Quantitative Workflow Resiliency

John C. Mace, Charles Morisset, and Aad van Moorsel

Centre for Cybercrime & Computer Security,
Newecastle University, Newcastle upon Tyne,
NE1 7RU, United Kingdom
{j.c.mace,charles.morisset,aad.vanmoorsel}@ncl.ac.uk

Abstract. A workflow is resilient when the unavailability of some users
does not force to choose between a violation of the security policy or an
early termination of the workflow. Although checking for the resiliency
of a workflow is a well-studied problem, solutions usually only provide
a binary answer to the problem, leaving a workflow designer with lit-
tle help when the workflow is not resilient. We propose in this paper
to provide instead a measure of quantitative resiliency, indicating how
much a workflow is likely to terminate for a given security policy and a
given user availability model. We define this notion by encoding the re-
siliency problem as a decision problem, reducing the finding of an optimal
user-task assignment to that of solving a Markov Decision Process. We
illustrate the flexibility of our encoding by considering different measures
of resiliency, and we empirically analyse them, showing the existence of a
trade-off between multiple aspects such as success rate, expected termi-
nation step and computation time, thus providing a toolbox that could
help a workflow designer to improve or fix a workflow.

Keywords: Workflow Satisfiability Problem, Markov Decision Process,
Quantitative Analysis.

1 Introduction

A workflow is the automation of a business process comprising tasks and pred-
icate conditions defining their partial order [1]. Ensuring all workflow instances
complete means assigning each task to a user in accordance with business rules
specifying when and by whom workflow data may be accessed and modified.
From a security perspective, access management ensures users with the correct
clearance and capabilities are matched with appropriate tasks while reducing
the threat of collusion and fraud. Each user-task assignment may have to satisfy
many different kind of security constraints [2, 3, 4], the three most common be-
ing: ¢) the user must be authorised to perform the task; i) if the task is related
to another task through a binding of duty, then the same user should perform
both tasks; i) if the task is related to another task through a separation of
duty, then the same user cannot perform both tasks.

The Workflow Satisfiability Problem (WSP) [5, 6] therefore consists in finding
a user-task assignment ensuring both the termination of all instances and the

M. Kutylowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 344-361, 2014.
© Springer International Publishing Switzerland 2014

Quantitative Workflow Resiliency 345

non-violation of the security constraints, especially in highly dynamic environ-
ments, subject to unpredictable events such as user unavailability. This can be an
issue for dynamic workflow management systems whose choices made for early
tasks can constrict later assignments [7]. In extreme cases, bad assignments will
remove all assignment options for an upcoming task and block a workflow from
completing [8, 9]. It is therefore important these workflows can be appraised
before enactment via suitable tools and useable metrics that aid workflow con-
figuration and formulation of contingency plans, such as resiliency [6], which
checks whether the unavailability of some users has an impact on satisfiability.

Most existing approaches, e.g. [10, 11, 12, 13, 6], address the WSP from a
computational point-of-view, by finding the most efficient algorithm to com-
pute a suitable assignment, which either return a correct assignment if it exists,
or nothing. In practice finding such an assignment can be demanding and of-
ten unmanageable, especially when facing unforeseen and emergency situations.
For example, despite the provision of guidelines stipulating many public service
staffing levels (e.g. [14]), high sickness rates, budget cuts, staff shortage, increased
workloads and unpredictability all contribute to critical workflows often being
attempted without enough available users.

Taking a binary approach therefore fails to address a number of real-life issues
where the ideal case is not always reachable. Indeed, declaring a workflow to be
either resilient or not may be of little practical use to a workflow designer. Of
course, a satisfiable workflow is always better than an unsatisfiable one but
a workflow where all but one instance can be correctly assigned provides on
average, a better service than one where no instance can be assigned. In addition,
if both workflows terminate early instead of violating the policy, they are both
better than a workflow violating the policy.

In this paper we take the stance to provide a workflow designer with quanti-
tative measures, indicating a degree of satisfaction and/or resiliency for a given
workflow, instead of simply returning an assignment if one exists. In order to
do so, we propose to model the WSP as a decision problem, in order to benefit
from the extensive collections of tools related to the discipline. More precisely,
the contributions of this paper are as follows:

— We first encode the workflow satisfaction problem as finding the optimal
solution of a Markov Decision Process (MDP);

— We then encode the decremental resiliency problem [6] as an extension of
the above one, by modelling user availability in the state of the MDP;

— We illustrate the flexibility of our model by showing how a simple change
of the reward function can move the focus from the normal termination
rate of the workflow to the expected termination step, and we show on a
simple use case that both approaches are in general incomparable, and that
in general, finding the optimal assignment requires addressing a trade-off
between multiple aspects, including computation time.

Is is important to note that the focus of this paper is not to provide a particularly
efficient solution to the WSP, but to propose a novel approach of this problem.

346 J.C. Mace, C. Morisset, and A. van Moorsel

We however believe our approach paves the way to defining an efficient solution
by using the extensive literature dedicated to the efficient solving of an MDP.

The rest of this paper is as follows. Section 2 gives a brief overview of related
work while Section 3 revisits the workflow satisfiability problem and defines it as
an MDP. In Section 4 we define quantitative measures for workflow satisfaction
and resiliency. An assessment of our approach is given in Section 5 and concluding
remarks in Section 6.

2 Related Work

A number of previous studies on workflow resiliency appear in the literature.
Wang et al. took a first step in [6] to quantify resiliency by addressing the
problem of whether a workflow can still complete in the absence of users and
defined a workflow as k resilient to all failures of up to k users across an entire
workflow. Lowalekar et al. show in [15] multiple assignments may provide the
same level of k resiliency and give a technique for selecting the most favourable
using security attributes that minimize the diffusion of business knowledge across
all users.

