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Abstract. We present a novel methodology for the analysis of com-
plex object shapes in motion observed by multiple video cameras. In
particular, we propose to learn local surface rigidity probabilities (i.e.,
deformations), and to estimate a mean pose over a temporal sequence.
Local deformations can be used for rigidity-based dynamic surface seg-
mentation, while a mean pose can be used as a sequence keyframe or
a cluster prototype and has therefore numerous applications, such as
motion synthesis or sequential alignment for compression or morphing.
We take advantage of recent advances in surface tracking techniques to
formulate a generative model of 3D temporal sequences using a prob-
abilistic framework, which conditions shape fitting over all frames to a
simple set of intrinsic surface rigidity properties. Surface tracking and
rigidity variable estimation can then be formulated as an Expectation-
Maximization inference problem and solved by alternatively minimizing
two nested fixed point iterations. We show that this framework pro-
vides a new fundamental building block for various applications of shape
analysis, and achieves comparable tracking performance to state of the
art surface tracking techniques on real datasets, even compared to ap-
proaches using strong kinematic priors such as rigid skeletons.

Keywords: Shape dynamics, Motion analysis, Shape spaces.

1 Introduction

Recent years have seen the emergence of many solutions for the capture of dy-
namic scenes, where a scene observed by several calibrated cameras is fully re-
constructed from acquired videos using multiview stereo algorithms [24,12,1,20].
These techniques have many applications for media content production, interac-
tive systems [2] and scene analysis [28] since they allow to recover both geometric
and photometric information of objects’ surface, and also their shape and evolu-
tion over time. Since these temporal evolutions were initially reconstructed as a
sequence of topologically inconsistent 3D models, significant research work has
been done for full 4D modeling and analysis of geometrically time-consistent 3D
sequences.

In particular, several techniques propose to deform and match a template to ei-
ther image data, or to intermediate 3D representations of the surface [25,17,9,26].
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These methods allow the recovery of both shape and motion information. How-
ever they usually do not consider the intrinsic dynamic properties of a surface.
These are either assumed, for instance through a kinematic structure (rigging)
or through the surface tension parameters, or are simply ignored. Hence, there is
a large interest in better understanding rigidity and motion properties of shapes,
with the prospect of improving dynamic models, extracting more useful informa-
tion, and better automation. In this work, we take the estimation a step further
and investigate how to infer dynamics or statistical properties of shapes given
temporal sequences.

Recovering this information is yet a largely open research topic with only
few exploratory representations proposed for dynamics characteristics of sur-
faces, e.g. [11,29]. We propose a novel inference framework for the analysis of
complex object shapes in motion that learns local surface rigidity probabilities
(i.e., deformations), and estimates a mean pose over a temporal sequence. Based
on recent advances in surface tracking techniques, we formulate a generative
model of 3D temporal sequences using a probabilistic framework, which condi-
tions shape fitting over all frames to a simple set of intrinsic surface rigidity
properties. Surface tracking and rigidity variables can then be obtained iter-
atively using Expectation-Maximization inference by alternatively minimizing
two nested fixed point iterations. Thus, our main contribution is a framework
that allows the simultaneous tracking and inference of dynamic properties of
object surfaces given temporal observations. We show how these properties con-
tribute to a better understanding of surface motion and how they can be used
for the dynamic analysis of 3D surface shapes through mean pose estimation
and rigidity-based segmentation, while achieving competitive surface tracking.

The remainder of the paper is organized as follows. The next section discusses
related work. Details on the mean pose inference model are given in Sect. 3. Sec-
tion 4 presents various applications and experimental results. Section 5 concludes
with a discussion on our contributions.

2 Related Work

The analysis of deformable surfaces captured by multi-video systems has gained
lot of interest during the last decade due to the rapid progression of computer
and image sensing technologies. We focus here on works that relate to dynamic
properties of shapes.

