
Feature-Distributed Malware Attack:

Risk and Defence

Byungho Min and Vijay Varadharajan

Advanced Cyber Security Research Centre
Department of Computing, Macquarie University, Sydney, Australia

{byungho.min,vijay.varadharajan}@mq.edu.au

Abstract. Modern computing platforms have progressed to more secure
environments with various defensive techniques such as application-based
permission and application whitelisting. In addition, anti-virus solutions
are improving their detection techniques, especially based on behavioural
properties. To overcome these hurdles, the adversary has been develop-
ing malware techniques including the use of legitimate digital certifi-
cates; hence it is important to explore possible offensive techniques in a
security-improved environment.

In this paper, first we propose the new technique of feature-distributed
malware that dynamically distributes its features to multiple software
components in order to bypass various security mechanisms such as ap-
plication whitelisting and anti-virus’ behavioural detection. To evaluate
our approach, we have implemented a tool that automatically gener-
ates such malware instances, and have performed a series of experiments
showing the risks of such advanced malware. We also suggest an effective
defence mechanism. It prevents loading of malicious components by util-
ising digital certificates of software components. We have implemented a
Windows service that provides our defence mechanism, and evaluated it
against the proposed malware. Another useful characteristic of our de-
fence is that it is capable of blocking general abuse of legitimate digital
certificates with dynamic software component loading.

Keywords: Security, Feature-Distribution Malware, Software Compo-
nent.

1 Introduction

Modern computing platforms have progressed to more secure environments with
various defensive techniques. For example, all the mainstream platforms such
as Windows 8, Mac OS X 10.9, iOS and Android deploy an application-based
permission model that determines which application is allowed to access which
system services such as network activity, disk access, other hardware access and
location service. Furthermore, on Mac OS X and iOS, each permission decision
is made by the user at run time right after each permission is requested by the
application, making them more secure than Android, where the list of all the

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part II, LNCS 8713, pp. 457–474, 2014.
c© Springer International Publishing Switzerland 2014



458 B. Min and V. Varadharajan

requested permissions of an application is presented at installation time, and al-
lowed at once when a user decides to install the application.1 As a result of this
progress, malware or compromised user applications on the modern platforms
may not be able to achieve their goals. However, attackers have always devel-
oped new ways to overcome security hurdles. In recent years, there are at least
two outstanding trends in malicious software. First, most malware instances,
even mobile ones, have become modular [1, 2]. For instance, an initial module
is responsible for installation, a networking module is in charge of command
and control (C&C) communications, and a rootkit module starts other modules
on every system boot so that they can perform respective functionalities. This
strategy lowers the possibility of detection as well as minimises exposure of the
malware and the attack operation in case of detection. Another trend in mali-
cious software is the use of legitimate certificates [3–6] so malware is allowed to
run and access system services, and not blocked or detected by security solutions
like anti-virus. Therefore, new malware that bypasses the security restrictions
imposed by the application-based permission model can emerge in the foresee-
able future, and it is important to measure the risks of such malware attack and
develop effective defence measures.

In this paper, first we present feature-distributed malware that can bypass not
only the application-based security model, but also other security schemes such
as application whitelisting and Egress filtering. Although many real world mal-
ware samples use various malicious component loading techniques [3–7], we take
a different perspective on malicious dynamic component loading. Since no matter
what technique is used, the most important objective for malware is to remain
undetected and perform its malicious activities. And commodity PCs typically
have several applications installed on them from web browser to media player,
and many such applications use diverse (open or closed source) software compo-
nents. We have categorised popular applications, such as Firefox and iTunes, and
the libraries loaded by them, and then split malware functionalities to several
components. Similar to other malicious component loading attacks [8], various
attacks including remote ones are possible with our approach as described in Sec-
tion 2. In addition, a more capable form of modular malware has been achieved
due to the dynamic feature distribution. To evaluate the risks of our technique,
we have implemented a tool that automatically generates feature-distributed
malware using three malicious component types, and showed that wide range
of malicious activities is possible, even under the application-based permission
model and with the protection of security tools such as anti-virus, application
whitelisting and Egress filtering.

Exploring the risks of the feature-distributed malware enabled us to devise
a novel defensive mechanism. In essence, a host process (i.e. original main ex-
ecutable file of an application that loads other components) checks the signer
information of components to be loaded when it verifies the validity of their
digital signatures to prevent the feature-distributed malware. This mechanism

1 This has made Android malware that requires several permissions to use social en-
gineering techniques to acquire the permissions.



Feature-Distributed Malware Attack: Risk and Defence 459

turned out to be effective in blocking most real world malware attacks that use
stolen legitimate certificates. We have implemented this mechanism as a Win-
dows service so that any application can integrate our APIs during component
loading.

The remainder of this paper is structured as follows. Section 2 describes the
background on malware features and the design of feature-distributed malware
with its attack vectors. Implementation details of the malware are discussed in
Section 3. Section 4 presents the evaluation of our offensive technique, including
characteristics and risks of the malware attack. In Section 5, we present our
general defensive technique to prevent the feature-distributed malware attack,
and evaluate its effectiveness and performance impact. We conclude the paper
with a discussion of future work in Section 6.

2 Feature-Distributed Malware

This section describes major features of modern malware, design of our feature-
distributed malware, remote attack examples applied from other malicious com-
ponent loading studies [8], and the feature distribution strategy.