Basin et al. in [8, 16] allow the reallocation of roles to users thus overcoming
workflow blocks created by user failure. This is feasible in certain business do-
mains but may have limited application in public service workflows where roles
are more specialised; a nurse cannot step in for a doctor for example. Wainer et
al. consider in [17] the explicit overriding of security constraints in workflows,
by defining a notion of privilege. Similarly, Bakkali [18] suggests introducing
resiliency through delegation and the placement of criticality values over work-
flows. Delegates are chosen on their suitability but may lack competence; this is
considered the ‘price to pay’ for resiliency. As delegation takes place at a task
level it is not currently clear whether a workflow can still complete while meeting
security constraints.

A more practical approach is presented by Mace et al. [19] and more for-
mally by Watson [20] who discuss the practicalities of assigning workflows, or
parts of workflow across multiple cloud-based platforms while ensuring security
constraints are met. Discussion is given on the various trade-offs that must be
considered including performance and security risks. Current literature does not
address the issue of workflows that must execute but may not be satisfiable
nor resilient in every instance. Neither does it provide quantitative measures to
analyse and optimise workflows in such cases, which is the focus of this paper.

3 The Workflow Satisfiability Problem

In a nutshell, the Workflow Satisfiability Problem (WSP) [6] consists in assign-
ing each user to a task for a given workflow such that all security constraints
are met. Whereas existing work mostly considers WSP as a constraint solving
problem (for instance as the graph k-colouring problem when the workflow con-
tains separation of duties constraints [6, 16]), we propose to consider it as a

Quantitative Workflow Resiliency 347

"""" Table 1. Workflow assignments
(j C) C @ a1 az agz a4
[u, us2] [uz, us] [u1,us) t1 Ul U Uz U

to us u2 u2 us
Fig. 1. Running example ts u3z u1 U3 U1

decision problem’, thus modelling the decision made to assign a user to a task
in a given context. Hence, we define below an encoding of the WSP as solving a
Markov Decision Process (MDP) [21]. We first propose a definition of workflow,
which, although driven by the MDP encoding, is general enough to consider
complex workflows. After briefly recalling the notion of MDP, we then present
the corresponding MDP encoding and the definition of the WSP.

3.1 Workflow

As described in Section 2, there exist several definitions of workflow in the liter-
ature. They commonly define a set of users U and a set of tasks 7T, structured
to indicate which sequences of tasks can be executed, for instance with a partial
ordering over tasks. For the sake of generality, we consider a task manager, which
is a function 7 : T x U — P(T)?. In other words, given a task ¢ and a user u,
7(t,u) is a probability function over tasks indicating the probability of each task
to be the next one.

The set of tasks contains an initial task ¢y € T, and in order to model the fact
that a workflow can finish we consider a special task 1; € T, such that, given
any user u, 7(Lg,u) = 1,3
Running Example. As a running example to illustrate the different concepts
presented here, we consider the workflow shown in Figure 1 where T = {t1,t2,t3}
and where the only possible sequence is t1;ta;ts. Hence, the initial task is t1, and
the task manager is defined as, for any user u, 7(t1,u) = ta, 7(t2,u) = t3, and
T(ts,u) = Ly.

The second common aspect of workflows across existing definitions is to define
a set of users U coming with a security policy over the set of tasks 7, including
basic user permissions, separations and bindings of duties, expressed as sets of
constraints. Hence, we consider security policies of the form p = (P, S, B) where

— P C U x T are user-task permissions, such that (u,t) € P if, and only if u
is allowed to perform t;

! It is worth noting that in the end, both perspectives can join, for instance by solving
the decision problem using Linear Programming.

2 Given a set X, we write P(X) for the set of functions f : X — [0,1], such that
S f@) =1,
3 For the sake of simplicity, we write f(z) = y whenever f(z,y) = 1, where f(z) €
P(Y), for some Y. In this case, we say that f(z) is deterministic.

348 J.C. Mace, C. Morisset, and A. van Moorsel

— S C p(T)* are separations of duty, such that {t1,...,t,} € S if, and only if
each user assigned to t; is distinct;

— B C o(T) are bindings of duty, such that {¢1,...,t,} € B if, and only if the
same user is assigned to all ¢;;

Running Example. We now consider a set of users U = {u1,uo,us,us} and
a security policy py = (P1, 51, B1) that states:

- P = {(ul,tl), (UQ,tl), (UQ,tQ), (US,tQ), (UlatS)a (USatS)}
-8 = {@{tl,tg},{tQ,ts}}
— B =

Figure 1 illustrates this security policy, where a dotted arrow signifies a constraint
given in p between the taskst and t'. A label [tuy, ..., u,] states the users that are
authorised by P to execute t.

A workflow therefore consists of both a set of tasks, with a task manager and
a set of users, with a security policy.

Definition 1 (Workflow). A workflow is a tuple W = (U, T, 7,to,p), where U
is a set of users, T is a set of tasks, T is a task manager, to is the initial task
and p is a security policy.

3.2 Workflow Assignment

A wuser-task assignment is a relation UA C U x T, associating each ¢; with some
u;. Given a policy p = (P, S, B), UA satisfies p, and in this case, we write UA F p,
if, and only if the three following conditions are met:

UAC P (1)
VseSVuell |{tes|(ut)e UA} <1 2)
VoeB [{ucl|3teb(ut)e UAY <1 (3)

In our running example, Table 1 provides all workflow assignments satisfying
p1, such that each a; is represented as a function from task to users. For instance,
as assigns t1 and to to us and t3 to ui. An instance of a workflow is a sequence of
tasks (t1,...,t,) such that 7(¢;, u, t;41) # 0, for any ¢ and any user u. Informally,
the WSP consists of defining a relation UA such that, for any instance of a
workflow, the restriction of UA to tasks in this instance satisfies the policy of
the workflow.

