1.84) 81.50(3.24) 71.15(3.50) 80.09(1.47) 96.80(0.94)

Lithuanian Classes 90.26(2.78) 88.83(2.50) 89.17(2.30) 88.10(2.20) 87.95(1.85) 77.67(3.20) 89.33(2.29) 98.35 (0.57)
Sonar 79.72(1.86) 74.95(2.79) 75.20(3.35) 76.51(2.06) 74.52(1.54) 74.85(1.34) 75.72(2.82) 94.46(1.63)

Ionosphere 89.31(0.95) 87.37(3.07) 85.71(2.12) 86.56(1.98) 86.56(1.98) 87.35(1.34) 85.71(5.52) 96.20(1.72)
Wine 96.94(4.08) 95.00(1.53) 95.55(2.30) 95.85(2.25) 96.16(3.02) 96.66(3.36) 95.00(4.14) 100.00(0.21)

Haberman 76.71(3.52) 71.23(4.16) 72.86(3.65) 70.16(3.56) 72.26(4.17) 65.01(3.20) 75.00(3.40) 97.36(3.34)

In Table 1, we compare the recognition rates obtained by the proposed meta-learning
framework against dynamic selection techniques explained in this paper: Overall Local
Accuracy (OLA) [6], Local Classifier Accuracy (LCA) [6], Modified Local Accuracy
(MLA) [8], KNORA-Eliminate [5], K-Nearest Output Profiles (KNOP) [11] and the
Multiple Classifier Behavior (MCB) [12]. We compare each pair of results using the

2 www.prtools.org

www.prtools.org
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Kruskal-Wallis non-parametric statistical test with a 95% confidence interval. The re-
sults of the proposed framework over the Pima, Liver Disorders, Blood Transfusion,
Vehicle, Sonar and Ionosphere datasets are statistically superior to the result of the best
DES from the literature. For the other datasets, Breast, Banana and Lithuanian, the re-
sults are statistically equivalent.

4.2 Dissimilarity Analysis

In this section, we conduct a dissimilarity analysis between distinct DES techniques.
The analysis is performed based on the difference between the level of competence δi,j
estimated by each DES technique for a given base classifier ci, for each query sample xj

(Section 2). The goal of the dissimilarity analysis is twofold: to understand the behavior
of different DES techniques (i.e., whether or not the criterion used by DES techniques
present a similar behavior), and in order to see which DES criterion is closer to the
behavior of the criterion used by the ideal DES scheme (Oracle) for the estimation of
the competence level of a base classifier.

Given 8 dynamic selection techniques, the first step of the dissimilarity analysis is
to compute the dissimilarity matrix D. This matrix D is an 8 × 8 symmetrical matrix,
where each element dA,B represents the dissimilarity between two different DES tech-
niques, A and B. Given that δAi,j and δBi,j are the levels of competence of ci in relation
to xj for the techniques A and B, respectively, the dissimilarity dA,B is calculated by
the difference between δAi,j and δBi,j (Equation 4).

dA,B =
1

NM

N∑

j=1

M∑

i=1

(
δAi,j − δBi,j

)2
(4)

where N and M are the size of the validation dataset and the pool of classifiers, respec-
tively.

For each dataset considered in this work, a dissimilarity matrix (e.g., DPima, DLiver

) is computed, with the mean dissimilarity values over 20 replications. Then, the average
dissimilarity matrix D̄ is obtained by computing the mean and standard deviation of the
eleven dissimilarity matrices. Table 2 shows the average dissimilarity matrix D̄. Both
the average and the standard deviation values are presented. Each line or column of the
dissimilarity matrix can be seen as one axe in the 8th dimensional space. Each axe in
this space represents the distance to a specific DES technique, for instance, the first axe
represents the distance to the proposed meta-learning framework; the second represents
the distance to the KNORA technique and so forth.

Classifier Projection Space. The next step is to project the dissimilarity matrix D̄
onto the Classifier Projection Space (CPS) for a better visualization of the relationship
between all techniques. The CPS is an Rn space where each technique is represented
as a point and the Euclidean distance between two techniques is equal to their dis-
similarities [10]. Techniques that are similar to one another appear closer in the CPS
while those with a higher dissimilarity are more distant. Thus, it is possible to obtain
a spatial representation of the dissimilarity between all techniques. A two-dimensional
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Table 2. The average dissimilarity matrix D̄. The values are the mean and standard deviation
computed over the eleven dissimilarity matrix.