2.1 Malware Features and Application-Based Permission

Extraction of modern malware characteristics should be conducted ahead of
distributing features. For this purpose, we have surveyed technical reports on
recent malware instances including Stuxnet, Duqu, Flame, Gauss, Shamoon,
Red October and Careto [3–7, 9] and analysed several samples of them. Common
features of them is summarised below, and full details of the analysis are available
in our technical report [2]:

1. Local activity

(a) Data collection: file list, files, OS account credentials, Bluetooth sniffing,
microphone recording, hardware and software information, web creden-
tials and browser cookies (via malicious browser plugin), instant messag-
ing (IM, e.g. Skype) recording, keylogging, emails, screenshots, network
shares, connected device list, information from connected devices (e.g.
SMS and contacts), saved passwords from web browsers and FTP clients
cyber assets (e.g. intellectual property)

(b) Propagation: USB infection
(c) Backdoor:Windows service installation or modification, account creation
(d) Supporting: payload generation (e.g. autorun.inf for USB infection), ini-

tialisation (e.g. module listing and loading), filename generation (only
these interesting files are collected), malware activity logging, security
tool monitoring, uninstallation

2. Remote activity

(a) Data collection: External IP address, network scanning



460 B. Min and V. Varadharajan

(b) Propagation: account login attempt (using created or stolen credentials),
serving man-in-the-middle attack, serving remote exploits such as MS08-
067

(c) Networking: several commands including update, run, and uninstall,
data exfiltration, heart beating

As modern platforms such iOS, Android and Mac OS X 10.9 are incorpo-
rating application-based permission model, some of the above activities cannot
be performed by standalone malware or infected software. For example, micro-
phone recording and Bluetooth sniffing require access to respective hardware
access, and contact information collection requires access to Contacts applica-
tion, which has to be explicitly approved by the user. Considering that most of
recent malware consists of multiple modules (at application, service, or driver
level) and their data collection and networking modules are usually running at
user-level2, this is a new hurdle for attackers to overcome.

2.2 Feature-Distributed Malware: Concept

Although the application-based permission model is strong enough to prevent
current malware threats, it is still possible to bypass it if malware is properly
implemented because there are still user-approved applications that have ac-
cess to hardware and software resources. In particular, malware can perform
its functionalities by dynamically distributing them to user-approved or system-
approved applications. For example, a networking module that has migrated into
an email application may not be able to dump OS password hashes, while a lo-
cal data collection module that has migrated into an anti-virus service running
under SYSTEM account can. On the other hand, the data collection module
may not be allowed to communicate with its C&C server due to Egress filter-
ing, whereas the networking module can perform the data exfiltration. This is
the concept of our “feature-distributed” malware; malware modules cooperate in
order to overcome application-based permission model and other security mech-
anisms such as application whitelisting and Egress filtering. In addition, the
following advantages are achieved with the feature-distributed malware:

1. More Adaptive: when a victim installs a new application, the feature-
distributed malware can further distribute its feature set to the new applica-
tion without any attacker intervention. In addition, it performs self-recovery
as long as there is at least one active malicious component as explained in
Section 3, even when an application is updated (and so are its components).

2. More Stealthy: trusted and approved application hosts malicious modules.
No new process for Windows services or applications are installed and ex-
ecuted; on the contrary, modern malware usually installs its modules as
Windows services or drivers. Furthermore, malware that is detected by anti-
virus becomes undetectable by distributing malicious features to multiple

2 Kernel-level rootkit drivers are normally backdoors for persistent compromise.



Feature-Distributed Malware Attack: Risk and Defence 461

applications (i.e. processes) as shown in Section 4. This is because anti-virus
solutions determine maliciousness of a file or a process based on its static and
dynamic characteristics; analysing all the interactions of multiple processes
and components is yet to come since it can result in a serious performance
issue and raise false positive rate.

3. More Capable: bypassing security mechanisms such as application whitelist-
ing and Egress filtering is achieved.

2.3 Remote Attacks – Examples

Although any malware attack from drive-by download to USB infection is pos-
sible with the feature-distributed malware, we describe the attack vectors that
are closely related to the concept of our proposed malware attack. These vectors
assume that the malware has been delivered to a victim by an initial attack such
as client-side attack or spear phishing, which is also assumed by most related
work [10–18]. In addition, many real world malware attack operations including
Careto, Red October, Gauss and Flame started as spear phishing.

Archive with component attack. The adversary can make an archive file
that contains a normal document file and a malicious component file with an
absolute path and overwrite option. Once the victim opens the archive, not only
the files the victim expects to see, but also the malware components are extracted
and placed in the designated path. For example, malicious sqlite3.dll can be
extracted to the Apple iTunes’ installation path. Next time iTunes starts up,
the malware module is loaded by iTunes and performs its activities from feature
distribution to malicious functionalities.

Carpet Bomb-based attack. The Carpet Bomb attack [19] can lead to
remote code execution in connection with the feature-distributed malware. This
attack happens, for instance, when Safari web browser accesses a malicious web
page, and arbitrary files that can be the feature-distributed malware file are
downloaded to the victim system without user consent. In particular, when the
location of downloaded file corresponds to the malware’s target software com-
ponent, the malware will be loaded by its target application after the Carpet
Bomb attack.