In some cases, solving the WSP can be relatively simple. For instance, consider
a policy where S = B = (), i.e., where there are no separations or bindings of duty.
In this case, it is enough to assign each task ¢ with a user u such that (u,t) € P,
and if there is no such user, then the workflow is unsatisfiable. However, the
enforcement of separations and bindings of duty might require to keep track of
the previous assignments. For instance, in our running example, u; can only be
assigned to t3 if it has not been assigned neither to ¢t nor to ¢;.

* We use p(X) to denote the set of finite subsets of X.

Quantitative Workflow Resiliency 349

~~~~~

@‘—*@‘—*@ X @‘—*@‘—*@—*@

[u1, us] [uz, u3] [u1, us] [u, us] [uz, us] [u, us]

{u1, uz} {uz, us} {3 {u, w2} {uz} {u1}

Fig. 2. The task t3 cannot be executed Fig.3. The workflow terminates correctly

3.3 Contextual Assignment

As illustrated above, in order to ensure that the security constraints are met,
the user-task assignment needs to take into account at least the previous assign-
ments. We call contert any dynamic information relevant to user-task assign-
ments, such as the security policy, the history of execution, or the user failures.
Here again, we aim for generality, and given a workflow W = (U, T, 7,t0,p), we
consider a set C of contexts, with a context manager v : C x T xU — P(C), such
that given a context ¢, a task ¢ and a user u, y(c, t,u) represents the probability
space of the next context. We write D = (C,~,¢p) for a context description,
which includes a set of contexts, a context manager and initial context ¢y € C.

For instance, in order to define the WSP, the context needs to contain all
previous assignments, in order to check the validity of separations and bindings
of duty at each step. Hence we define C, = p(U x T), such that for any ¢ € Cp,
all (u,t) € ¢ correspond to previous assignments. We then define the context
manager vy, as, for any context ¢ € Cp, any task ¢ and any user u, y,(c, t,u) =
cU {(u,t)}. The assignment (u,t) is permitted if it satisfies p when combined
with the previous assignments contained in ¢. Thus, for any context ¢ € Cp, we
write ¢, u, t F p if, and only if, cU {(u,t)} - p. We write Dy, = (Cp, v, ) for the
context description corresponding to previous assignments. In the following, we
assume the sets U and T to be clear from context when using Dj,, unless stated
otherwise.

Definition 2 (Assignment). Given a workflow W = (U, T, T,to,p) and a con-
text description D = (C,~,cp), a contextual assignment is a function § : CxT —
U, such that 6(c,t) represents the user assigned to t in the context c.

For instance, with the context description Dy, a simple contextual assignment
is to return any user that can execute the task, taking previous assignments into
account. We define the set of all permitted users PU.; = {u | ¢,u,t F p}. The
on-the-fly assignment is then the function d,(c, t) returning any user from PU 4,
if it is not empty, and any user otherwise (meaning that no user can execute ¢
in the context ¢ without violating the workflow policy).

As illustrated on Figure 2, where {um,...,u,} denotes PU,.;, §, might not
select the best possible assignment. For instance if u; is assigned to t; and ug
is assigned to to, which are both correct assignments in their respective context,
then the separation of duty constraints make it impossible to assign t3 to any
user. However, as shown on Figure 3, if us is assigned to t5 instead, then ug can



350 J.C. Mace, C. Morisset, and A. van Moorsel

be assigned to t3. We present in the next section the encoding of the workflow
as an MDP, which aims at defining an assignment avoiding the above pitfall.

3.4 Markov Decision Process

In order to define the optimal contextual assignment, we encode the notion of
assignment into a Markov Decision Process (MDP) [21], which is a stochastic
process where the transition from one state to another is governed both prob-
abilistically and by a decision made by a policy. Each transition is associated
with a reward, and solving an MDP consists in defining a policy maximising
the expected reward collected by the process. More precisely, an MDP is a tuple
(S, A, p,r) where:

— S is a set of states, describing the possible configurations of the system;

— A is a set of actions, describing how to go from one state to another;

- p:SxAxS —[0,1] is a transition function, such that p?,, describes® the

probability of reaching s’ from s when executing the action «;
—r:SxAxS — Ris areward function, such that r?, describes the reward

ss’
associated with execution a from the state s and reaching s’.

A policy for an MDP (which should not be confused with the security policy of
a workflow) is a function 0 : § — A, i.e., associating each state with an action,
and the value of a policy for an MDP is given as:

Vi) = pd el + 53 plOve(s)
s'eS s'eS

where 0 < 8 < 1 is a discount factor, giving more or less weight to “future”
values. The optimal policy is then defined as:

§*(s) = arg max Z plyrl, + 3 Z pl/ V*(s") (4)
s'€S s'€S

where V* is the value function of 6*. Note that since 8 < 1, the optimal policy
is always defined, even when s = s'. It is possible to show that V*(s) > V?'(s),
for any other policy 0’ and any state s, and we refer to [21] for further details
about the proof of this property and further details on the notion of MDP.

In order to reduce the WSP to solving an MDP, we combine three different
elements: a workflow, a context and a reward function, the latter expressing the
metric we are interested in measuring. Note that this encoding is loosely inspired
by the MDP encoding of access control mechanisms proposed in [22].

Definition 3 (MDP Encoding). Given a workflow W = (T,U,T,to,p), a
context description D = (C,v,co) and a reward function r : (C x T) x U x
(C xT)— R, we write MDP[W, D, x| for the MDP defined by the tuple (C x
