
Computing Upper and Lower Bounds of Graph

Edit Distance in Cubic Time

Kaspar Riesen1, Andreas Fischer2, and Horst Bunke3

1 Institute for Information Systems, University of Applied Sciences and Arts
Northwestern Switzerland, Riggenbachstrasse 16, 4600 Olten, Switzerland

kaspar.riesen@fhnw.ch
2 Biomedical Science and Technologies Research Centre, Polytechnique Montreal

2500 Chemin de Polytechnique, Montreal H3T 1J4, Canada
andreas.fischer@polymtl.ca

3 Institute of Computer Science and Applied Mathematics, University of Bern,
Neubrückstrasse 10, 3012 Bern, Switzerland

bunke@iam.ch

Abstract. Exact computation of graph edit distance (GED) can be
solved in exponential time complexity only. A previously introduced ap-
proximation framework reduces the computation of GED to an instance
of a linear sum assignment problem. Major benefit of this reduction is
that an optimal assignment of nodes (including local structures) can be
computed in polynomial time. Given this assignment an approximate
value of GED can be immediately derived. Yet, since this approach con-
siders local – rather than the global – structural properties of the graphs
only, the GED derived from the optimal assignment is suboptimal. The
contribution of the present paper is twofold. First, we give a formal proof
that this approximation builds an upper bound of the true graph edit
distance. Second, we show how the existing approximation framework
can be reformulated such that a lower bound of the edit distance can be
additionally derived. Both bounds are simultaneously computed in cubic
time.

1 Introduction

Graph-based representations, which are used in the field of structural pattern
recognition, have found widespread applications in the last decades [1,2]. In
fact, graphs offer two major advantages over feature vectors. First, in contrast
with vectors graphs provide a direct possibility to describe structural relations
in the patterns under consideration. Second, while the size of a graph can be
adapted to the size and complexity of a given pattern, vectors are constrained
to a predefined length, which has to be preserved for all patterns encountered in
a particular application.

Graph matching refers to the task of evaluating the similarity of graphs.
A huge amount of graph matching methodologies have been developed in the
last four decades [1]. They include methods stemming from spectral graph the-
ory [3], relaxation labeling [4], or graph kernel theory [5], to name just a few.

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 129–140, 2014.
c© Springer International Publishing Switzerland 2014



130 K. Riesen, A. Fischer, and H. Bunke

Among the vast number of graph matching methods available, the concept of
graph edit distance [6] is in particular interesting because it is able to cope with
directed and undirected, as well as with labeled and unlabeled graphs. If there
are labels on nodes, edges, or both, no constraints on the respective label alpha-
bets have to be considered. Moreover, through the use of a cost function graph
edit distance can be adapted and tailored to various problem specifications.

A major drawback of graph edit distance is its computational complexity. In
fact, the problem of graph edit distance can be reformulated as an instance of a
Quadratic Assignment Problem (QAP). QAPs belong to the most difficult com-
binatorial optimization problems for which only exponential run time algorithms
are available to date.1

In recent years, a number of methods addressing the high complexity of graph
edit distance computation have been proposed. In [7], for instance, an efficient
algorithm for edit distance computation of planar graphs has been proposed.
Another approach described in [8] formulates the graph edit distance problem
as a binary linear programming problem. This reformulation is applicable to
graphs with unlabeled and undirected edges only, and determines lower and
upper bounds of graph edit distance in O(n7) and O(n3) time, respectively (n
refers to the number of nodes in the graphs). The authors of [9] propose the use
of continuous-time quantum walks for graph edit distance computation without
explicitly determining the underlying node correspondences.