2.4 Feature Distribution Strategy

Since each application has different permission and privilege depending on its
required functionalities, malware features discussed in Section 2.1 should be
properly distributed. We categorise application types and discuss the pros and
cons of each type as a malware module. An application can be included in
more than one category. For example, Google Drive is a startup as well as a
networking application. We have tested several of the below application types
with the proposed malware concept, and have evaluated them in Section 4.

Startup (persistent). Most startup applications are automatically executed
on every boot and they keep running. Examples include cloud storage like Google
Drive and Dropbox, IM such as Skype, and anti-virus software. This type of



462 B. Min and V. Varadharajan

applications runs all the time while the system is up (unless the user explicitly
terminates it). However, they usually have user privilege (neither administrative
nor SYSTEM), and may not be allowed for networking.

- Appropriate Module: initialisation (self-recovery and feature re-distribution
that are explained in Section 3)

Startup (update checker). Some startup applications are executed on every
system boot, but terminated after they finish required tasks. Examples are update
checker of various applications such as Java and Flash plugins. They can connect
to the Internet, and may have administrative privilege so that they can update
the relevant software. But they run for a limited time, typically several seconds.

- Appropriate Module: heart beating module that reports a successful com-
promise and access maintenance.

Networking. Web browsers, email, IM, (S)FTP and other network clients,
online games, and cloud storage applications are allowed for network activity.
But they normally have user privilege, and run for a limited time (longer than
update checker).

- Appropriate Module (web browsers): “worm” (propagation) module since
C&C communication pattern that is used for worm detection is randomised
by the user; only when the user surfs the Internet, worm module performs its
communication, and each individual person has different Internet use pattern.

- Appropriate Module (the others): data exfiltration because (1) IM and email
clients tend to run all the time, and (2) network clients can transfer a large
amount of data compared to other networking software.

Security Solutions. Security tools such as anti-virus usually have the highest
privilege (i.e. SYSTEM on Windows), and cannot be killed by the user and user
level applications. However, it is much harder to load a malicious module in the
context of these applications as they protect themselves from malware so that
even the user cannot modify their components or configurations. In addition,
some executables like local file scanner may not be allowed for networking.

- Appropriate Module: local data collection, logging malware activities, and
rootkit module that maintains access, updates modules, and uninstalls all the
modules when required.

Productivity. Productivity applications are varied from office suites to per-
sonal information manager such as password manger 1Password. Even though
these applications are executed under user privilege, and do not run all the
time, they are guaranteed to have access to relevant information including office
documents to password database.

- Appropriate Module: local data collection module specialised for each
application.

Media Management and Playback. Similar to productivity applications,
this type of applications can access to their contents, which include personal
photos, videos and voice memos.

- Appropriate Module: local data collection module specialised for each appli-
cation.



Feature-Distributed Malware Attack: Risk and Defence 463

Table 1. Open Source Libraries Tested with Feature-Distributed Malware

Library Name Example of Applications

SQLite AVG, iTunes, Adobe Reader, Google Drive

OpenSSL Open Office, Mobogenie, Mumble

Network Security Services (NSS) Chrome, AIM, Pidgin, Firefox, Thunderbird

Device management. iTunes and Mobogenie are two device management
applications respectively for iOS and Android device. These applications have
access to device information and contents such as contacts and photos.

- Appropriate module: data collection module specialised for each application.

3 Implementation

To realise our proposed feature-distributed malware, we have developed an au-
tomatic malware generator on Windows, which is based on our implementations
of (1) three malicious component types and (2) malware features such as mal-
ware initialisation, feature distribution, and common malicious activities. In this
section, we discuss implementation details and considerations of the generator
and other techniques.

3.1 Three Malicious Component Types

As discussed in Section 2, a feature-distributed malware file (i.e. a software
component or an archive) is placed at a certain path after it is delivered to a
victim (e.g. via email attachment or network share) and opened. Then the file is
loaded by target applications such as Firefox, which means that the newly placed
malicious component has to provide all the functionalities of the original software
component. On Windows, exported functions of DLL are the functionalities the
malware has to provide. We have implemented three types of file-based malicious
component that satisfies this requirement.

Source code modified component. One of the best ways of providing an
entire functionality of a software component is to build them from source code.
Many popular applications use open source libraries as given in Table 1, and
this makes it feasible to implement malicious components using open source li-
braries. Open source libraries are also an attractive target for feature-distributed
malware because (1) there is no need for trampolines (described below), thus no
additional file is produced, (2) several popular open source libraries are used by
many common applications in various application types, and (3) building a multi-
platform malicious component is possible for many open source libraries. For ex-
ample, Careto [3] is a multi-platform malware that uses an open source software
for Mac OS X backdoor module. However, building an entire library can increase
the size of malware, and it takes longer than making a dummy trampoline-style
component. We have tested the proposed malware attack with three widely used



464 B. Min and V. Varadharajan

libraries: SQLite, Network Security Services (NSS), and OpenSSL. They are be-
ing adopted by a huge number of applications, and a few representative examples
are shown in Table 1. We edited the source code of these libraries so that they
can be passed to the malware generator as an input and be merged with our
malware feature implementation (Figure 1).

