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Abstract. This paper presents a novel prior, radial bright channel (RBC)
prior, for single image vignetting correction. The RBC prior is derived
from a statistical property of vignetting-free images: for the pixels shar-
ing the same radius in polar coordinates of an image, at least one pixel
has a high intensity value at some color channel. Exploiting the prior, we
can effectively estimate and correct the vignetting effect of a given image.
We represent the vignetting effect as an 1D function of the distance from
the optical center, and estimate the function using the RBC prior. As it
works completely in 1D, our method provides high efficiency in terms of
computation and storage costs. Experimental results demonstrate that
our method runs an order of magnitude faster than previous work, while
producing higher quality results of vignetting correction.
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1 Introduction

In vignetting correction, image degradation is usually modeled as:

Z(r, θ) = I(r, θ) · V (r), (1)

where Z and I respectively represent the input and latent vignetting-free image
in polar coordinates whose origin is the optical center of the image, and V
represents the 1D vignetting function assuming the vignetting is rotationally
symmetric. The goal of image vignetting correction is to estimate both V and I
from a single input Z, which is an under-constrained problem.

Various approaches have been proposed for solving the vignetting correc-
tion problem, by utilizing a predefined template based photometric calibra-
tion [12,1,6,13] and multiple images of different intensity attenuation [10,3,5,9].
Although these methods can remove vignettes effectively, they require reference
calibration images or multiple input images with known camera settings. On the
other hand, single image based approaches attempt to restore vignetting-free
images without any additional information [15,17]. Such methods can produce
high quality results for various images in a fully automatic fashion, but they in-
volve heavy computations and thus may not be directly applicable for consumer
products. Since vignetting is an undesired artifact in many computer vision ap-
plications, an effective and efficient vignetting correction method is still highly
demanded.
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(a)
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(x-axis): distance from optical center; (y-axis): intensity of RBC

Fig. 1. Radial bright channel (RBC). (a) vignetting-free images. (b) RBC values cor-
responding to (a), which form almost horizontal lines except near the optical centers.

In this paper, we propose a novel prior, radial bright channel (RBC) prior,
for single image vignetting correction. Similar to the dark channel prior [4],
the RBC prior is derived from a statistical property of vignetting-free natural
images: for the pixels sharing the same radius in polar coordinates of an image,
there frequently exists at least one pixel (called radial bright pixel) such that its
intensity is close to the maximum intensity of the image, except near the optical
center (Fig. 1a). By arranging radial bright pixels with respect to the distances
from the optical center, we can extract a 1D curve called radial bright channel,
which is an almost horizontal line (Figs. 1b and 2b). If an image is affected
by vignetting, then the overall image intensities radially fall off away from the
optical center, affecting the intensities of the RBC as well (Fig. 2d). Thus, the
RBC of an image can provide a rough approximation of the vignetting effect.

Based the RBC prior, we develop an effective vignetting estimation algorithm.
Instead of using the whole image pixels, our method only uses a 1D RBC to es-
timate the vignetting profile, assuming the vignetting is rotationally symmetric.
Consequently, the proposed algorithm is computationally and memory efficient
and runs an order of magnitude faster than previous methods [15,11,17]. To
handle potential outliers in an image (e.g., objects near the optical center and
over-exposed pixels), our vignetting estimation algorithm involves an iterative
refinement process that evaluates and rejects the outliers. Experimental results
demonstrate that our method outperforms previous single image vignetting cor-
rection algorithms in terms of result quality and speed.

Our contributions are summarized as follows:

• Novel image prior, called radial bright channel prior, that can be used for
accurately characterizing the vignetting effects.

• Fast and robust single image based vignetting estimation algorithm which
runs in the 1D spatial domain using the radial bright channel prior.

2 Related Work

There are a variety of vignetting correction techniques in the literature. An
intuitive approach to estimate the vignetting is to calibrate the camera using a
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reference image taken under a uniform illumination [12,1,6,13]. This calibration-
based approach can provide a plausible vignetting profile for known camera
settings when the camera is available. However, the estimated vignettes would
not correspond to images captured with different camera settings or lenses. This
approach is barely suitable for arbitrary images downloaded from the internet.