Most of the approximation methods for graph edit distance restrict their ap-
plicability to special classes of graphs. In [10] the authors of the present paper
introduced an algorithmic framework for the approximation of graph edit dis-
tance which is applicable to any kind of graphs. The basic idea of this approach
is to reduce the difficult QAP of graph edit distance computation to a linear sum
assignment problem (LSAP) which can be efficiently solved. This approximation
framework builds the basis for the present work. In [10] the result of an initial
node assignment is used to derive a valid, yet suboptimal, edit path between
the graphs. In the present paper we give a formal prove that this approxima-
tion builds an upper bound of the true edit distance. Moreover, we show how
the same approximation framework can be exploited to instantly derive a lower
bound of the graph edit distance. Both bounds can be simultaneously computed
in O((n+m)3) time, where n and m refers to the number of nodes in the graphs
under consideration.

2 Exact Graph Edit Distance Computation

2.1 Graph Edit Distance

Let LV and LE be finite or infinite label sets for nodes and edges, respectively.
A graph g is a four-tuple g = (V,E, μ, ν), where V is the finite set of nodes,
E ⊆ V × V is the set of edges, μ : V → LV is the node labeling function, and
ν : E → LE is the edge labeling function.

1 Note that QAPs are known to be NP-complete, and therefore, an exact and efficient
algorithm for the graph edit distance problem can not be developed unless P = NP.



Computing Upper and Lower Bounds of Graph Edit Distance in Cubic Time 131

Given two graphs, the source graph g1 = (V1, E1, μ1, ν1) and the target graph
g2 = (V2, E2, μ2, ν2), the basic idea of graph edit distance [6] is to transform g1
into g2 using some edit operations. A standard set of edit operations is given by
insertions, deletions, and substitutions of both nodes and edges. We denote the
substitution of two nodes u ∈ V1 and v ∈ V2 by (u → v), the deletion of node
u ∈ V1 by (u → ε), and the insertion of node v ∈ V2 by (ε → v), where ε refers
to the empty “node”. For edge edit operations we use a similar notation.

Definition 1. A sequence (e1, . . . , ek) of k edit operations ei that transform g1
completely into g2 is called a (complete) edit path λ(g1, g2) between g1 and g2. A
partial edit path, i.e. a subsequence of (e1, . . . , ek), edits proper subsets of nodes
and/or edges of the underlying graphs.

Note that in an edit path λ(g1, g2) each node of g1 is either deleted or uniquely
substituted with a node in g2, and analogously, each node in g2 is either inserted
or matched with a unique node in g1. The same applies for the edges. Yet, edit
operations on edges are always defined by the edit operations on their adja-
cent nodes. That is, whether an edge (u, v) is substituted, deleted, or inserted,
depends on the edit operations actually performed on both adjacent nodes u
and v.

Since edge edit operations are uniquely defined via node edit operations, it
is sufficient that edit operations ei ∈ λ(g1, g2) only cover the nodes from V1

and V2. That is, an edit path λ(g1, g2) explicitly describes the correspondences
found between the graphs’ nodes V1 and V2, while the edge edit operations are
implicitly given by these node correspondences.

Let Υ (g1, g2) denote the set of all admissible and complete edit paths between
two graphs g1 and g2. To find the most suitable edit path out of Υ (g1, g2), one
introduces a cost c(e) for every edit operation e, measuring the strength of the
corresponding operation. The idea of such a cost is to define whether or not
an edit operation e represents a strong modification of the graph. By means
of cost functions for elementary edit operations, graph edit distance allows the
integration of domain specific knowledge about object similarity. Furthermore,
if in a particular case prior knowledge about the labels and their meaning is not
available, automatic procedures for learning the edit costs from a set of sample
graphs are available as well [11].

Clearly, between two similar graphs, there should exist an inexpensive edit
path, representing low cost operations, while for dissimilar graphs an edit path
with high cost is needed. Consequently, the edit distance of two graphs is defined
as follows.