Trampoline-style Component. Software vendors or individual developers
may get an open source library, and then edit some of its exported functions.
Also, there are still various popular closed source libraries such as Microsoft
C Runtime (CRT) library and Microsoft Foundation Class (MFC). In these
cases, we have taken two approaches, and trampoline-style dummy library is
one of them. Trampoline is a dummy function that finds its original export
using its ordinal value, and jumps to it when it is invoked. Such trampolines
must be implemented for all the exports of a target library so that the hosting
application starts and functions correctly. We have implemented trampolines
mainly in assembly code, and tested this approach with CRT and MFC libraries.

Even though the size of trampoline-style component is smaller than that of
open source-based one, it cannot replace the original library, since it does not
provide any actual functionality. In the current implementation, the feature-
distributed malware searches for CRT libraries, and if required, renames (not
replaces) them and copies the trampoline-style dummy library in the place of
the original one. As a result, there comes an additional file introduced to the
victim system when this type of component is used. Also, it cannot be used
as an initial component because renaming can happen only when at least one
malicious component is active.

Binary modified component. Another way of developing a malware com-
ponent based on source-modified or closed source libraries is to manipulate them
at the binary level. We have implemented an on the fly binary modification rou-
tine in our malware feature set that performs the following:

1. Add a new Portable Executable (PE) section.
2. Write binary shellcode that is built from our assembly and C code.
3. Modify Entry Point (EP) so that our shellcode is executed when the library

is loaded.

When the modified component is loaded by an application, and the shellcode
is executed, it loads its modifier library then jumps back to the original entry
point (OEP) so that it can function as intended. For instance, if SQLite of iTunes
modifies the CRT of Firefox, this CRT’s shellcode loads the SQLite library of
iTunes for malware functionalities. Because the newly loaded SQLite is loaded by
a component of Firefox, it has the context of Firefox, not of iTunes. This enables
the implementation of our shellcode to be concise and reliable, with the size of
408 bytes. We verified this approach with the two libraries tested for trampoline-
style. Its limitation as a malicious component is similar to trampoline-style; it
cannot be used as an initial module since it is an implemented feature and used in
the malware, which should be used by an active malicious component. However,
no additional file is introduced in the victim system since this approach modifies
binaries on the fly.



Feature-Distributed Malware Attack: Risk and Defence 465

Fig. 1. Feature-distributed malware generator for archive with component attack

Anti-virus (AVG’s case). As discussed in Section 2, major anti-virus solu-
tions protect themselves, and AVG is not an exception. AVG anti-virus provides
“AVG Self protection” that is composed of two filter drivers. When a user or
a process (even with the highest privilege) tries to delete or modify those files,
then the two drivers block such I/O requests. Similarly, new files cannot be
added to the AVG folder. Therefore, it is much harder to replace or modify
AVG’s files [20]. After analysing AVG anti-virus, however, we found out that
AVG fails to protect the self-protection filter drivers, even though it must block
any unauthorised attempt to unload or detach them. As a result, AVG’s two
filter drivers can be detached by the user or malware using Filter Manager Con-
trol. After the detachment, arbitrary files belonging to AVG can be replaced or
modified, which can be used in the feature-distributed malware.

3.2 Automatic Malware Generation

The final form of the feature-distributed malware is one single archive or soft-
ware component that will be placed at a target path and then loaded by user
applications. We have implemented a malware generator that automates the
process of configuring, packaging and making the final component or archive
file as depicted in Figure 1. The generator takes three inputs. First, user spec-
ifies several parameters such as libraries to be included, application database,
final form to be generated (either an archive or a DLL file), absolute paths
where the generated component is to be placed, and other malware parameters
given in Table 3. Second, implemented malware features such as local password
hash dump, C&C communication and the live binary modification routine are
passed. These are embedded to the specified open source libraries at source code
level. Lastly, source code of open source target libraries such as SQLite and
OpenSSL are passed so that the generator can merge the malware features with
the libraries. When merging them, the generator adds the malware features as a
separate thread created in DllMain() so that it can run as long as the library is
loaded in memory. When a trampoline-style library such as CRT is specified in
the user input, relevant dummy trampoline DLL is generated and added to the
final archive file with a path to Windows Temporary folder. The final archive
is constructed with proper absolute paths and overwrite option using RAR or



466 B. Min and V. Varadharajan

Fig. 2. Overview: initialisation and operation of the feature-distributed malware

TAR format according to the user parameter. This is possible because files of
applications are usually not protected by the system, unlike files of security tools
or critical system files that are protected by operating system feature such as
Windows Resource Protection (WRP).

Among the input parameters, application database contains information
about target applications including their categories, allowed permissions and
privileges. This information is embedded in the malware so that it can initialise
and dynamically distribute its features based on this information. Real world
attackers behind advanced threat persistent operations usually profile their tar-
get systems, and then carefully install persistent malware for cyber espionage.
Therefore, the adversary can customise application database based on initial
profiling.

3.3 Malware Operation: Initialisation and Feature Distribution

Once a feature-distributed malware (i.e. a software component) is loaded by an
attack vector described in Section 2, the initialisation process is started as shown
in Figure 2. The component searches for other active components; remote proce-
dure call (RPC) is used for inter-component communications. Depending on the
number of active components and the configuration specified by the attacker,
the first component searches for additional target libraries and replaces them
with itself. For instance, a malicious sqlite3.dll loaded by iTunes searches for
other instances of SQLite library. Preferences on libraries are specified in the
malware parameter. When other instances of SQLite used by Open Office and
AVG are found, the malware replaces the newly found components with itself
so that they become a part of the feature-distributed malware. In the case of
binary modification, target library is modified on the fly. After sufficient num-
bers of components become active, they dynamically distribute malware features
based on their hosting process and the application database. In this example,
Thunderbird component takes the networking role, Open Office module collects
documents and other data, and AVG records keystrokes and logs malware ac-
tivities. From this point on, the malware components perform their respective
features.