T,U,p~y.7 1), where given any pairs (¢, t),(c',t') € C x T and any user u € U:

Py ((c,1),u, (¢, 1) = y(e,tyu, &) - 7(t,u, 1)

® For the sake of conciseness, we write p2,, for p(s,a,s’) when no confusion can arise.



Quantitative Workflow Resiliency 351

A policy for MDP[W, D, r] is then a function § : C x T — U, that is, a contextual
assignment. In other words, the optimal policy §* is the optimal contextual
assignment for the workflow, the context description and the reward function.
Since we focus on the non-violation of the security policy, we define the reward
function associating each violation with —oo for the context description Dp:

—oo ift# 1y and c,u,tfp
0 otherwise.

ry((c,),u, (1)) = {

where we assume that —oo* 0 = 0, meaning that an —oco reward on a transition
that cannot happen has no effect on the overall value function. Note that by
construction, we know that transitions starting from 1; can only finish at L,
so we do not need to measure such transitions.

Definition 4 (WSP). Given a workflow W = (U, T, 7,to,p), we write V,* for
the optimal value function of MDP[W, Dy, rp], and we say that W is satisfiable
if, and only if, V;5(0,t0) = 0.

In the following, we usually write . for the optimal policy of MDP[W, Dy, 1],
and Table 1 actually presents all possible instance for . in the running example.
It is easy to see that this definition of the WSP matches the informal one given
above: the optimal policy ¢* avoids any transition reachable from (0,tg) with
a reward of —oo, i.e., any transition that would violate the policy. So, as long
as there is a possible assignment that allows the workflow to reach the task 1,
without violating the policy, the optimal policy will select it. It is also worth
observing that this definition is binary: either V*(0,¢9) = 0 or V*(0,t0) = —oo.
We generalise it in Section 4, since the objective of this model is to go beyond
binary satisfaction and resiliency.

3.5 Implementation of the Optimal Policy

Solving an MDP is in general an intractable problem [21, 23], because the optimal
value function must be calculated on every possible state (and the WSP is shown
to be NP-complete [6]). Hence, we do not aim here to present an efficient solution
to solve this problem, and we refer to e.g. [24] for recent work on the complexity
of solving WSP.

Calculating all possible future states is equivalent to traversing a tree of all
possible assignment paths outgoing from the current state. To help visualise
this concept Figure 4 depicts an assignment tree where each complete path is
equivalent to a valid workflow assignment given in Table 1. A node ¢ in the
tree represents a context such that ¢; at level j represents a state (c;,t;). A
leaf node is the workflow finish point 1;. All outgoing edges from c¢; at level j
define the set of users PU,, ¢; from which one is selected. Essentially, d. ensures
all assignments are made within the bounds of an assignment tree composed of
assignment paths which all finish with 1,. It follows that in any state, any user
selected from PU . will allow the workflow to complete. We present in Section 5
an implementation of the optimal policy using Value Iteration under simplifying
assumptions.



352 J.C. Mace, C. Morisset, and A. van Moorsel

u1 U2 us
Ul us u1l us3
u2 U2
U1 us Ul us Ul us Ul us
U2 u2 u2 u2

Fig. 4. Workflow assignment tree

4 Quantitative Analyses

4.1 Quantitative Satisfaction

In general, the fact alone that a workflow is unsatisfiable is, as such, of little
help for a system designer. Consider for instance a workflow where all but one
instance can be correctly assigned, and another where no instance can be cor-
rectly assigned. Both workflows are unsatisfiable, however, on average, the first
one provides a better service than the second one. In addition, if both work-
flows terminate early instead of violating the policy, they are both better than a
workflow violating the policy. Of course, a satisfiable workflow is always better
than an unsatisfiable one, but as said in the Introduction, we aim at providing
tools and quantitative measures for concrete situations, where the ideal case is
not always reachable.

In order to model the early termination of a workflow, given a workflow W =
(U, T,T,to,p) with the context Dy, we introduce a special user L, € U, such
that 7(¢, L,) = L;, for any task ¢. In order to reward successful termination we
provide a positive reward for such successful completion, and we associate a null
reward for the early termination:

—oo ift# 14, u# 1, and c,u, t b p
rs((c,t),u, (d,t") =<1 ift# 1, u#Lyandt = 14

0 otherwise.

We are then able to provide a probabilistic statement about satisfiability.

Definition 5. Given a workflow W = (U, T,,to,p) we define the quantita-
tive satisfaction of W by V*(0,tg), where V¥ is the optimal value function of
MDP[W, Dy, r].



Quantitative Workflow Resiliency 353

The quantitative satisfaction of a workflow is either —oo, if the workflow is
not satisfiable, or a number between 0 and 1, indicating the probability of the
workflow to finish, based on the probabilistic task manager. In particular, it is
easy to prove the following proposition, following a similar reasoning to that
matching Definition 4 with the informal description of the WSP.

Proposition 1. Given a workflow W, W is satisfiable if, and only if its quan-
titative satisfaction is equivalent to 1.

Note that we cannot define the quantitative satisfaction to be equal to 1, which
is only possible if 8 = 1, which is forbidden, by definition. In practice, if there
is no infinite loop in the MDP (as it is the case in Section 5), this factor can
be equal to 1. The proof of Proposition 1 is quite straight-forward: in order to
obtain V*((,ty) = 1, the optimal policy must be able to assign each task to a
user without violating the policy nor terminating early.

4.2 Quantitative Resiliency

Wang and Li define in [6] resiliency as a “property of those system configurations