Another related approach is to use multiple images taken with the same cam-
era. In these methods, vignetting profiles are calibrated by utilizing overlapping
views [10,7,3], different camera settings for exposure time and aperture [5], or
a large number of images [9]. By considering the correspondence among multi-
ple images with different intensity attenuations, ill-posedness of the vignetting
problem can be reduced. However, this approach cannot be generally applied in
practice as the corresponding multiple images are not often available.

Recently single image based vignetting correction has attracted more atten-
tion due to its flexibility [16,11,17]. An early approach in this category is based
on image segmentation for classifying homogeneous regions with respect to color
or texture, and estimates vignetting from intensity attenuation within each re-
gion [16]. This algorithm highly depends on image segmentation which is usually
not robust for natural images, and is vulnerable to artifacts such as vignetting in-
consistency between decomposed regions. A more sophisticated method utilizes
the radial gradient symmetry of natural images [17]. This algorithm works well
on a variety of natural images, but their asymmetry measure involves Kullback-
Leibler divergence between positive and negative gradient distributions, which
may not be robustly computed due to image noise and numerical instability.
Similarly, inspired by [18,14] (the former version of [17]), statistical regulari-
ties of image derivatives have been exploited for vignetting correction [11], but
there could be some ambiguity in the relationship between vignetting effects
and image derivative distributions. Although several solutions exist for single
image vignetting correction, they involve heavy computations due to nonlinear
optimization with complicated priors for vignetting-free images.

3 Radial Bright Channel Prior

For a given image I, its radial bright channel (RBC) IRB is formally defined as:

IRB(r) = max
θ

{
max
C

IC(r, θ)
}
, (2)

where r is the radial distance from the optical center, θ ∈ [0, 2π), C ∈ {R,G,B},
and IC is a color channel of I. For notational simplicity, we will omit the ranges
of C and θ unless necessary. Fig. 2a illustrates how to compute IRB(r) for an
image. The RBC prior can be summarized as: for almost all r, IRB(r) is close to
the maximum channel value c0 of an image, where c0 = maxr,θ,C IC(r, θ). That
is, when we plot IRB(r) with respect to r, the curve is an almost horizontal line
with the value of c0 (Fig. 2b).

The RBC prior is based on the statistical property we can observe from natural
images. In an ordinary image, we can easily observe high intensities, mainly due
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Fig. 2. RBC Computation. (a, c) computation of IRB(r) in the 2D spatial domain. (b,
d) resulting RBCs.

to two factors: 1) bright objects/surfaces; 2) colorful objects/surfaces that cause
high values at some color channels. For many images, large portions of image
regions (e.g., sky, sea, and ground for an outdoor scene, and wall and window
for indoor) are usually well lit by the sunlight or other kinds of illuminations,
as shown in Fig. 1a. These well-lit regions would contain almost uniformly high
intensity values in some color channels. If we draw relatively large circles centered
at the image center as illustrated in Fig. 2a, then some parts of the circles should
intersect those well-lit regions and the maximum intensities for the circles will
come from the intersected parts. Thus the intensity uniformity of well-lit regions
will bring us the RBC prior.

To validate our observation, we downloaded various kinds of images from
flickr.com and manually picked out vignetting-free images with proper brightness
since vignetting is not well perceived in dark images. Among them, 3,000 images
were randomly selected and uniformly scaled so that the distance from the image
center to the farthest boundary pixel becomes 500 pixels. Then, to investigate
how similar IRB is to the maximum channel value of an image, we computed
Iresidual = c0 − IRB for image pixels (see Fig. 2b). We did not use all values of
Iresidual because many natural images contain objects (e.g., human) near the
image center. In our experiment, we rejected the first 30% of the distance range
[0, 500] as outliers, considering that generally vignetting does not strongly affect
the pixels near the image center. In addition, we ignored the pixels with intensity
values above 240, since they could have been over-exposed.