Kinematic structures. Many popular tracking methods propose to rigidly con-
strain a model using an articulated structure, for instance a skeleton or a cage,
which must be scaled and rigged to a 3D template, and optimally positioned
through a sequence of models representing the observed subjects [4,30,17,19)].
The template is usually deformed using a skinning technique, according to the
optimized structure across the sequence [5]. Such kinematic structures provide
intrinsic information on the associated shapes through their parameter evolu-
tions (e.g. their averages can define a mean pose). These approaches require a
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priori knowledge on the observed shapes, such as the topology and the rigid
parts, and cannot be applied to arbitrary object shapes. Moreover global tem-
plate deformation across time is subject to loss of local details such as cloth
wrinkles and folds.

Locally rigid structures. The literature also contains several methods that re-
lax the constraint on the shape structure using looser rigidity priors. A body
of works consider deformations that preserve local intrinsic surface properties,
e.g. isometric deformations [21,8,22,23]. Such properties relate to local rigidities,
for instance in [31,32] local surface distorsions are constrained, however they
are usually known priors. While efficient to register or match surfaces, intrinsic
surface properties are not necessarily sufficient to track complex shapes such
as human bodies. In that case, several approaches introduce local deformation
models to drive surface evolutions. For instance, in [9], the observed surface is
treated as a piece-wise body with locally rigid motions. We consider a similar
model to represent surface deformations which is used to learn local rigidities
as well as mean poses along with the tracking. Interestingly, recent approaches
also in this category were proposed to characterize local surface deformations.
In [11], the authors propose a probabilistic framework for rigid tracking and
segmentation of dynamic surfaces where the rigid kinematic structure is learned
along time sequences. Our framework does not assume such structure but learns
instead local rigidities and mean poses. In [29], the authors model complex local
deformation dynamics using linear dynamical systems by observing local curva-
ture variations, using a shape index, and perform rigidity-based surface patch
classification. The latter approach assumes surface alignment is given, in contrast
to our proposed generative model that simultaneously performs surface tracking
and local rigidity estimation.

Shape Spaces. Following the work of Kendall [18], a number of works consider
shape spaces that characterize the configurations of a given set of points, the
vertices of a mesh for instance. This has been used in medical imaging to esti-
mate mean shapes through Procrustes analysis, e.g. [16]. In this case, the shape
of the object is the geometrical information that remains when the pose (i.e.,
similarities) is filtered out. Thus Procrustes distances can be used to measure
shape similarities and to estimate shape averages with Fréchet means. We follow
here a different strategy where a shape space represents the poses of a single
shape and where we estimate a mean pose instead of a mean shape. This re-
lates to other works in this category that also consider shapes spaces to model
shape poses with mesh representations. They can either be learned, e.g. [3,15] or
defined a priori, e.g. [27] and are used to constrain mesh deformations when cre-
ating realistic animations [3,27] or estimating shape and poses from images[15].
While sharing similarities in the deformation model we consider, our objective is
not only to recover meaningful shape poses but also to measure pose similarities
and intrinsic shape properties. Unlike [3,15], we do not need a pose or shape
database and the associated hypothesis of its representativeness. Moreover, our
methodology specifically addresses robust temporal window integration.
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3 Mean Pose Inference Model

We assume given a temporal sequence of 3D reconstructions, incoherent
meshes or point clouds, obtained using a multi-view reconstruction approach,
e.g. [12,1,20]. We also assume that a template mesh model of the scene is avail-
able, e.g. a particular instance within the reconstructed sequence under consid-
eration. The problem of local surface rigidity and mean pose analysis is then
tackled through the simultaneous tracking and intrinsic parameter estimation of
the template model. We embed intrinsic motion parameters (e.g. rigidities) in
the model, which control the motion behavior of the object surface. This implies
that the estimation algorithm is necessarily performed over a sub-sequence of
frames, as opposed to most existing surface tracking methods which in effect im-
plement tracking through iterated single-frame pose estimation. We first describe
in details the geometric model (§3.1) illustrated with Fig. 1, and its associated
average deformation parameterization for the observed surface (§3.2). Second,
we describe how this surface generates noisy measurements with an appropriate
Bayesian generative model (§3.3). We then show how to perform estimation over
the sequence through Expectation-Maximization (§3.4).