Definition 2. Let g1 = (V1, E1, μ1, ν1) be the source and g2 = (V2, E2, μ2, ν2)
the target graph. The graph edit distance dλmin(g1, g2), or dλmin for short, between
g1 and g2 is defined by

dλmin(g1, g2) = min
λ∈Υ (g1,g2)

∑

ei∈λ

c(ei) , (1)

where Υ (g1, g2) denotes the set of all complete edit paths transforming g1 into
g2, c denotes the cost function measuring the strength c(ei) of edit operation ei



132 K. Riesen, A. Fischer, and H. Bunke

(including the cost of the implied edge edit operations), and λmin refers to the
minimal cost edit path found in Υ (g1, g2).

For our further investigations it will be necessary to subdivide any graph distance
value dλ(g1, g2) corresponding to a (not necessarily minimal) edit path λ ∈
Υ (g1, g2) into the sum of costs C

〈V 〉
λ for all node edit operations ei ∈ λ and the

sum of costs C
〈E〉
λ for all edge edit operations implied by the node operations

ej ∈ λ. That is,

dλ(g1, g2) = C
〈V 〉
λ + C

〈E〉
λ (2)

2.2 Exact Computation of Graph Edit Distance

Optimal algorithms for computing the edit distance dλmin(g1, g2) are typically
based on combinatorial search procedures that explore the space of all possible
mappings of the nodes and edges of g1 to the nodes and edges of g2 (i.e. the
search space corresponds to Υ (g1, g2)). Such an exploration is often conducted
by means of A* based search techniques [12].

The basic idea of A* based search methods is to organize the underlying search
space as an ordered tree. The root node of the search tree represents the starting
point of our search procedure, inner nodes of the search tree correspond to partial
edit paths, and leaf nodes represent complete – not necessarily optimal – edit
paths. Such a search tree is dynamically constructed at runtime by iteratively
creating successor nodes linked by edges to the currently considered node in the
search tree.

The search tree nodes, i.e. (partial or complete) edit paths λ, to be processed
in the next steps are typically contained in a set OPEN. In order to determine
the most promising (partial) edit path λ ∈ OPEN, i.e. the edit path to be
used for further expansion in the next iteration, an assessment function f(λ) =
g(λ)+h(λ) is usually used, which includes the accumulated cost g(λ) of the edit
operations ei ∈ λ plus a heuristic estimation h(λ) of the future cost to complete
λ. One can show that, given that the estimation of the future cost is lower than,
or equal to, the real cost, the algorithm is admissible. Hence, this procedure
guarantees that a complete edit path λmin found by the algorithm first is always
optimal in the sense of providing minimal cost among all possible competing
paths.

Note that the edge operations implied by the node edit operations can be de-
rived from every partial or complete edit path λ during the search procedure. The
cost of these implied edge operations are dynamically added to the corresponding
paths λ ∈ OPEN and are thus considered in the edit path assessment f(λ).

3 Bipartite Graph Matching

The computational complexity of exact graph edit distance is exponential in the
number of nodes of the involved graphs. That is considering m nodes in g1 and
n nodes in g2, Υ (g1, g2) contains O(mn) edit paths to be explored. This means
that for large graphs the computation of edit distance is intractable. The graph



Computing Upper and Lower Bounds of Graph Edit Distance in Cubic Time 133

edit distance approximation framework introduced in [10] reduces the difficult
Quadratic Assignment Problem (QAP) of graph edit distance computation to
an instance of a Linear Sum Assignment Problem (LSAP). For solving LSAPs a
large number of algorithms exist [13]. The time complexity of the best performing
exact algorithms for LSAPs is cubic in the size of the problem. The LSAP is
defined as follows.

Definition 3. Given two disjoint sets S = {s1, . . . , sn} and Q = {q1, . . . , qn}
and an n×n cost matrix C = (cij), where cij measures the suitability of assign-
ing the i-th element of the first set to the j-th element of the second set. The
Linear Sum Assignment Problem (LSAP) is given by finding the minimum cost
permutation

(ϕ1, . . . , ϕn) = argmin
(ϕ1,...,ϕn)∈Sn

n∑

i=1

ciϕi ,

where Sn refers to the set of all n! possible permutations of n integers, and
permutation (ϕ1, . . . , ϕn) refers to the assignment where the first entity s1 ∈ S
is mapped to entity qϕ1 ∈ Q, the second entity s2 ∈ S is assigned to entity
qϕ2 ∈ Q, and so on.