Fig. 3a shows the normalized histogram of Iresidual obtained from the 3,000
images. The total number of pixel samples used for the histogram is about one
million. We observe that about 88% of the pixels in the RBCs have values equal
to c0. Considering the error tolerance, we find 94.5% and 99.5% of the residual
values are below five and 15, respectively. Fig. 3b shows another meaningful
statistics that most of the images have almost zero mean residual values. With
these observations, our RBC prior can be considered strong enough to be applied
for a large portion of natural images. The RBCs estimated for various natural
images are shown in Fig. 1b.

For an image with vignetting, on the other hand, the overall image brightness
is attenuated radially from the optical center and the RBC deviates from the
maximum channel value of the image. Interestingly, however, the RBC extracted
from such an image well captures the overall distribution of the vignetting effects,
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(a) (b)

Fig. 3. RBC statistics. (a) normalized histogram of the residual values from about one
million sample pixels in 3,000 images. The width of each bin is 16 intensity levels. (b)
histogram of the mean residual values of the 3,000 images.

as shown in Fig. 2d. This property motivates our vignetting correction method,
and the detailed algorithm will be described in Sec. 4.

Implementation Details. Similar to most vignetting correction methods, we
assume the optical center of an input image is located at the image center.
To robustly compute RBCs, we quantize the distance r between a pixel and
the image center to discrete values. For each discrete value r, color channel
values of the pixels belonging to r are stored into a histogram of 256 bins.
Considering outliers (e.g., noise and saturation) in an image, we check each bin
in the histogram and reject it if the bin size is smaller than a predefined empirical
threshold T . Then the maximum channel value for r is chosen from the remaining
bins. In the experiments, we set T = 0.01 × W for all images, where W is the
maximum of image width and height.

4 Vignetting Correction Using RBC Prior

Fig. 4 shows the overall process of our vignetting correction algorithm using the
RBC prior. From a given input image Z whose color channel values are ranged
between 0 and 1, we first compute the RBC ZRB. The vignetting function is then
estimated using our iterative optimization technique, and finally the vignette-
free image I is recovered with the estimated vignetting function.

4.1 Simple Estimation of the Vignetting Function

As described in Sec. 3, the RBC of an image exhibits the overall profile of
vignetting effects. To utilize the RBC for vignetting correction, we first derive
from Eq. (1) a relationship between the RBC and the vignetting profile. Note
that in this paper, we assume that vignetting is rotationally symmetric and its
effects are the same over all color channels.
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Fig. 4. Overview of our vignetting correction process

Taking two max operations over θ and color channels C in the image model
of Eq. (1), we obtain

ZRB(r) = max
θ

{
max
C

ZC(r, θ)
}

=

[
max

θ

{
max
C

IC(r, θ)
}]

· V (r), (3)

as V is independent of θ and C. Using Eq. (2), we have

ZRB(r) = IRB(r) · V (r). (4)

The statistics in Sec. 3 implies that IRB is near constant with respect to r if
we neglect outliers. Consequently, we can estimate the vignetting function V by
substituting IRB with a constant c0 and minimizing the following term:

arg min
V,c0

n∑
r=1

∥∥c0V (r) − ZRB(r)
∥∥2

, (5)

where V becomes equivalent to ZRB if c0 = 1. However, this naive estimation of
V would be vulnerable to outliers in Z, such as objects near the image center,
saturated pixels, image noise, and dark backgrounds (Fig. 5b). We propose a
model based solution to robustly handle outliers in vignetting estimation.