Fig. 1. Example of patch template used

3.1 Shape Space Parameterization

To express non-rigid deformability of shapes, while de-correlating the resolution
of deformation parameters from mesh resolution, we opt for a patch-based pa-
rameterization of the surface similar to [9]. The reference mesh is partitioned in
an overlapping set of patches, pre-computed by geodesic clustering of vertices.
Each patch P, is associated to a rigid transformation T} € SE(3) at every
time t. Each position x; , of a mesh vertex v as predicted by the transform of
P, can then be computed from its template position x? as follows:

Xiw = Tk(Xg)' (1)
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We thus define a pose of the shape space as the set of patch transforms T =
{T,}rex that express a given mesh deformation. Note here that a pose in the
shape space does not necessarily correspond to a proper geometric realization
of the reference mesh and, in practice, patch deformations are merged on the
template to preserve the mesh consistency.

3.2 Mean Pose

To retrieve the mean pose of a given sequence, we provide a definition suitable for
the analysis of complex temporal mesh sequences. Following Fréchet’s definition
of a mean [13], we introduce the mean pose T of a given set of poses {T*}icr
over the time sequence 7 as the pose minimizing the sum of squared distances
to all poses in the set:

T = argminz:dQ(T,Tt)7 (2)
teT

where d() is a distance that measures the similarity of two poses. This distance
should evaluate the non-rigidity of the transformation between two poses of a
shape and hence should be independent of any global pose. Such a distance is
not easily defined in the non-Euclidean shape space spanned by the rigid motion
parameters of the patches. However using the Euclidean embedding provided
by the mesh representation, we can define a proper metric based on the vertex
positions. Inspired by the deformation energy proposed by Botsch et al. [7] our
distance is expressed as an internal deformation energy between two poses. Let
T¢ and T7 be two poses of the model, the distance can be written as a sum of
per patch pair squared distances:

AT )= Y dy(TT), 3)
(Pk,Pl)eN
with (T, T9) = Y | Ty (x)) = Tj_, ()], (4)
veEP, UP,
where T , = Tfl o T4 is the relative transformation between patches P,

and P, for pose i, and N is the set of neighboring patch pairs on the surface.
The distance sums, for every pair of patches of the deformable model, its rigid
deviation from pose i to j. This deviation is given by the sum over each vertex v
belonging to the patch pair, of the discrepancy of relative positions of the vertex
as displaced by P, and P,. It can be verified that d? defines a distance as it
inherits this property from the L2 norm used between vertices.

3.3 Generative Model

The expression (2) is useful to characterize the mean over a set of poses already
known. Our goal however is to estimate this mean in the context where such
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poses are indirectly observed through a set of noisy and sparse 3D point clouds
of the surface. Thus we cast the problem as the joint estimation of mean pose
and fitting of the model to each set of observations. For our purposes, we assume
the set of poses {T?};c7 are defined for a set T corresponding to observations in
a temporal sequence. The observed point clouds are noted Y ={Y'};c7, where
Y' ={y!}oco, is the set of point coordinates y}, for an observation o among the
set of observations O, at time ¢. Note that this set O, is different than V in
general as it is obtained from a 3D reconstruction or depth camera, without any
direct correspondence to the deformable shape surface model earlier defined.

To express the noisy predictions of observations, we follow the principle of
EM-ICP [14] by introducing a set of assignment variables k! indicating, for
each observation o, which patch this observation is assigned to. We are also
interested in retrieving information about the variations of the rigid deformation
with respect to the mean shape. To keep this information in its simplest form, we
express in the generative model that each pair of patches (k,1) € N is assigned
a binary rigidity variable c;; € {0,1}, which will condition the patch pair to
accordingly be rigid or flexible. This variable is an intrinsic parameter attached to
the original deformable model and is thus time-independent. We note the full set
of rigidity variables C = {c;; }(x,1year- This in turn will allow during inference the
estimation of a rigid coupling probability for each patch pair (k,1). We express
the generative model through the following joint probability distribution:

p(T,T,Y,C,K,0) =p(T) [[ | p(T"| T,C) [] p} KL Tha') |, (5)
teT 0€0,

with ¢ = {o'}ie7 the set of noise parameters of the observation prediction
model, and K = {k’} the set of all patch selection variables.