Meta-Learning KNORA MCB LCA OLA MLA KNOP Oracle
Meta-Learning 0 0.36(0.06) 0.46(0.15) 0.40(0.07) 0.36(0.06) 0.40(0.04) 0.53(0.08) 0.54(0.03)

KNORA 0.36(0.06) 0 0.89(0.06) 0.42(0.01) 0.44(0.01) 0.71(0.04) 0.74(0.11) 0.68(0.01)
MCB 0.46(0.15) 0.89(0.06) 0 0.58(0.01) 0.89(0.06) 1.06(0.07) 0.75(0.03) 0.72(0.08)
LCA 0.40(0.07) 0.42(0.01) 0.58(0.01) 0 0.42(0.01) 0.45(0.02) 0.31(0.04) 0.60(0.06)
OLA 0.36(0.06) 0.44(0.01) 0.89(0.06) 0.42(0.01) 0 0.71(0.04) 0.74(0.11) 0.68(0.11)
MLA 0.40(0.04) 0.71(0.04) 1.06(0.07) 0.45(0.02) 0.71(0.04) 0 0.54(0.01) 0.63(0.07)

KNOP 0.53(0.08) 0.74(0.11) 0.75(0.03) 0.31(0.04) 0.74(0.11) 0.54(0.01) 0 0.86(0.12)
Oracle 0.54(0.03) 0.68(0.01) 0.72(0.08) 0.60(0.06) 0.68(0.11) 0.63(0.07) 0.86(0.12) 0

CPS is used for better visualization. To obtain a two-dimensional CPS, a dimensionality
reduction of the dissimilarity matrix D̄ in the R8 to D̃ in the R2 is required. This reduc-
tion is performed using Sammon mapping [14]; that is, a non-linear Multidimensional
Scaling (MDS) projection onto a lower dimensional space such that the distances are
preserved [10,14].

Given the dissimilarity matrix D̄, a configuration X of m points in Rk, (k ≤ m)
is computed using a linear mapping, called classical scaling [14]. The process is per-
formed through rotation and translation, such that the distances after dimensionality
reduction are preserved. The projection X is computed as follows: first, a matrix of
the inner products is obtained by the square distances B = − 1

2JD
2J , where J =

I− 1
mUUT , and I and U are the identity matrix and unit matrix, respectively. J is used

as a normalization matrix such that the mean of the data is zero. The eigendecompo-
sition of B is then obtained as, B = QΛQT , where Λ is a diagonal matrix containing
the eigenvalues (in decreasing order) and Q is the matrix of the corresponding eigen-
vectors. The configuration of points in the reduced space is determined by the k largest
eigenvalues. Therefore, X is uncorrelated in the Rk, X = Qk

√
Λk space. In our case,

k = 2.
The CPS projection is obtained by applying Sammon mapping over the matrix X .

The mapping is performed by defining a function, called stress function S (Equation 5),
which measures the difference between the original dissimilarity matrix D̄ and the dis-
tance matrix of the projected configuration, D̃, where d̃(i, j) is the distance between the
classifiers i and j in the projection X .

S =
1

∑m−1
i=1

∑m
j=i+1 d(i, j)

2

m−1∑

i=1

m∑

j=i+1

(d(i, j)− d̃(i, j)) (5)

The two-dimensional CPS plot is shown in Figure 2. Figure 2(a) shows the average
CPS plot obtained considering the average dissimilarity matrix D̄, while Figure 2(b)
shows an example of the CPS plot obtained for the Liver Disorders dataset DLiver.

An important observation that can be drawn from Figure 2(a) is that the LCA, OLA
and MLA appear close together in the dissimilarity space. Which means, that the cri-
teria used by these three techniques to estimate the level of competence of a base clas-
sifiers present similar behaviors when averaged over several classification problems.
Thus, they are very likely to achieve the same results [15]. This can be explained by
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Fig. 2. Two-dimensional CPS plot for the average dissimilarity matrix D̄ and for the dissimilarity
matrix obtained for the Liver disorders dataset DLiver . It is important to mention that the axes of
the CPS plot cannot be interpreted alone. Only the Euclidean distances between the points count.

the fact that these three techniques are based on the same information (the classification
accuracy over a defined local region in the feature space), with little difference regard-
ing the use of a posteriori information by the LCA technique or weights for the MLA
technique.