that can satisfy the workflow even with absence of some users”. As described
in the Introduction, there are indeed multiple scenarios where users can fail at
some point, thus not being able to execute an assigned task. Hence, a user-task
assignment might need to take into account such failures.

Several levels of resiliency are introduced in [6]: static resiliency, where users
can only fail before the start of the workflow; decremental resiliency, where users
can fail during the workflow, and cannot become available again; and dynamic
resiliency, where users can fail and later become available during the workflow.

Let us first observe that the notion of static resiliency does not require any
special encoding, since checking for it can be done by directly checking the WSP
for the workflow without the failing users. We now focus on the decremental and
dynamic resiliency. We consider the set of contexts Cyny = {f CU | |f| < N},
where each context ¢ € C¢,y corresponds to a set of at most N users not available.
For any user u and task ¢, an assignment (u, t) satisfies p if u is available, hence
for any context ¢ € Cy n, we write c,u,t = p if, and only if, v ¢ c.f. For the
sake of simplicity, we assume that each user has the same probability of failing
(although this could clearly be easily generalised), and given a context ¢, the set
of all possible next contexts is defined as:

nfn(e) ={cUf[fCU\c)N|cU fI< N}

In particular, when the size of ¢ is already equal to N, then nf 5 (c) = {c}. We
can then define the probability of reaching a new context ¢’ from a context ¢
from the user failure perspective:

Inf ()71 if ¢ € nfy(c),
0 otherwise.

’Yf,N(ca t7 U, C/) = {



354 J.C. Mace, C. Morisset, and A. van Moorsel

‘_—

@‘—*@—*@—*@ @‘—*@—*@ X

[u1, uz] [uz2, uz, u4] [u1, us] [u, uz] [uz2, us, u4] [u1, us]
<> <ug> <ui,us> <ug> <uz> <ug,u3>
{ur, u2} {us} {us} {uw} {us, ua} {}
Fig.5. §, - optimal resiliency Fig. 6. Js - sub-optimal distance

We write Dy n = (Cy,n,7vr,n,0) for the context description corresponding to the
decremental and equiprobable failure of up to IV users, and we write Dy, ¢ n =
Dy, x Dy n for the cartesian product of this context description and the one
modelling previous assignments, where the context manager is defined in a point-
wise way, and reward functions applies to the relevant components of a tuple®.
For any context ¢ € Cp s n, user u and task ¢, an assignment (u,t) satisfies p,
and we write ¢,u,t b p, if, and only if, cU {(u,t)} FpAu ¢ c.f.

Proposition 2. A workflow is decrementally resilient up to N wusers if and
only if Yoec, o Vin((0,¢),t0) =~ 1, where Vi is the optimal value function
Of MDP[VV7 Dh,f,N7 I‘S].

In the following, we usually write d, for the optimal policy of MDP[W, Dy, ¢ n, rs).
Note that we sum over all possible contexts, because the notion of decremental
resiliency also considers that users can fail before the start of the execution
of the workflow. In addition, dynamic resiliency can be encoded similarly by
defining nf y(c) = C¢,n, and we therefore focus only in the rest of the paper on
decremental resiliency, unless specified otherwise.

Running Example. Consider now a different security policy ps = (Pa, Sa, Ba),
where Py = {(u1,t1), (uz, 1), (u2,t2), (us, t2), (w4, t2), (u1,t3), (us, t3)}, B2 = 0
and So = {{t1,t2},{t1,t3}}. A label <u;> denotes u; has failed. Figure 5 illus-
trates how &5 can mazimise the quantitative resiliency of the running example
for two failed users. Assigning t1 to us generates two assignment options for ts.
In turn, selecting us for the assignment of to ensures two assignment options for
ts. Despite the failure of ug at to and uy at t3, the workflow can terminate.

Figure 6 illustrates how the workflow can still fail under §s due to an unavoid-
able block caused by two failed users. User u; must be assigned t1 following the
failure of us. Two assignment options are available at to from which either can
be chosen but due to the failure of us at ts, the workflow is blocked.

4.3 Expected Distance

The quantitative satisfaction of a workflow denotes the probability of a workflow
to terminate, taking the context into account. This metric therefore does not

5 In this paper, the only examples of reward functions we consider are defined either on
the violation of the policy or the (early) termination. However, in general, we could
have more complex reward functions, depending for instance on user availability.



Quantitative Workflow Resiliency 355

SoD SoD
,:'_,* ‘\* ,:'_,* ‘\*
: } Ul ( : (%) X : } Ul ( : (%) X
[u, uz] [u2, us, ud] [u1, us] [u1, uz] [u2, us, ud] [u1, us]
<usz,us> <us, uq> <us, uq4> <ug> <ug> <us, uq>
{u} {uz} 8 {u1} {uz,us} O
Fig. 7. §4 - optimal distance Fig. 8. J4 - sub-optimal resiliency

differentiate between an instance terminating at the first task and an instance
terminating at the penultimate task. In order to illustrate the flexibility of our
model, we define the expected distance of the workflow, i.e., the number of tasks
performed before terminating, using the following reward function, defined over
the context description Dp:

—o0 ift# 14, u# 1y and c,u,t b p
rq((c,t),u, (d,t) =<1 ift # 1; and u # L,
0 otherwise.

The expected distance of the workflow can therefore be calculated with
Vi (0,to), where V is the optimal value function of MDP[W, Dy, ry4]. We can
also redefine the notion of resiliency to measure the expected distance instead of
the success rate with the optimal value function of MDP[W, Dy, ¢ n,ra], and we
usually write ¢4 for the optimal policy of this model. Interestingly, an assignment
optimal for the notion of resiliency as defined in Section 4.2 is not necessarily
optimal for this notion of resiliency, as illustrated in Section 5. This reinforces
our motivation for building the model presented here, which can provide several
metrics and thus help a system designer to improve or fix a workflow, rather