By reformulating the graph edit distance problem to an instance of an LSAP,
three major issues have to be resolved. First, LSAPs are generally stated on
independent sets with equal cardinality. Yet, in our case the elements to be as-
signed to each other are given by the sets of nodes (and edges) with unequal
cardinality in general. Second, solutions to LSAPs refer to assignments of ele-
ments in which every element of the first set is assigned to exactly one element
of the second set and vice versa (i.e. a solution to an LSAP corresponds to a
bijective assignment of the the underlying entities). Yet, graph edit distance is
a more general assignment problem as it explicitly allows both deletions and
insertions to occur on the basic entities (rather than only substitutions). Third,
graphs do not only consist of independent sets of entities (i.e. nodes) but also
of structural relationships between these entities (i.e. edges that connect pairs
of nodes). LSAPs are not able to consider these relationships in a global and
consistent way. The first two issues are perfectly – and the third issue partially –
resolvable by means of the following definition of a square cost matrix whereon
the LSAP is eventually solved.

Definition 4. Based on the node sets V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}
of g1 and g2, respectively, a cost matrix C is established as follows.

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞

c21 c22 · · · c2m ∞ c2ε
. . .

.

.

.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

. . . ∞
cn1 cn2 · · · cnm ∞ · · · ∞ cnε

cε1 ∞ · · · ∞ 0 0 · · · 0

∞ cε2
. . .

.

.

. 0 0
. . .

.

.

.

.

.

.
. . .

. . . ∞
.
.
.

. . .
. . . 0

∞ · · · ∞ cεm 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)



134 K. Riesen, A. Fischer, and H. Bunke

Entry cij thereby denotes the cost of a node substitution (ui → vj), ciε denotes
the cost of a node deletion (ui → ε), and cεj denotes the cost of a node insertion
(ε → vj).

Note that matrix C = (cij) is by definition quadratic. Hence, the first issue
(sets of unequal size) is instantly eliminated. Obviously, the left upper corner of
the cost matrix C = (cij) represents the costs of all possible node substitutions,
the diagonal of the right upper corner the costs of all possible node deletions, and
the diagonal of the bottom left corner the costs of all possible node insertions.
Note that every node can be deleted or inserted at most once. Therefore any
non-diagonal element of the right-upper and left-lower part is set to ∞. The
bottom right corner of the cost matrix is set to zero since substitutions of the
form (ε → ε) should not cause any cost.

Given the cost matrix C = (cij), the LSAP optimization consists in finding
a permutation (ϕ1, . . . , ϕn+m) of the integers (1, 2, . . . , (n+m)) that minimizes

the overall assignment cost
∑(n+m)

i=1 ciϕi . This permutation corresponds to the
assignment

ψ = ((u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n))

of the nodes of g1 to the nodes of g2. Note that assignment ψ includes node
assignments of the form (ui → vj), (ui → ε), (ε → vj), and (ε → ε) (the latter
can be dismissed, of course). Hence, the definition of the cost matrix in Eq. 3
also resolves the second issue stated above and allows insertions and/or deletions
to occur in an optimal assignment.

The third issue is about the edge structure of both graphs which cannot be
entirely considered by LSAPs. In fact, so far the the cost matrix C = (cij)
considers the nodes of both graphs only, and thus mapping ψ does not take any
structural constraints into account. In order to integrate knowledge about the
graph structure, to each entry cij , i.e. to each cost of a node edit operation (ui →
vj), the minimum sum of edge edit operation costs, implied by the corresponding
node operation, is added. That is, we encode the minimum matching cost arising
from the local edge structure in the individual entries cij ∈ C.