When replacing a file that is currently open, the malware first renames the
target, and then copies itself to the path because renaming is allowed for locked
files on Windows. The renamed original file is deleted when the malicious DLL is



Feature-Distributed Malware Attack: Risk and Defence 467

Table 2. Applications installed on the evaluation system

Application Name Application Type Component Name

Thunderbird Networking (email client) mozsqlite3.dll

Firefox Networking (web browser) msvcr100.dll (CRT)

Adobe Reader Productivity sqlite3.dll

Open Office Productivity ssleay32.dll (OpenSSL)

iTunes Media player, iOS device manager sqlite3.dll

Mobogenie Startup, Android device manager ssleay32.dll (OpenSSL)

AVG Free Anti-virus Startup, Security avgntsqlitex.dll (SQLite)

loaded. In the case of anti-virus software, nullification of self-protection feature
is preceded the file replacement as explained in this section. In addition, if there
are multiple candidates found after the initial search, the malware selects target
components according to the following rule:

1. Search for open source libraries (no additional file resulted).
2. Search for trampoline-style target components if the number of malware

components is less than user-specified value, rename the original files and
copies the dummy trampoline file to the target paths located at Windows
Temporary folder (additional file resulted).

3. Search for binary modification targets and modify them if the number of
components is still less than three (live DLL modification performed, no
additional file resulted).

Collected information is stored in the temporary folder and sent back to the
attacker by the networking module such as Thunderbird’s SQLite. Lastly, sup-
porting features (Section 2.1) such as basic C&C and uninstallation function
have also been implemented.

4 Evaluation

In this section, we first describe how the feature-distributed malware performs
its activities, thus fulfilling usual malware requirements. Then we show how the
malware can bypass security mechanisms such as application whitelisting, Egress
filtering and anti-virus’ behavioural detection. In the evaluations, Windows 7
Ultimate edition was used as the target system, and the applications shown in
Table 2 were installed on the system.3 These selected applications use at least
one open source libraries including SQLite, NSS and OpenSSL. And the malware
instances evaluated in this section were generated by our tool with the parameter
values shown in Table 3.

3 Some applications use more than one target libraries, even though only actual target
library is specified. For example, Thunderbird loads NSS in addition to SQLite as
shown in Figure 3.



468 B. Min and V. Varadharajan

Table 3. Common parameters for feature-distributed malware generation

Parameter Value

Libraries used
SQLite (Section 4.1)
SQLite, OpenSSL (Section 4.1)
SQLite, OpenSSL, CRT (Section 4.4)

Library priority SQLite > OpenSSL > NSS

Final format RAR archive

Bait file Annual report.docx

Path #1 (SQLite) iTunes folder

Path #2 (OpenSSL) Open Office folder

Path #3 (CRT) Windows Temporary folder

Min. # of components 3 (varied from 1 to 4 in Section 4.4)

Dummy trampoline Yes

Live binary modification No

Attack AVG (when possible) No (Yes/No in Section 4.4)

Application database Application category, privilege, etc.

4.1 Malware Operation

This section describes two attacks that show fundamental operations of the pro-
posed feature-distributed malware. Both attacks are archived with component
attacks described in Section 2.3.

Attack with SQLite library. A RAR self-extracting (SFX) file delivered
to a victim contains a normal document and a malicious SQLite library. When
the victim opens the file, SQLite is extracted to iTunes folder and overwrites the
existing one as specified in the RAR. Next time iTunes is launched, the replaced
SQLite is loaded and the initialisation process begins as follows:

1. Collect basic system information (OS version, installed applications, etc.),
and send when possible. iTunes uses network from time to time, so the iTunes
component informs the attacker about this first compromise. However, other
network activities such as file transfer are performed by networking compo-
nent described below.

2. Start RPC and search for other active components.
3. After a predefined time (1 minute in the current implementation), check the

number of active components. As the number is less than configured one (3),
the SQLite component starts searching for other instances of SQLite.

4. When SQLite files of Thunderbird and AVG are found, and identified as
not-infected, iTunes component replaces those instances with itself. In the
case of AVG, disarming AVG is preceded as explained in Section 3.1. If the
SQLite files found and are identified as infected, then the iTunes component
waits until they become active, i.e. their hosting applications are launched.