than a simple boolean indicating whether the workflow is satisfiable or not.

Running Example. Figure 7 illustrates how dq4 can optimize the expected dis-
tance of our running example for two failed users. Following the failure of us and
uyg at t1, uy is assigned t1 to generate the assignment option us at ts. Task ty can
be assigned before the workflow blocks at t3. In contrast, §s would always finish
at t1 while §, and d. would assign either uy or ug at t1 resulting in the workflow
finishing at either ty or ts. Figure 8 illustrates how dq can lower the expected
distance for two failed users. The failure of us means t1 must be assigned to uy
to optimise the distance-resiliency at that point. The failure of ug at t3 means
the workflow is now blocked. However, under §5, t1 would be assigned to ty which
reduces the assignment options for to to just us but increases the options for the
final task t3 to uy and us. It follows that the workflow would complete with this
particular failure under §s.

5 Assessment

In this section, we give an empirical assessment of the different policies intro-
duced in Sections 3 and 4. More precisely, given a uniform distribution of user



356 J.C. Mace, C. Morisset, and A. van Moorsel

Algorithm 1. Value Iteration for the optimal value function, where c.h refers
to the history of previous assignments in the context c.

1: function Q*(c,t,u, 8, R)
2: if t = 1, then Rg

3 else if c,u,t ¥ p then Ry

4 else

5 t' <« 7(t,u)

6: if u= 1, then 0

v else Rr+Axmax [[nf v (c)| ™+ S OHQ (et u, B, R) | ei € nf ()]
8 end if

9 end if

10: end function

failure, we are able to generate resiliency metrics for a workflow and show the
average success rate appears higher using the resiliency assignments ds and d4.

Implementation. We solve the MDP defined in Section 3 using value itera-
tion [21] and implement a simplified version of the optimal policy function §*
under the assumption that user failures are equiprobable and workflow behaviour
is linear, i.e., no loops or branches exist. Given a context ¢, a task ¢, a discount
factor 8 and a reward vector R = (Rg, Rr, Rv), corresponding to the atomic
rewards for successfully terminating, doing one step and violating the policy,
respectively, the optimal policy is given as:

0*(c,t, B, R) = argmazj( Q*(c,t,u, B, R)
ue

where Q is defined in Algorithm 1. We are now in position to define the policies
introduced in Section 3 and Section 4. Given ¢ € Cp, ¢ € Cp gy and t € T

do(c,t) = 6" (c,t,0,1,0, —00) dcl(c,t) = 0%(¢,t,1,1,0, —00)
ds(c’,t) = 07(c/,£,1,1,0, —00) da(c’,t) = 67(c',1,1,0,1, —00)

Note that since we assume the workflow is linear, we can safely assign 1 to
B. As . and s concern themselves with optimising workflow satisfaction it is
possible to carry out a degree of pre-processing before runtime. Assignments
with reward —oo can be removed offline as they clearly do not contribute to the
satisfiability of a workflow. All correct assignments are therefore cached in a tree
data structure. Any unavailable users are removed before selecting a user for the
current assignment. If multiple users are found to be optimal by any of the four
policies, one is simply selected at random.

To model user failure, all possible user failures are generated up to N as a
set of failure vectors. The test program takes as input parameters a sequence of
tasks, a security policy, a set of users, a single failure vector and an assignment
policy. Before assigning each task, the failure vector is checked and users removed
as appropriate. A call is made to the given assignment policy for each task in



Quantitative Workflow Resiliency 357
Table 2. Test results for Example 1

8o Je 0s 0d

Success rate 0.136 0.769 0.803 0.793
Expected distance (tasks) 5.20 8.83 8.67 9.29
Computation time (us)  579.06 139.20 1.35x10° 2.94x 10°

turn and the result logged in an assignment history. The program terminates if
the end of the workflow is reached or no assignment can be made and outputs the
assignment history and assignment time which is the aggregation of computation
time captured through a benchmarking library. For instance, we define Example
1 to contain 10 tasks, 6 users and a security policy consisting 10 separation and
2 binding of duty constraints. We consider 1 user failure per run giving 61 failure
vectors in all, each run 10 times. The testing was done on a computing platform
incorporating a 2.40Ghz i5 Intel processor and 4GB RAM.

Results. A total of 610 runs were recorded per policy. It should be noted
that 150 correct assignments exist for the workflow instance in Example 1. The
recorded test data has been analysed and the primary results presented in Ta-
ble 2. To aid understanding, the sample data is also presented in graphical form.
Figure 9 shows the probability of assignment for each task in Example 1. For
example, the probability of the workflow to execute until at least t3 using J, is
0.49 while under 4. the probability is 0.95. The workflow success rate is equiva-
lent to the probability of reaching ¢1¢. Figure 10 gives average computation time
(excluding pre-computed data, such as the assignment tree). For example, the
average time to compute assignments up to and including t4 under ¢, is 111us
while under d. the time is 17.2us.

Discussion. Table 3 summarises the different characteristics of the different
policies. As expected, ds generates assignments providing the highest success
rate, and 04 generates assignments giving the highest expected distance. In-
tuitively J5 reserves users for the final task assignments and J, reserves users
to ensure every task has the highest possibility of being assigned. Our results
indicate choosing J; to optimise success rate does not mean optimal expected
distance will follow: since J5 is only concerned with reaching the finish point, it
terminates once it knows failure is guaranteed, thus lowering expected distance
achieved by other strategies. This phenomenon is seen in Figure 9 which gives