4.2 Model-Based Vignetting Estimation with Outlier Handling

From Eq. (4), we formulate the joint probability of IRB and V with respect to
ZRB as

p
(
IRB, V |ZRB

) ∝ p
(
ZRB|IRB, V

)
p
(
IRB, V

)
. (6)

To estimate V effectively and robustly in Eq. (6), we use a parametric represen-
tation for V by adopting the extended Kang-Weiss model [15]. In the Kang-Weiss
model, a vignetting function is modeled with three factors: off-axis illumination
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(a) (b) (c) (d)

Fig. 5. Comparison of vignetting function estimation results. (a) input image. (b) naive
estimation. (c) initial model-based estimation. (d) final model-based estimation with
outlier handling. In (c), outliers in ZRB near the image center are not properly filtered
out, making the central region of the image darker than around the boundary. Such
artifact is removed in (d) with our iterative refinement process.

factor A, geometric factor G, and tilt factor T . Among them, tilt factor is often
ignored in practice and the vignetting function V is modelled as follows:

V (r) = A(r) ·G(r), (7)

A(r) =
1

{1 + (r/f)2}2 , (8)

G(r) = 1 −
p∑

i=1

αi

( r

n

)p

, (9)

where f is the focal length of the camera and {αi} are the coefficients of G.
By substituting IRB with c0 and plugging Eq. (7) into Eq. (6), we have

p
(
c0, V |ZRB

) ∝ p
(
ZRB|c0, f, {αi}

)
p (c0, f, {αi}) (10)

= p
(
ZRB|c0, f, {αi}

)
p(c0)p(f)

p∏
i=1

p(αi),

with the assumption that all the model parameters are independent of each
other. To estimate the parameters {c0, f, {αi}}, we convert Eq. (10) into an
energy function by taking negative log, and minimize the energy with some
additional constraints:

arg min
c0,f,{αi}

λdEdata + λc0Ec0 + λfEf + λα

p∑
i=1

Eαi , (11)

subject to ∀rV (r) ≥ V (r + 1) and 0 ≤ c0 ≤ 1.
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Data Term. For the data term Edata, we utilize our RBC prior. Differently
from Eq. (5), we use a truncated L1 distance which is known to be more robust
to outliers so that:

Edata =

n∑
r=1

w(r) · min
(∣∣c0V (r) − ZRB(r)

∣∣ , δ) , (12)

where w is a weight function. In modeling the weight function, it is important to
give higher weights to the samples far from the optical center because vignetting
appears more severely as r increases and ZRB values near the optical center are
unreliable. In our experiments, we tested several types of functions and found
that a quadric function of r works well in most cases:

w(r) =
r2∑n
r=1 r

2
. (13)

In addition, we set the first 30% of w as zero to reject outliers near the optical
center, as we did for computing the statistics in Sec. 3. w is updated during our
optimization process to adaptively handle outliers in ZRB, such as over-exposed
pixels and pixels outside the image boundary.

Prior Terms. For computing Ec0 , we assume that c0 is similar to the maximum
value of ZRB excluding outliers, and define

Ec0 =
(
max(c0V |w) − max(ZRB|w)

)2
, (14)

where max(c0V |w) is the maximum among the values of c0V (r) for which w(r) �=
0, and max(ZRB|w) is similarly defined.

To compute Ef , we use a well-known prior for the focal length [8] in which f
is similar to the image size:

Ef = {(W − f) /W}2 , (15)

where W is the maximum of the image width and height.
For Eαi , we enforce all the values of αi to remain small since the vignetting

function V should be smooth across the image. We thus formulate Eαi as:

Eα = α2
i . (16)

Constraints. The first constraint in Eq. (11) makes V monotonically decreas-
ing, which is a natural property of a vignetting function. Instead of assigning
hard constraints, we transform it as soft constraints via an energy term as fol-
lows:

Cdec ≡ λdec

n−1∑
r=1

max (V (r + 1) − V (r), 0)
2
, (17)

where Cdec is the non-increasing constraint. The boundary constraint for c0
prohibits V from being bigger than 1, and is enforced as a hard constraint.
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Algorithm 1. Model-based Vignetting Estimation with Outlier Handling

Input: radial bright channel ZRB of an input image
Output: vignetting function V

c0 ← 1, f ←W , {αi} ← 0 � Initialization
for iter = 1 : niter do

c0, f, {αi} ← Estimate the parameters using Eq. (11)
V ← Reconstruct V using Eqs. (7)-(9)

w← Update w with δ using Eq. (18) � Update for outlier handling
δ ← δ/2

end for

Iterative Optimization. The energy function in Eq. (11) can be solved with a
non-linear constrained optimization method; in this paper, we used the Matlab
implementation of trust-region-reflective algorithm [2]. The initial optimization
result, however, might be inaccurate due to outliers in ZRB and bad initial
parameters, as shown in Fig. 5c. We thus use iterative refinement for more robust
estimation of V .