Observation Prediction Model. Each observation’s point measurement is
predicted from the closest vertex v within patch P,_,,. Because the prediction
is noisy, this prediction is perturbed by Gaussian noise of variance ot?:

p(ys | K, T'o') = N(y | T (x7),0"). (6)

Pose Constraining Model. We constrain the fitted poses to be close to the
mean pose, using the distance defined earlier (3). We embed the influence of
rigidity variables in this term, by computing two versions of the distance, biased
by rigidity variables C:

p(T" | T,C) x exp Z diy(T, T ep) | (7)
(k,H)eN

where dkl(T T, ciy) Z Bra (v, cy) HTk 1(x ) Ti (% 8)||2a (8)
vEP, UP,
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with Bri(v,cy;) a uniform function over all vertices of the patch pair if ¢, = 1,
which encourages common rigid behavior of the two patches, and a non-uniform
function encouraging more elasticity when c;; = 0:

bkl(’l))

Bue,0) s exp(—" ), ©)

where by (v) is the distance between the vertex v and the border between P, and
P, on the template, D is the average patch diameter and 7 is a global coefficient
controlhng the flexibility. The By (-,0) has larger values on the border between
the patches, which allows more flexibility while enforcing continuity between the
patches. The coefficients Sk (v,0) are normalized such that ZPkUPz Bri(v,0) =

ZPkUPl Bri(v,1) in order to make both modes as competitive.

Mean Model Prior. In the absence of any prior, the mean pose is uncon-
strained and could theoretically have completely loose patches unrelated to each
other. To avoid this and give the mean pose a plausible deformation, we consider
the following a prior which expresses that the intrinsic mean pose should not
significantly deviate from the original reference pose (represented by the identity
transform Id):

p(T) o exp(—d*(T,1d)) ocexp | Y > ITu() — T,
(P,,P)EN vEP,UP,
(10)

3.4 Expectation-Maximization Inference

We apply Expectation-Maximization [10] to compute Maximum A Posteriori
(MAP) estimates of the tracking and average shape parameters given noisy 3D
measurements, using the joint probability described in (5) as described in [6]. The
assignment variables K and rigidity coupling variables C are treated as latent
variables, which we group by the name Z = {K, C}. For the purpose of clarity
let us also rename all parameters to estimate as © = {T, T, o }. Expectation-
Maximization consists in iteratively maximizing the following auxiliary function
Q@ given the knowledge of the previous parameter estimate ©™:

O™ = argmax Q(O|O™) = arg max Zp(Z|Y, o™ np(Y,Z|©). (11)
e e
z
The E-Step consists in computing the posterior distribution p(Z|Y,©™) of la-

tent variables given observations and the previous estimate. It can be noted
given the form of (5) that all latent variables are individually independent
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under this posterior according to the D-separation criterion [6], thus following
the factorization of the joint probability distribution:

p(Y.zlo") =TI | II »lcul®e™ ] »kily.0™) ).  (12)

teT \(k,l)eN 0€0,
my __ 2 t,m mm
where p(c;,|@™) =a-exp | — Z —di, (T5™ T™ ;) (13)
vEP, UP,
and p(k’|Y,0™)=b-N(y! | Tf{’tm(v),ot’m), (14)

where a, b are normalization constants ensuring the respective distributions sum
to 1, and v is the closest vertex on patch k. Equations (13) and (14) are the E-step
updates that need to be computed at every iteration for every latent variable.
(13) corresponds to a reevaluation of probabilities of rigid coupling between
patches, based on the previous m-th estimates of temporal and mean poses. (14)
corresponds to the probability assignment table of time ¢’s observation o to each
patch in the model. This corresponds to the soft matching term commonly found
in EM-ICP methods [14].