The meta-learning framework appears closer to the Oracle in the two-dimensional
CPS (Figures 2(a) and (b)). In addition, the meta-learning framework is also closer to
the techniques from the local accuracy paradigm (LCA, OLA and MLA) than to any
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other DES technique, which can be explained by the fact that three out of the five meta-
features comes from estimations of the local regions (f1, f2 and f3).

Table 3 presents the dissimilarity measure for each DES technique in relation to
the Oracle. Results show that the proposed meta-learning framework is closer to the
behavior of the Oracle as it presents the lowest dissimilarity value on average, 0.54.
The LCA technique comes closer, with an average dissimilarity value of 0.60. Thus, we
suggest that the use of multiple criteria to estimate the level of competence of a base
classifier results in a DES technique that obtains a estimation of the level of competence
of a base classifier closer to that provided by an ideal DES scheme (Oracle).

Table 3. Mean and standard deviation of the dissimilarity between each DES technique from the
Oracle for each classification problem. The smallest dissimilarity values are highlighted.

Database Meta-Learning KNORA-E MCB LCA OLA MLA KNOP
Pima 0.32(0.04) 0.43(0.01) 0.47(0.08) 0.36(0.06) 0.43(0.01) 0.44(0.07) 0.41(0.02)

Liver Disorders 0.50(0.04) 0.61(0.01) 0.67(.008) 0.56(0.06) 0.61(0.01) 0.60(0.07) 0.51(0.02)
Breast Cancer 0.59(0.35) 1.22(0.10) 1.20(0.10) 0.69(0.01) 1.20(0.10) 0.77(0.03) 1.20(0.10)

Blood Transfusion 0.33(0.03) 0.40(0.01) 0.46(0.01) 0.36(.003) 0.40(0.01) 0.44(0.08) 0.4(0.01)
Banana 0.33(0.10) 0.29(0.01) 0.36(0.01) 0.24(0.01) 0.29(0.01) 0.36(0.01) 0.34(0.01)
Vehicle 0.36(0.07) 0.49(0.01) 0.48(0.02) 0.36(0.04) 0.49(0.01) 0.37(0.05) 0.47(0.02)

Lithuanian Classes 0.47(0.14) 0.49(0.02) 0.56(0.02) 0.39(0.04) 0.49(0.02) 0.54(0.01) 0.51(0.03)
Sonar 0.58(0.10) 0.91(0.04) 0.88(0.01) 0.70(0.01) 0.91(0.04) 0.85(0.02) 0.84(0.06)

Ionosphere 0.62(0.22) 0.89(0.05) 0.88(0.06) 0.70(0.07) 0.89(0.05) 0.68(0.02) 0.88(0.06)
Wine 1.03(0.20) 0.88(0.11) 0.98(0.11) 0.73(0.02) 0.88(0.11) 0.93(0.06) 0.82(0.14)

Haberman 0.79(0.04) 0.89(0.05) 1.01(0.05) 0.82(0.02) 0.89(0.05) 0.92(0.04) 0.86(0.06)
Mean 0.54(0.05) 0.68(0.01) 0.72(0.08) 0.60(0.06) 0.68(0.11) 0.63(0.07) 0.86(0.12)

5 Conclusion

In this paper, we conducted a study about the dissimilarity between different DES tech-
niques. These dissimilarities are computed in order to generate a dissimilarity matrix.
Through Sammon Mapping, the dissimilarity matrix is embedded in a two-dimensional
space, called the Classifier Projection Space (CPS), where the Euclidean distance be-
tween two feature representations reflects their dissimilarity.

Based on the visual representation provided by the CPS, we can draw two conclu-
sions:

– The proposed technique is closer to the Oracle in the dissimilarity space, which
indicates that the use of different types of information about the behavior of base
classifiers is indeed necessary in order to achieve a DES technique that is closer to
the Oracle.

– Techniques that use the same kind of information to compute the level of com-
petence of the base classifiers, such as LCA, OLA and MLA, are more likely to
present the same results when their performance is averaged over several problems.

Future works in this topic include: i) The design of new sets of meta-features; ii) Car-
rying out a comparison of different meta-features vectors in order to achieve a set of fea-
tures that can better address the behavior of the Oracle; and, iii) Increasing the number
of classification problems in the analysis.
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