Formally, assume that node ui has adjacent edges Eui and node vj has ad-
jacent edges Evj . With these two sets of edges, Eui and Evj , an individual
cost matrix similarly to Eq. 3 can be established and an optimal assignment
of the elements Eui to the elements Evj using an LSAP solving algorithm can
be computed. Following this procedure, the assignment of adjacent edges is not
constrained by an assignment of adjacent nodes other than ui and vj . Therefore,
the estimated edge edit costs implied by (ui → vj) are less than, or equal to,
the costs implied by a complete edit path. These minimum edge edit costs are
eventually added to the entry cij . To entry ciε, which denotes the cost of a node
deletion, the cost of the deletion of all adjacent edges of ui is added, and to the
entry cεj , which denotes the cost of a node insertion, the cost of all insertions
of the adjacent edges of vj is added. This particular encoding of the minimal
edge edit operation cost enables the LSAP to consider information about the



Computing Upper and Lower Bounds of Graph Edit Distance in Cubic Time 135

local, yet not global, edge structure of a graph. Hence, this heuristic procedure
partially resolves the third issue.

4 Upper and Lower Bounds of Graph Edit Distance

4.1 Upper Bound dψ

Given the node assignment ψ two different distance values approximating the ex-
act graph edit distance dλmin(g1, g2) can be inferred. As stated above, the LSAP
optimization finds an assignment ψ in which every node of g1 is either assigned
to a unique node of g2 or deleted. Likewise, every node of g2 is either assigned to
a unique node of g1 or inserted. Hence, mapping ψ refers to an admissible and
complete edit path between the graphs under consideration, i.e. ψ ∈ Υ (g1, g2).
Therefore, the edge operations, which are implied by edit operations on their
adjacent nodes, can be completely inferred from ψ. This gives us a first approx-
imation value dψ(g1, g2), or dψ for short, defined by (cf. Eq. 2)

dψ(g1, g2) = C
〈V 〉
ψ + C

〈E〉
ψ . (4)

Note that in case of dλmin the sum of edge edit cost C
〈E〉
λmin

is dynamically built
while the search tree is constructed and eventually added to every partial edit

path λ ∈ OPEN. Yet, the sum of edge costs C
〈E〉
ψ is added to the cost of the

complete edit path ψ only after the optimization process has been terminated.
This is because LSAP solving algorithms are not able to take information about
assignments of adjacent nodes into account during run time. In other words,
for finding the edit path ψ ∈ Υ (g1, g2) based on the cost matrix C = (cij) the
structural information of the graphs is considered in an isolated way only (single
nodes and their adjacent edges). This observation brings us to the following
Lemma.

Lemma 1. The distance dψ(g1, g2) derived from the node assignment ψ consti-
tutes an upper bound of the true graph edit distance dλmin(g1, g2). That is,

dψ(g1, g2) ≥ dλmin(g1, g2)

holds for every pair of graphs g1, g2.

Proof. We distinguish two cases.

1. ψ = λmin: That is, the edit path ψ returned by our approximation framework
is identical with the edit path λmin computed by an exact algorithm. It
follows that dψ = dλmin .

2. ψ �= λmin: In this case the approximate edit distance dψ cannot be smaller
than dλmin . Otherwise an exact algorithm for graph edit distance compu-
tation, which exhaustively explores Υ (g1, g2), would return ψ as edit path
with minimal cost, i.e. ψ = λmin. Yet, this is a contradiction to our initial
assumption that ψ �= λmin.



136 K. Riesen, A. Fischer, and H. Bunke

4.2 Lower Bound d′
ψ

The distance value dψ(g1, g2) is directly used as an approximate graph edit
distance between graphs g1 and g2 in previous publications (e.g. in [10]). We now
define another approximation of the true graph edit distance based on mapping
ψ. As we will see below, this additional approximation builds a lower bound of
the true graph edit distance dλmin(g1, g2).