After the three components become active, they split malware features ac-
cording to their hosting applications (i.e. iTunes, Thunderbird, and AVG), and
start performing their respective activities as follows:



Feature-Distributed Malware Attack: Risk and Defence 469

1. iTunes: local data collection to Windows Temporary folder (files on the sys-
tem including voice memos imported from iOS devices)

2. Thunderbird: network activity for C&C communication (e.g. archive and
send collected data to the attacker)

3. AVG: local data collection to Windows Temporary folder (keystrokes &
screenshots)

Attack with Multiple Libraries. This attack evaluates the feature-
distributed malware in a more complex form. SQLite and OpenSSL are included
in a RAR SFX archive with the normal document file, and extracted to rel-
evant paths as specified in the parameter.4 Initialisation process is similar to
the above case, except that now there are two libraries and so preference com-
parison is performed when the two components become active. Because SQLite
has a higher priority, iTunes component searches for an additional instance, and
replaces Thunderbird’s SQLite. If it cannot find any SQLite instance, OpenSSL
of Open Office looks throughout the system for other instances of OpenSSL.
Malware activities are logged and transferred back to the adversary so that it
can adjust malware parameters. For instance, if the initial component(s) could
not find enough number of target components, then the attacker can reduce this
parameter value based on the collected system information.

4.2 Bypassing Application Whitelisting

Application whitelisting is more and more deployed, especially on specific-
purpose systems such as SCADA and POS that do not need to be general purpose
machines. In particular, ENISA recommends the use of whitelisting solutions,
which restrict the execution of non-approved software and code [21].

We used AppLocker for application whitelisting. It is a security tool built in
Windows 7 that allows only the configured applications to run on the system.
Because (1) the feature-distributed malware consists of software components (not
applications), and (2) all of its hosting applications (iTunes, Thunderbird, and
Open Office in this example) are allowed in the configuration of AppLocker, we
could verify each component performed respective roles without being blocked.
This may look trivial since the malware compromised whitelisted applications
from the start, but it apparently shows its importance, considering most modern
malware instances including most advanced ones such as Stuxnet, Gauss and
Careto have their own processes, which are blocked by application whitelisting
mechanisms.

From this evaluation, we can infer how the feature-distributed malware can
bypass application-based permission model as well. Application whitelisting can
be thought as a more strict form of application-based permission model, which

4 We have experimented another way of building the initial component such as SQLite
so it contains other libraries such as OpenSSL and NSS in its PE sections. This
reduces the number of files included in the archive file, but it increases the size of
the initial component.



470 B. Min and V. Varadharajan

Fig. 3. Process ID (8064) of Thunderbird loading the malicious SQLite (left) and
successful network connection by SQLite component under the Egress filtering envi-
ronment (right)

allows only whitelisted applications to run on the system. Therefore, bypassing
application-based permission policy can be done in a similar way.

4.3 Bypassing Egress Filtering

Egress filtering is increasingly being used and/or needed to block malware com-
munications. It is required for compliance with Payment Card Industry Data
Security Standard (PCI-DSS), Section 1.2.1 and 1.3.5 of version 2.0 [22]. Also,
Egress filtering is recommended by US-CERT as a malware mitigation mecha-
nism [23]. However, even under this network activity restriction, this evaluation
shows that the feature-distributed malware bypasses Egress filtering rules, and
connects back to the attacker.

Thunderbird is an email client, and hence it must be allowed in outgoing
traffic rules. In this example, it tries a connection to the attacker since it is
responsible for networking. We verified that the malicious SQLite component of
Thunderbird bypassed Egress filtering firewall rules forced by Comodo Firewall
as shown in Figure 3. Thunderbird (thunderbird.exe, process ID: 8064) is
loading the malware component (mozsqlite3.dll) in Figure 3 (lefthand-side).
And its process (8064) is making a network connection from the victim system
(172.16.158.123) to the attacker (172.16.158.153) via the IMAP email protocol
port (993) (righthand-side of Figure 3).

4.4 Bypassing Anti-virus

In the anti-virus bypassing evaluations discussed below, what we have tested is
bypassing behavioural detection, not signature-based detection, because (1) our
evaluation goal is to show the advantage of feature distribution, and (2) making a
binary that passes signature-based detection is relatively easier to achieve using
various code obfuscation tools.

Feature distribution and detectability. In this first evaluation, we first
built a single component malware that passes AVG’s signature-based detec-



Feature-Distributed Malware Attack: Risk and Defence 471

Table 4. Anti-virus detection test

Detection Application compromised (# of comp.) Library used

Yes iTunes (1) SQLite

No iTunes, AVG (2) SQLite

No iTunes, Firefox (2) SQLite, CRT

No iTunes, AVG, Adobe Reader (3) SQLite

No iTunes, AVG, Firefox (3) SQLite, CRT

No iTunes, AVG, Thunderbird (3) SQLite

No iTunes, Thunderbird, Open Office (3) SQLite, OpenSSL

No iTunes, Adobe Reader, Firefox (3) SQLite, CRT

No iTunes, Firefox, Mobogenie (3) SQLite, OpenSSL, CRT

No iTunes, AVG, Adobe Reader, Thunderbird (4) SQLite

No iTunes, AVG, Adobe Reader, Firefox (4) SQLite, CRT

No iTunes, Adobe Reader, Firefox, Thunderbird (4) SQLite, CRT

No iTunes, Adobe Reader, Open Office, Mobogenie (4) SQLite, OpenSSL

No iTunes, Firefox, Open Office, Thunderbird (4) SQLite, OpenSSL, CRT

Table 5. Anti-virus (2014 versions) bypassed by the feature-distributed malware

Anti-virus name

AVAST Free, Pro, Internet Security

Avira Free, Commercial, Internet Security

Bitdefender Internet Security, Antivirus Plus

Kaspersky Anti-Virus, Internet Security

McAfee Antivirus Plus, Internet Security, Total Protection

NOD32 (ESET) Antivirus, Smart Security

Norton (Symantec) 360, Internet Security, AntiVirus

tion, but is detected by AVG’s behavioural engine as a “Threat: General be-
havioural detection” when it starts its operation. Then we tested multiple mal-
ware instances that are functionally identical but have multiple components. As
summarised in Table 4, none of the feature-distributed malware instances was
detected during their operation once features are distributed. This is because
anti-virus solutions determine behavioural maliciousness of a process based on
the behaviours of this particular process, and each process hosting the feature-
distributed malware performs only a portion of malware features.