The M-Step maximizes expression (11), which can be shown to factorize simi-
larly to (5) and (12), in a sum of three maximizable independent groups of terms,
leading to the following updates:

T = arg rtnin Z ZP(Ckl‘Qm) dil(TmaTtaCkl) (15)
T (kDeN o
+ 3> p&hY, 0™yl - T (x4)]1,
0€0, k¢
iz 1 Yoc0, X POIY.07) Iyt — T () )
0- b)
3 > oco, 2t P(kLY,0™)

T+ —argmln d*(T,1d) +Z Z Z (cxt|©™)dZy (T, T cpy).
teT (k,1)EN cy,
(17)

Expression (15) corresponds to simultaneous updates of all patch transformations
for a given time ¢, weighed by E-step probabilities. (16) updates the per-time frame
noise parameter with an E-step weighed contribution of each observation. (17)
computes the mean pose, accounting for all poses in the time sequence. Note that,
for ease of resolution, we decouple the estimation of T+ and T+, which is
why (17) uses the result T#™+1. We solve both systems with Gauss-Newton iter-
ations, using a parametrization of the rigid transforms as a rotation matrix and
translation.
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4 Experiments

We evaluate the proposed generative model using 3D sequences reconstructed
from real human performances captured by multiple view videos. We propose
two datasets, GOALKEEPER and DANCER, which provide two different actions
and clothing situations with high resolution inputs. These were processed by
extracting visual hull reconstructions, and two neutral topology frames were
selected to provide the template model after smoothing and simplifying the ob-
tained mesh down to 5k vertices. Additionally, we also validate using two public
datasets made available by the community. The FREE [25] dataset consists of a
photocoherent mesh sequence of a dancer with approximately 135k vertices per
frame, exhibiting particularly fast and difficult dancing motion. The MARKER
dataset [19] provides another type of challenging situation with a two-person se-
quence of reconstructions, with martial art motions. It also provides markers on
one of the persons which we will use for quantitative evaluation. For both these
public sequences, we use the templates provided downsampled to 5k vertices.

In all visualizations, we render mesh poses by computing vertex position x!,
at time ¢ as a linear blend of positions x| of expression (1), weighed by a set
of Gaussian weights oy, (v) materializing the region of influence of patch P, on
the mesh. These weights are maximal at the center of mass of P, and their sum
over all non-zero patch influences are normalized to 1 for a given vertex v:

X! = Zak(v) xk . (18)
k

We visualize the rigidity coupling probabilities over the surface with heat-colored
probabilities, by diffusing this probability over vertices of influence of patch
pairs to obtain a smooth rendering. We provide a supplemental video! with the
processed results for these datasets.

4.1 Tracking Evaluation

We first evaluate the tracking performance of the algorithm. Full sequences may
be processed but because of the motion of subjects in the sequence, all poses
of the sequence cannot be initialized with a single static pose, as this would
surely be susceptible to local minima. We thus process the four datasets using a
sliding window strategy for 7, where processing starts with a single pose, then
additional poses are introduced in the time window after the previous window
converges. We provide tracking results with sliding window size 20 which cor-
responds to approximately one second of video. We show the resulting poses
estimated by our algorithm on the four datasets in Fig. 4, Fig. 5a and Fig. 5b.
Runtime is approximately 15 seconds per time step on a recent workstation and
can be further improved.

We also provide a comparison with state of the art methods Liu et al. [19] and
with a purely patch-based strategy [9], on the MARKER dataset. We reproduce

! http://hal.inria.fr/hal-01016981
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[9] results by neutralizing mean updates and rigid coupling updates from our
method, which corresponds to removing these terms from the energy and closely
mimics [9]. Note that [19] is a kinematic tracking strategy, where both subjects
are rigged to a kinematic skeleton providing a strong, fixed and dataset specific
rigidity prior. On the other hand, [9] only use patch rigidity and inter-patch
elasticity priors, that are weaker than [19] and our method. The MARKER dataset
provides sparse marker positions, at which we estimate geometric positional error
with respect to the surface. To this purpose we match the closest vertex on the
template model provided, and follow it with the different methods, computing
geometric errors in position with respect to the corresponding marker’s position
in these frames. The average errors are shown in Table 1. We also provide a
temporal error graph for our method and [9] in Fig. 2.