First, we consider the the minimal sum of assignment costs
∑(n+m)

i=1 ciϕi re-
turned by our LSAP solving algorithm. Remember that every entry ciϕi reflects
the cost of the corresponding node edit operation (ui → vϕi) plus the minimal
cost of editing the incident edges of ui to the incident edges of vϕi . Hence, the

sum
∑(n+m)

i=1 ciϕi can be – similarly to Eq. 4 – subdivided into costs for node
edit operations and costs for edge edit operations. That is,

(n+m)∑

i=1

ciϕi = C
〈V 〉
ψ + C〈E〉

ϕ . (5)

Analogously to Eq. 4, C
〈V 〉
ψ corresponds to the sum of costs for node edit

operations ei ∈ ψ. Yet, note the difference between C
〈E〉
ϕ and C

〈E〉
ψ . While C

〈E〉
ψ

reflects the costs of editing the edge structure from g1 to the edge structure of
g2 in a globally consistent way (with respect to all edit operations in ψ applied

on both adjacent nodes of every edge), the sum C
〈E〉
ϕ is based on the optimal

permutation (ϕ1, . . . , ϕ(n+m)) and in particular on the limited, because local,
information about the edge structure integrated in the cost matrix C = (cij).
Moreover, note that every edge (u, v) is adjacent with two individual nodes

u, v and thus the sum of edge edit costs C
〈E〉
ϕ considers every edge twice in

two independent edit operations. Therefore, we define our second approximation
value d′ψ(g1, g2), or d

′
ψ for short, by

d′ψ(g1, g2) = C
〈V 〉
ψ +

C
〈E〉
ϕ

2
(6)

Clearly, Eq. 6 can be reformulated as

d′ψ(g1, g2) = C
〈V 〉
ψ +

∑(n+m)
i=1 ciϕi − C

〈V 〉
ψ

2
(7)

and thus, d′ψ(g1, g2) only depends on quantities C
〈V 〉
ψ and

∑(n+m)
i=1 ciϕi , which are

already computed for dψ. Therefore, d
′
ψ can be derived without any additional

computations from the established approximation dψ.
Note that the approximation dψ corresponds to an admissible and complete

edit path with respect to the nodes and edges of the underlying graphs. Yet, the
second approximation d′ψ is not related to a valid edit path since the edges of
both graphs are not uniquely assigned to each other (or deleted/inserted at most
once). The following Lemma shows an ordering relationship between dψ and d′ψ .



Computing Upper and Lower Bounds of Graph Edit Distance in Cubic Time 137

Lemma 2. For the graph edit distance approximations dψ(g1, g2) (Eq. 4) and
d′ψ(g1, g2) (Eq. 6) the inequality

d′ψ(g1, g2) ≤ dψ(g1, g2)

holds for every pair of graphs g1, g2 and every complete node assignment ψ.

Proof. According to Eq. 4 and Eq. 6 we have to show that

C
〈E〉
ϕ

2
≤ C

〈E〉
ψ .

Assume that the node edit operation (ui → vj) is performed in ψ. Therefore,

the edges Eui incident to node ui are edited to the edges Evj of vj in C
〈E〉
ϕ as

well as in C
〈E〉
ψ .

The sum of edge costs C
〈E〉
ϕ considers the minimal cost edit path between

the edges Eui to the edges of Evj with respect to (ui → vj) only. In the case

of C
〈E〉
ψ , however, every edge in Eui and Evj is edited with respect to the node

operations actually carried out on both adjacent nodes of every edge (rather

than considering (ui → vj) only). Hence, C
〈E〉
ϕ is restricted to the best case,

while C
〈E〉
ψ considers the consistent case of editing the edge sets.