Other anti-virus solutions. We have tested the feature-distributed mal-
ware’s operation against several anti-virus solutions. The malware instance used
for this experiment has four components, namely iTunes, Firefox, Open Office
and Thunderbird (the last one in Table 4). Eighteen (18) solutions of seven
antivirus vendors have been tested (AVG is excluded as it has been already dis-
cussed above), and Table 5 shows our feature-distributed malware performed its
malicious activities without being detected by behavioural and signature-based
engines of the tested anti-virus solutions.



472 B. Min and V. Varadharajan

4.5 Limitations

C&C communication of the current implementation is based on sbd that is a
Netcat-clone, designed to be portable and offer strong encryption. Therefore, by-
passing Egress filtering can be impossible if deep packet inspection is deployed on
the host or the target network infrastructure. However, it can be easily overcome
by serious attackers, since it is well-known that encapsulating any communica-
tion protocol inside another one such as actual HTTP or IMAP.

The implementation can be detected by file integrity monitoring solution.
However, the probability is lower than most modern malware instances like
Careto and Stuxnet. This security solution’s major purpose is monitoring sys-
tem’s critical files and configurations or confidential folders [24]. In other words,
application binaries are not major objects of monitoring. Moreover, some ap-
plications are frequently updated (e.g. three times in six weeks in the case of
Firefox), thus not adequate for real-time integrity monitoring. As a result, these
folders or files are often excluded from such integrity monitoring [25]. On the
contrary, many of real world malware instances change critical system config-
urations for persistent compromise (e.g. installing a new service or driver with
additional files or modifying existing service’s configuration).

5 Defence against Feature Distributed Malware

This section proposes a new mechanism to prevent the feature-distributed mal-
ware attacks. We have implemented it as a Windows service with public APIs
so that any application can use it. Thunderbird was used for the evaluation of
its effectiveness and performance.

5.1 Proposed Defence Mechanism

Our suggestion is that an application should check the validity of the digital
signature and signer information of a library before loading and using it, which
is very easy to adopt from vendors’ perspective. Typically, such verification can
be performed prior to calling LoadLibrary() API that loads a library in the
context of an application. Then, even though the malicious component has the
full functionality of the original library, it cannot be loaded because it fails to
pass the origin verification. Similarly, verifying both the digital signature and
the signer can help most modern malware attacks that use stolen legitimate
certificates. Nowadays, they are bypassing many security tools’ detection and
restriction because they have a valid digital signature. However, if software ven-
dors develop their application according to our suggestion, malware instances
signed with a stolen key cannot be loaded since the signer is different from the
vendor’s. In order to demonstrate our concept, we have implemented a Windows
service rather than implementing it into individual applications. On the appli-
cation side, it calls our service API before any invoke of LoadLibrary(). Then,
the service extracts signer information from the digital signatures of the appli-
cation binary and the library file to be loaded, and compares it. Only when the



Feature-Distributed Malware Attack: Risk and Defence 473

digital signature of the library is valid and it is signed by the same entity as the
application, the service returns true. Although we have not added error handling
code to each application, several recovery processes from simply excluding the
modified library (if the application can still work with limited functionalities) to
updating the modified component with a clean one are possible.

5.2 Evaluation of the Proposed Defence

Among the applications targeted in the attack evaluation (Section 4), we have
selected Thunderbird for the evaluation of our defence mechanism. Code that
uses the service API was added to both applications. Then the same attack sce-
nario was launched on the victim system. The SQLite library file was successfully
replaced by the archive file, but it was never loaded by Thunderbird since the
replaced SQLite library is not signed by Mozilla Corporation who signed the
Thunderbird executable file.

We have also conducted performance evaluations using Thunderbird. Even
though Thunderbird loads more than 20 libraries, the application startup time
delay was under 20ms on a Windows 7 machine with Intel Core i7 2.4 GHz CPU
and 1GB of RAM. This result shows that our defence mechanism is practical
and can be effectively applied to real world applications such as Thunderbird.

6 Concluding Remarks

In this paper, we have proposed a new advanced malware that distributes its fea-
tures to multiple software components in order to bypass various security policies
such as application whitelisting and security tools like anti-virus. A tool that au-
tomatically generates such malware has been developed, and malware instances
generated by this tool have been evaluated, showing the risks of the proposedmal-
ware. We have also suggested an effective defence mechanism that utilises digital
signatures of component files to prevent loading of malicious components. To eval-
uate the proposed solution, a Windows service has been implemented and tested.

Although we have focused on the development and evaluation of feature-
distributed malware onWindows, the underlying principle is general and can also
be applied to other client platforms including Mac OS X and Android because
component-based software engineering is widely used on these platforms. We are
especially interested in exploring the application of our feature-distributed mal-
ware on mobile platforms. The number of mobile malware has been surging [1],
and application-based permission model is already prevalent on modern mobile
platforms such as Android, where it is important to prepare appropriate defences
against the emerging threat.