the appearance of , striving straight to the finish point while é. and §4 prioritise
assigning tasks along the way.

It is noticeable that average task assignment probabilities are raised when
made within the bounds of an assignment tree used in d. and ;. However an
observed side-effect of removing known bad assignments (with reward —oo) is
to lower initial task assignment probabilities below that achieved by J, and §4.
Figure 9 shows the probability to assign t5 under §5 is 0.9 and . as 0.98, yet



358 J.C. Mace, C. Morisset, and A. van Moorsel

Probability Time (us)

100 FT T T T T T T T T —
' | i - o o o oo oo ]
10° E E
0.8 N 101 ;, . 5§ u =S8 = 8—=u é
1072 ]
0.6 - - E El
1073 E E
0.4} G, 1 107t % -///\/(_—‘ %
—a— _ F B
02| |—m4d, B 107 E 3
—e— g ol 1
i i | | I I I I I I 1077 | | | | | I I I L3

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Task Task

Fig. 9. Example 1 - expected distance  Fig.10. Example 1 - computation time

equals 1 under §, and d,4. It follows that basing decisions solely on initial task
assignments would indicate d,, d. and d, are better then d,, yet &5 is more likely
to finish. Caution should be taken of this somewhat false impression, especially
with §, as performance can clearly drop suddenly. The behaviour of §, can be
attributed to bad assignments made with or without user failure, and a greedy
nature of using up critical users for early tasks leaving more and more bad
assignment options for later ones. If no bad assignments or user failures exist,
0, can expect to match the performance of 4.

The fastest computation time is achieved by . which is expected due to the
least amount of runtime processing it must perform. Note that §. uses the assign-
ment tree data structure so does not need to calculate correct task assignments
at runtime, nor does it calculate any aspect of resiliency; only the current failed
users must be removed. This runtime performance does come with the cost of
calculating all correct assignments offline and generating the data tree structure
(17.39s for Example 1); the time for this grows exponentially with the num-
ber of tasks and users. It follows that timings for each strategy increase with
the amount of runtime processing performed. As expected, the slowest strategy
04 has the heaviest runtime workload, i.e. calculating correct assignments and
calculating a resiliency value for each potential task assignment.

To summarise, none of the four policies we have introduced guarantee a full
success rate and we do not suggest one is the outright best in terms of optimising
workflow satisfaction and resiliency. Optimising success can lower distance while
optimising time can lower resiliency for example. These tensions are heavily
dependent on the nature of the workflow, the security policy and which users
fail and at what point they fail. The results we have presented give a first step in
the generation of useable metrics indicating the success rate, expected distance,
computation time and task-assignment probabilities of workflow assignments.
These values give a more meaningful measure than previous work and make it
easier to compare workflow assignments in terms of how much satisfiability and
resiliency they can give.



Quantitative Workflow Resiliency 359

Table 3. Assignment strategy comparison

Characteristic 0o be Os 8d
User selection from PU.; random random optimal optimal
Caches assignment options X v v X
Calculates resiliency X X v v
Optimal success rate random random v random
Optimal expected distance random random random v
Computation ond 1%t 3rd 4th

Clearly the establishment of an acceptable workflow is a case of security and
business trade-offs. Favouring one measure over another will depend on workflow
priorities, i.e., whether the only concern is to finish or instead be confident that
a certain point will be reached, or does computation time outweigh the need
for resiliency? This decision can become crucial due to tension we have shown
existing between these aspects. Providing suitable metrics and tools for workflow
designers would facilitate more informed decisions regarding these concerns.

Running Example. In addition, two sets of results for the running example
used throughout this paper are given in Table 4. The first, Example 2 are gener-
ated using policy p; defined in Section 3.1, and second, Example 3 using policy
po defined in Section 4.2. A maximum of 2 user failures is considered totalling
67 equiprobable failures, each run 10 times per assignment policy. The testing
for Example 2 was carried out on a computing platform incorporating a 2.40Ghz
i5 Intel processor, and for Example 3, a 2.3GHz Intel duo-core processor, both
with 4GB RAM.

Table 4. Test results

Example 2 Example 3
do e s 0d do O s dd
Success rate (%) 20.27 26.49 43.24 43.24 62.99 63.43 74.62 73.13

Expected distance (tasks) 2.04 1.93 1.81 2.27 257 2.59 2.52 267
Computation time (ps)  4.56 0.77 123.27 299.62 12.03 5.10 379.35 678.91

6 Conclusion

We have presented in this paper a Markov Decision Process (MDP) encoding
of the workflow satisfaction and resiliency problem. We have therefore reduced
the problem of finding optimal user-task assignment to that of solving an MDP,
which is a well studied problem. One of the main strengths of our approach is



360 J.C. Mace, C. Morisset, and A. van Moorsel

to provide a very flexible approach, where a simple modification of the context
or the reward function provides a new metric to analyse a workflow. We believe
that by addressing the workflow satisfaction and resiliency problem from a quan-
titative viewpoint rather than from a binary one, we provide tools and metrics
that can be helpful for a workflow designer to analyse all those cases that are
neither satisfiable nor resilient ideally, but need to work nevertheless.

We have illustrated that the analysis of a workflow is multi-dimensional, and