Note that C
〈E〉
ϕ is built on the minimized sum

∑(n+m)
i=1 ciϕi . Yet, the cost se-

quence c1ϕ1 , . . . , c(n+m)ϕ(n+m)
considers every edge (ul, uk) ∈ E1 twice, viz. once

in entry clϕl
and once in entry ckϕk

. The same accounts for the edges in E2.
The cost of edge operations considered in clϕl

as well as in ckϕk
refers to the

best possible case of editing the respective edge sets. The sum of cost of these

two best cases considered in C
〈E〉
ϕ are clearly smaller than, or equal to, twice the

actual cost considered in C
〈E〉
ψ .

We can now show that d′ψ constitutes a lower bound for dλmin .

Lemma 3. The distance d′ψ(g1, g2) derived from the node assignment ψ consti-
tutes a lower bound of the true graph edit distance dλmin(g1,g2). That is,

d′ψ(g1, g2) ≤ dλmin(g1, g2)

holds for every pair of graphs g1, g2.

Proof. We distinguish two cases.

1. ψ = λmin: An optimal algorithm would return ψ as optimal solution and thus
dψ = dλmin . From Lemma 2 we know that d′ψ ≤ dψ and thus d′ψ ≤ dλmin .

2. ψ �= λmin: In this case ψ corresponds to a suboptimal edit path with cost
dψ greater than (or possibly equal to) dλmin . The question remains whether
or not dλmin < d′ψ might hold in this case. According to Lemma 2 we know
that d′λmin

≤ dλmin and thus assuming that dλmin < d′ψ holds, it follows that
d′λmin

< d′ψ. Yet, this is contradictory to the optimality of the LSAP solving
algorithm that guarantees to find the assignment ψ with lowest cost d′ψ .



138 K. Riesen, A. Fischer, and H. Bunke

We can now conclude this section with the following theorem.

Theorem 1.

d′ψ(g1, g2) ≤ dλmin(g1, g2) ≤ dψ(g1, g2) ∀g1, g2
Proof. See Lemmas 1, 2, and 3.

5 Experimental Evaluation

In Table 1 the achieved results on three data sets from the IAM graph database
repository2 are shown. The graph data sets involve graphs that represent molecu-
lar compounds (AIDS), fingerprint images (FP), and symbols from architectural
and electronic drawings (GREC). On each data set and for both bounds two
characteristic numbers are computed, viz. the mean relative deviation of dψ and
d′ψ from the exact graph edit distance dλmin (�e) and the mean run time to carry
out one graph matching (�t).

Table 1. The mean relative error of the exact graph edit distance (�e) in percentage
and the mean run time for one matching (�t in ms)

Distance

Data Set

AIDS FP GREC

� e � t � e � t � e � t

dλmin
- 5629.53 - 5000.85 - 3103.76

dψ +12.68 0.44 +6.38 0.56 +2.98 0.43

d′
ψ -7.01 0.44 -0.38 0.56 -3.67 0.43

First we focus on the exact distances dλmin provided by A*. As dλmin refers to
the exact edit distance, the mean relative error �e is zero on all data sets. We ob-
serve that the mean run time for the computation of dλmin lies between 3.1s and
5.6s per matching. Using the approximation framework, a massive speed-up of
computation time can be observed. That is, on all data sets the the computation
of both distance approximations dψ and d′ψ is possible in less than or approxi-
mately 0.5ms on average (note that both distance measures are simultaneously
computed and thus offer the same matching time).

Regarding the overestimation of dψ and the underestimation of d′ψ we observe
the following. The original framework, providing the upper bound dψ, overesti-
mates the graph distance by 12.68% on average on the AIDS data, while on the
Fingerprint and GREC data the overestimations of the true distances amount
to 6.38% and 2.98%, respectively. On the GREC data, the upper bound dψ is a
more accurate approximation than the lower bound d′ψ , where the underestima-
tion amounts to 3.67%. Yet, the deviations of dψ are substantially reduced on

2 www.iam.unibe.ch/fki/databases/iam-graph-database



Computing Upper and Lower Bounds of Graph Edit Distance in Cubic Time 139

(a) AIDS (b) FP) (c) GREC)

Fig. 1. Exact graph edit distance dλmin vs. upper bound dψ (gray points) and lower
bound d′ψ (black points) of the graph edit distance

the other two data sets by using the lower rather than the upper bound. That
is, using d′ψ rather than dψ the deviations can be reduced by 5.67% and 6.00%
on the AIDS and FP data set, respectively.