We first optimize Eq. (11) and compute V , setting δ = 1 in Eq. (12). Then, we
update w(r) by masking out outlier values of ZRB using the following equation:

w(r) =

{
w(r), if

∣∣c0V (r) − ZRB(r)
∣∣ < δ

0, otherwise.
, (18)

and halve δ to reject more outliers in the next iteration. The updated parameters
δ and w(r), as well as estimated model parameters {c0, f, {αi}}, are passed to
the next iteration to re-optimize Eq. (11). We iterate this process for 3∼4 times
to obtain the final result. Fig. 5d shows an estimated 1D vignetting function.

In Eq. (11), we have several parameters for assigning relative weights between
terms although our method is not sensitive to them. In this paper, we fix the
parameters as λd = λdec = 102, λc0 = λf = 10−4, and λα = 10−3 for all
examples. For initial values of the model parameters, we set c0 = 1, f = W , and
{αi} = 0, where the number of elements in {αi} is 8. Algorithm 1 summarizes
our vignetting function estimation algorithm.

It is worth mentioning that the previous single image based methods [15,17]
utilize the whole pixels of an image to estimate the vignetting function. In con-
trast, our estimation algorithm optimizes the vignetting function in the 1D spa-
tial domain with the RBC prior. This strategy greatly reduces the complexity of
the estimation algorithm, enabling fast and robust estimation of the vignetting
function, despite the complicated energy terms and constraints for the objective
function in Eq. (11).

4.3 Restoring the Vignetting-Free Image

Given an estimated V , we recover the vignetting-free image I by dividing Z(r, θ)
with V (r) for all θ ∈ [0, 2π). Restoring the final image increases the overall
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Fig. 6. Comparison with the state-of-the-art single image based method [17] of the
mean PSNR values for 100 synthetic examples

brightness of an image, and some pixels of Z containing outliers (e.g., over-
exposure and noise) can produce large values. We obtain the final result I as

I(r, θ) = min

{
Z(r, θ)

V (r)
, 1

}
. (19)

5 Results

In this section, we validate the effectiveness of our algorithm with various exper-
imental results on synthetic and real images. We implemented our method using
Matlab. Our testing environment is a PC running MS Windows 7 64bit version
with Intel Core i7 CPU and 12GB RAM.

5.1 Synthetic Examples

To evaluate the performance of our vignetting estimation method, we built a
dataset of synthetic images with vignetting effects. We first manually picked up
100 vignetting-free real images which contain indoor/outdoor scenes and com-
plex scene objects (e.g., buildings, humans, animals, trees, grass, cars, sky, sea,
etc), and resized each image to have the maximum of image width and height to
be 600 pixels. Then we applied five different vignetting functions to each image.
The vignetting functions were generated using the extended Kang-Weiss model
(Eqs. (7)-(9)), with the five different focal lengths f ∈ {250, 500, 1300, 2000, 3000}
while neglecting the geometric factor. Setting the optical center as the image
center, total 500 images were generated using Eq. (1). Finally, we compared our
method with the state-of-the-art single image vignetting correction method pro-
posed by Zheng et al. [17] using the dataset. The results of Zheng et al. were
produced by the authors’ implementation.

Fig. 6a shows PSNR values computed between ground truth images and re-
sults of each method. Since the effect of vignetting becomes weaker as the focal
length increases, results of both methods tend to have higher PSNR values for
larger focal lengths. The overall average PSNR value of our results is 40.97, while
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(a) real input image (b) our result

Fig. 7. Real example and its corresponding RBCs

(a) real input (b) Zheng et al. [17] (c) our result

Fig. 8. Comparison with the state-of-the-art method on real photographs

that of Zheng et al. [17] is 21.57. Regardless of the focal length, our method can
recover the original vignetting-free image more accurately.