that there is a trade-off to be established, among others, between computation
time, success rate and expected distance. Clearly, other dimensions can be taken
into account, such that the possibility to dynamically modify the security pol-
icy [16], or perhaps the possibility to override the security constraints [17].

For future work, an interesting point is to develop the tools to help the sys-
tem designer fiz a given workflow, using different metrics. For instance, a set of
workflow modifications proven to be monotonic with the quantitative satisfac-
tion or with the decremental resiliency could be a very helpful tool, especially in
the context of structured workflow design, e.g., with business processes. Another
lead is the study of sub-optimal policies. Indeed, calculating a sub-optimal solu-
tion might be more tractable [23], at the cost of a loss of accuracy. In this case,
it could be worth understanding the impact on the WSP of using a sub-optimal
solution.

References

1. Workflow handbook, pp. 243-293. John Wiley & Sons, Inc., New York (1997)

2. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of autho-
rization constraints in workflow management systems. ACM Trans. Inf. Syst. Se-
cur. 2(1), 65-104 (1999)

3. Botha, R., Eloff, J.H.P.: Separation of duties for access control enforcement in
workflow environments. IBM Systems Journal 40(3), 666-682 (2001)

4. Kohler, M., Liesegang, C., Schaad, A.: Classification model for access control con-
straints. In: IEEE International Performance, Computing, and Communications
Conference, IPCCC 2007, pp. 410-417 (April 2007)

5. Crampton, J.: A reference monitor for workflow systems with constrained task ex-
ecution. In: Proceedings of the Tenth ACM Symposium on Access Control Models
and Technologies, SACMAT 2005, pp. 38-47. ACM, New York (2005)

6. Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorization systems.
ACM Trans. Inf. Syst. Secur. 13(4), 40:1-40:35 (2010)

7. Kumar, A., van der Aalst, W.M.P., Verbeek, E.M.W.: Dynamic work distribution
in workflow management systems: How to balance quality and performance. J.
Manage. Inf. Syst. 18(3), 157-193 (2002)

8. Basin, D., Burri, S.J., Karjoth, G.: Obstruction-free authorization enforcement:
Aligning security with business objectives. In: Proceedings of the 2011 IEEE 24th
Computer Security Foundations Symposium, CSF 2011, pp. 99-113. IEEE Com-
puter Society, Washington, DC (2011)

9. Kohler, M., Schaad, A.: Avoiding policy-based deadlocks in business processes.
In: Third International Conference on Availability, Reliability and Security, ARES
2008, pp. 709-716 (2008)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Quantitative Workflow Resiliency 361

Crampton, J., Gutin, G., Yeo, A.: On the parameterized complexity of the workflow
satisfiability problem. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS 2012, pp. 857-868. ACM, New York (2012)
Crampton, J., Gutin, G.: Constraint expressions and workflow satisfiability. In:
Proceedings of the 18th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT 2013, pp. 73-84. ACM, New York (2013)

Khan, A.A., Fong, P.W.L.: Satisfiability and feasibility in a relationship-based
workflow authorization model. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ES-
ORICS 2012. LNCS, vol. 7459, pp. 109-126. Springer, Heidelberg (2012)

Tan, K., Crampton, J., Gunter, C.: The consistency of task-based authorization
constraints in workflow. In: Proceedings of the 17th IEEE Computer Security Foun-
dations Workshop, pp. 155-169 (June 2004)

National Quality Board: How to ensure the right people, with the right skills, are
in the right place at the right time @QONLINE (2013)

Lowalekar, M., Tiwari, R.K., Karlapalem, K.: Security policy satisfiability and fail-
ure resilience in workflows. In: Maty4s, V., Fischer-Hiibner, S., Cvréek, D., Svenda,
P. (eds.) The Future of Identity. IFIP AICT, vol. 298, pp. 197-210. Springer, Hei-
delberg (2009)

Basin, D., Burri, S.J., Karjoth, G.: Optimal workflow-aware authorizations. In:
Proceedings of the 17th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT 2012, pp. 93-102. ACM, New York (2012)

Wainer, J., Barthelmess, P., Kumar, A.: W-rbac - a workflow security model incor-
porating controlled overriding of constraints. International Journal of Cooperative
Information Systems 12, 2003 (2003)

Bakkali, H.E.: Enhancing workflow systems resiliency by using delegation and pri-
ority concepts. Journal of Digital Information Management 11(4), 267-276 (2013)
Mace, J., van Moorsel, A., Watson, P.: The case for dynamic security solutions in
public cloud workflow deployments. In: 2011 IEEE/IFIP 41st International Con-
ference on Dependable Systems and Networks Workshops (DSN-W), pp. 111-116
(June 2011)

Watson, P.: A multi-level security model for partitioning workflows over federated
clouds. Journal of Cloud Computing 1(1), 1-15 (2012)

Bellman, R.: A markovian decision process. Indiana Univ. Math. J. 6, 679-684
(1957)

Martinelli, F., Morisset, C.: Quantitative access control with partially-observable
markov decision processes. In: Proceedings of the Second ACM Conference on Data
and Application Security and Privacy, CODASPY 2012, pp. 169-180. ACM, New
York (2012)

Cassandra, A.R.: Optimal policies for partially observable markov decision pro-
cesses. Technical report, Brown University, Providence, RI, USA (1994)
Crampton, J., Gutin, G., Yeo, A.: On the parameterized complexity and kernel-
ization of the workflow satisfiability problem. ACM Trans. Inf. Syst. Secur. 16(1),
4 (2013)



	Quantitative Workflow Resiliency
	1 Introduction
	2 Related Work
	3 The Workflow Satisfiability Problem
	3.1 Workflow
	3.2 Workflow Assignment
	3.3 Contextual Assignment
	3.4 Markov Decision Process
	3.5 Implementation of the Optimal Policy

	4 Quantitative Analyses
	4.1 Quantitative Satisfaction
	4.2 Quantitative Resiliency

	5 Assessment
	6 Conclusion
	References