Table 1. Mean error and standard deviation over the sequence of the MARKER dataset

method mean error (mm) standard deviation (mm)
no coupling, no mean pose [9] 55.11 48.02
our method 43.22 29.58
Liu et al. [19] 29.61 25.50

Mean Error at Markers

T T T T T T T
250 - without coupling estimation, without mean pose
our method

Mean Error (mm)

0 50 100 150 200 250 300 350 400 450 500
Frame

Fig. 2. Mean error for temporal evolution over MARKER dataset

Table 1 shows our method achieves comparable tracking performance to state
of the art surface tracking techniques. The slightly higher error with respect
to [19] is not unexpected given that they use a stronger kinematic skeleton
prior. Regarding [9], the graph and table show a small advantage in error for our
method along the sequence, as well as a smaller variance of the error, showing
the better constraining provided by our framework. The graph also shows signif-
icantly higher error values with [9] than with our method around frames 60, 250,
325, 390 and 460. These error peaks are imputable to difficult segments of the
input sequence where [9] loses track of limbs (see Fig. 3a and Fig. 3b) while our
method does not. The high error values around frame 390 are due to ambiguous
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input meshes where the head of the second character (not seen in Fig. 3b) is out
of the field of view. Around this frame, our method still outperforms [9] which
misaligns an arm (see Fig. 3b). These results substantiate stronger robustness
for our method over [9].

Regarding limitations, the model may fall into local minima when the noise
level of inputs is too high similarly to all patch-based methods but this was not
a strong limitation on the datasets. As the model favours rigidity and isometric
surface deformations, the surface sometimes overfolds in non-rigid sections (as
sometimes seen in video), which we will address in future work.

(a) Frame 325 (b) Frame 390

Fig. 3. Input mesh (left), tracked mesh with [9] (middle) and with our method (right)

4.2 Mean Pose and Rigidity Estimation

Fig. 5a shows tracking results with color coded rigidity coupling probabilities
with sliding window size 20. The method accurately reports instantaneous rigid-
ity deviation, such as when the subject folds his elbows or shoulders. Blue regions
correspond to regions of the mesh that have no non-rigid distortion with respect
to the estimated mean pose. Fig. 5b shows estimates of mean poses for full
sequences, colored with the estimated rigidity coupling probabilities over full se-
quence (no sliding window). It can be noted that the method accurately reports
where the most common deviations occur.

The supplemental video shows mean pose sequences for several sliding window
sizes. We observe a temporal smoothing of the initial deformation: fast deforma-
tion is filtered out. This effect is stronger with wide windows. We interpret this
phenomenon as follows: when the temporal window slides along the sequence, it
produces a mean pose sequence analogous to the convolution of the estimated
pose sequence with a gate function, with the same size as the window size. This
process can be seen as a low-pass filtering of the sequence poses.

We also observe that the mean pose is not affected by global rigid motion of the
shape (noticeable with the DANCER dataset). This is an expected consequence
of using a pose distance that is invariant under global rigid transforms in (2).
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Fig. 4. Tracking excerpts from the DANCER dataset. Colors code patches.

(a) Tracking Excerpts. (b) Mean poses computed on
full sequences.

Fig.5. Tracking excerpts from GOALKEEPER, MARKER and FREE datasets. Best
viewed in color. Please watch supplemental video for more visualizations.
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5 Conclusions

We present a novel methodology for the analysis of complex object shapes in
motion observed by multiple cameras. In particular, we propose a generative
model of 3D temporal sequences using a probabilistic framework that simulta-
neously learns local surface rigidity probabilities and estimates a mean pose over
temporal sequence. Hence, rigidity-based surface segmentation can be achieved
using local deformation properties, while motion synthesis or surface alignment
for compression or morphing applications can be achieved using a mean pose as
a sequence keyframe or a cluster prototype.

Our model can also perform surface tracking with state of the art performance,
and does not require a priori rigid (kinematic) structure, nor prior model learning
from a database. Surface tracking and rigidity variable probabilities are obtained
by solving an Expectation-Maximization inference problem which alternatively
minimizes two nested fixed point iterations.

To our knowledge, this is the first model that achieves simultaneous estimation
of mean pose, local rigidity, and surface tracking. Experimental results on real
datasets show the numerous potential applications of the proposed framework
for complex shape analysis of 3D sequences.
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