References

1. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: IEEE S&P, San Francisco, CA, USA (2012)

2. Min, B., Varadharajan, V.: Deep analysis on recent malware incidents. Technical
report (2012)



474 B. Min and V. Varadharajan

3. Kaspersky Lab: Unveiling “Careto” - The Masked APT. Technical report (Febru-
ary 2014)

4. Kaspersky Lab: Gauss: Abnormal Distribution. Technical report (August 2012)
5. Anity Labs: Analysis Report on Flame Worm Samples. Technical report (July

2012)
6. Falliere, N., Murchu, L.O., Chien, E.: W32.Stuxnet dossier. Technical report (2011)
7. Chien, E., Murchu, L.O., Falliere, N.: W32.Duqu The precursor to the next

Stuxnet. Technical report (November 2011)
8. Kwon, T., Su, Z.: Automatic detection of unsafe component loadings. In: ISSTA,

Trento, Italy (2010)
9. Tarakanov, D.: Shamoon the Wiper in details (August 2012), http://www.

securelist.com/en/blog/208193795/Shamoon the Wiper in details

10. Murad, K., Shirazi, S.N.-u.-H., Zikria, Y.B., Ikram, N.: Evading Virus Detection
Using Code Obfuscation. In: Kim, T.-h., Lee, Y.-h., Kang, B.-H., Śl ↪ezak, D. (eds.)
FGIT 2010. LNCS, vol. 6485, pp. 394–401. Springer, Heidelberg (2010)

11. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: The Hidden Malware. IEEE
Security & Privacy 9(5), 41–47 (2011)

12. Rad, B.B., Masrom, M., Ibrahim, S.: Camouflage in Malware: from Encryption
to Metamorphism. International Journal of Computer Science and Network Secu-
rity 12(8), 74–83 (2012)

13. Oberheide, J., Bailey, M., Jahanian, F.: PolyPack: an automated online packing
service for optimal antivirus evasion. In: Proceedings of the 3rd USENIXWorkshop
on offensive technologies, Montreal, Canada (2009)

14. Alvarez, S., Zoller, T.: The Death of AV Defense in Depth? - revisiting Anti-Virus
Software. In: CanSecWest, Vancouver, B.C., Canada (2008)

15. Alvarez, S.: Antivirus (In) Security. In: CCC (Chaos Communication Camp), Fi-
nowfurt, Germany (2007)

16. Jana, S., Shmatikov, V.: Abusing File Processing in Malware Detectors for Fun and
Profit. In: IEEE Symposium on Security and Privacy (S&P) 2012, San Francisco,
CA, USA, pp. 80–94 (2012)

17. Porst, S.: How to really obfuscate your PDFmalware. In: ReCon, Montreal, Canada
(July 2010)

18. Bilge, L., Dumitras, T.: Before we knew it: an empirical study of zero-day attacks
in the real world. In: CCS 2012, Raleigh, NC, USA (October 2012)

19. Apple: About the security content of Safari 3.1.2 for Windows (April 2012),
http://support.apple.com/kb/HT2092

20. Min, B., Varadharajan, V., Tupakula, U.K., Hitchens, M.: Antivirus security: naked
during updates. Software: Practice and Experience (April 2013) (accepted)

21. ENISA: Appropriate security measures for smart grids. Technical report (December
2012)

22. PCI Security Standards Council: Payment Card Industry (PCI) Data Security
Standard. Technical report (October 2010)

23. US-CERT: Malware Threats and Mitigation Strategies. Technical report (May
2005)

24. Tripwire: Assure system integrity, best of breed file integrity monitoring (2014),
http://www.tripwire.com/it-security-software/scm/file-

integrity-monitoring

25. Arnold, M.: Tripwire Policy (May 2010),
http://www.razorsedge.org/~mike/docs/tripwire.html

http://www.securelist.com/en/blog/208193795/Shamoon_the_Wiper_in_details
http://www.securelist.com/en/blog/208193795/Shamoon_the_Wiper_in_details
http://support.apple.com/kb/HT2092
http://www.tripwire.com/it-security-software/scm/file-integrity-monitoring
http://www.tripwire.com/it-security-software/scm/file-integrity-monitoring
http://www.razorsedge.org/~mike/docs/tripwire.html

	Feature-Distributed Malware Attack:
Risk and Defence

	1 Introduction
	2 Feature-Distributed Malware
	2.1 Malware Features and Application-Based Permission
	2.2 Feature-Distributed Malware: Concept
	2.3 Remote Attacks – Examples
	2.4 Feature Distribution Strategy

	3 Implementation
	3.1 Three Malicious Component Types
	3.2 Automatic Malware Generation
	3.3 Malware Operation: Initialisation and Feature Distribution

	4 Evaluation
	4.1 Malware Operation
	4.2 Bypassing Application Whitelisting
	4.3 Bypassing Egress Filtering
	4.4 Bypassing Anti-virus
	4.5 Limitations

	5 Defence against Feature Distributed Malware
	5.1 Proposed Defence Mechanism
	5.2 Evaluation of the Proposed Defence

	6 Concluding Remarks
	References