We also estimated the running time of each method with the dataset. The
average image size of our synthetic dataset is about 600 by 450 pixels. On av-
erage, our method took 1.43 seconds to process one image (i.e., estimating the
vignetting function and recovering the corrected image), while Zheng et al.’s
algorithm took 21.19 seconds.

5.2 Real Examples

Fig. 7 shows our result on a real example with the corresponding RBCs. As shown
in Fig. 7a, the RBC of the input image with vignetting approximately represents
the intensity attenuation. Although the image contains complex scene objects
such as people and leaf textures, our algorithm recovers a visually pleasing result,
making its RBC be a straight line away from the image center.

Fig. 8 shows a comparison with the state-of-the-art single image based method
of Zheng et al. [17]. Although Zheng et al.’s approach could remove vignetting
from images to a certain degree, vignetting were not fully corrected. In con-
trast, our method produced better results in terms of visual quality, despite
severe vignetting effects in the input. More vignetting correction results on real
photographs are included in Fig. 9 and the supplementary material.
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Fig. 9. More vignetting correction results on real photographs. First and third rows
show input images containing vignetting, and second and last rows show our results.

5.3 Computation Time

Table 1 summarizes the timing statistics of our method with various image sizes.
Even with our unoptimized Matlab implementation, the total running time of
our algorithm is about 8.8 seconds for an image of 4000 × 3000 pixels. This is
an order of magnitude faster than the state-of-the-art single image vignetting
correction method [17], implying the practical usefulness of our method.

Table 1. Timing data with various image sizes

Image size (in pixels) 800 × 600 1,600 × 1,200 3,200 × 2,400 4,000 × 3,000

Computing ZRB 0.27s 0.96s 3.61s 5.52s
Vignetting estimation 1.67s 2.39s 3.27s 2.65s
Final image restoration 0.04s 0.12s 0.45s 0.66s

Total 1.98s 3.47s 7.33s 8.83s

6 Discussion and Future Work

Our RBC prior provides a reliable measure for estimating the vignetting effects
of an image. The proposed vignetting estimation algorithm is performed with 1D
RBC data instead of 2D image pixels, enabling a high speed of the vignetting correc-
tion process. Despite its simplicity, experiments on both synthetic and real images
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demonstrate that our method can effectively restore high quality vignetting-free
images. The RBC prior is a general image prior which successfully characterizes a
statistical property of natural images. We expect it can be adopted for other com-
puter vision and image processing applications than vignetting correction.

Extreme Cases and Limitations. Our RBC prior can capture the vignetting
effects even when the illumination is non-uniform, by radially examining image
regions and finding radial bright pixels. Still, in extreme cases such as radially
non-uniform illumination and combination of non-uniform illumination and dif-
ferent object colors, our vignetting estimation using Eq. (11) may fall into a
local minima as the RBC values become unstable. For an image with overall
dark colors or low intensities, the RBC prior may not clearly hold. In this case,
however, the vignetting itself is not clearly observable as well.

Although our method works well with various types of natural images for
vignetting correction, our method may fail on images that do not follow our
assumptions. Such cases include arbitrary outliers (e.g., night view and haze),
chromatic aberration, or radially asymmetric vignetting effects caused by non-
uniform illumination (Fig. 10). In our experiments, we assumed that the optical
center corresponds to the image center. This assumption holds in many cases,
but it might be broken with cropped images and images taken using special
types of lenses. Our method would not produce optimal results for such images.

Future Work. A natural direction for future research will be overcoming the
limitations of our method. Utilizing other image priors in conjunction with our
RBC prior would enable more accurate and robust estimation of vignetting func-
tions. Exploration of other applications of our RBC prior, such as white balanc-
ing, will be definitely interesting future work.

(a) color shading (b) severe cropping

Fig. 10. Limitation examples. For each pair of image, the left is an input and the right
is our result. In (a), color shading is emphasized after the vignetting has been removed.
In (b), the image has been severely cropped and the optical center is located at the
bottom of the image, causing incorrect estimation of the vignetting function.
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