Note the remarkable improvement of the approximation accuracy on the FP
data set which can also be observed in the scatter plot in Fig. 1 (b). These
scatter plots give us a visual representation of the accuracy of the suboptimal
methods on all data sets. We plot for each pair of graphs their exact distance
dλmin and approximate distance values dψ and d′ψ (shown with gray and black
points, respectively).

6 Conclusions

The main focus of the present paper is on theoretical issues. First, we give a
formal prove that the existing approximation returns an upper bound of the
true edit distance. Second, we show how the same approximation scheme can
be used to derive a lower bound of the true edit distance. Both bounds are
simultaneously computed in O((n+m)3), where n and m refer to the number of
nodes of the graphs. In an experimental evaluation we empirically confirm our
theoretical investigations and show that the lower bound leads to more accurate
graph edit distance approximations on two out of three data sets.

In future work we aim at exploiting the additional lower bound in our ap-
proximation framework. For instance, a prediction of the true edit distance dλmin

based on dψ and d′ψ by means of regression analysis could be a rewarding avenue
to be pursued. Moreover, we aim at using both bounds in a pattern recognition
application (e.g. in database retrieval where both bounds can be beneficially
employed).

Acknowledgements. This work has been supported by the Hasler Foundation
Switzerland and the Swiss National Science Foundation project P300P2-151279.



140 K. Riesen, A. Fischer, and H. Bunke

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching
in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelli-
gence 18(3), 265–298 (2004)

2. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last 10 years. Int. Journal of Pattern Recognition and Art. In-
telligence (2014)

3. Luo, B., Wilson, R., Hancock, E.: Spectral embedding of graphs. Pattern Recog-
nition 36(10), 2213–2223 (2003)

4. Torsello, A., Hancock, E.: Computing approximate tree edit distance using relax-
ation labeling. Pattern Recognition Letters 24(8), 1089–1097 (2003)

5. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explorations 5(1),
49–58 (2003)

6. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters 1, 245–253 (1983)

7. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for
attributed planar graphs and its application to fingerprint classification. In: Fred,
A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR
2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)

8. Justice, D., Hero, A.: A binary linear programming formulation of the graph
edit distance. IEEE Trans. on Pattern Analysis ans Machine Intelligence 28(8),
1200–1214 (2006)

9. Emms, D., Wilson, R.C., Hancock, E.R.: Graph edit distance without correspon-
dence from continuous-time quantum walks. In: da Vitoria Lobo, N., Kasparis, T.,
Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.)
S+SSPR 2008. LNCS, vol. 5342, pp. 5–14. Springer, Heidelberg (2008)

10. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27(4), 950–959 (2009)

11. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph
matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 31(6),
1048–1058 (2009)

12. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions of Systems, Science, and Cybernetics 4(2),
100–107 (1968)

13. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for In-
dustrial and Applied Mathematics, Philadelphia (2009)


	Computing Upper and Lower Bounds of Graph
Edit Distance in Cubic Time

	1 Introduction
	2 Exact Graph Edit Distance Computation
	2.1 Graph Edit Distance
	2.2 Exact Computation of Graph Edit Distance

	3 Bipartite Graph Matching
	4 Upper and Lower Bounds of Graph Edit Distance
	4.1 Upper Bound dψ

	4.2 Lower Bound d�
ψ


	5 Experimental Evaluation
	6 Conclusions
	References




