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Abstract. Accurate face alignment is a vital prerequisite step for most
face perception tasks such as face recognition, facial expression analysis
and non-realistic face re-rendering. It can be formulated as the nonlinear
inference of the facial landmarks from the detected face region. Deep
network seems a good choice to model the nonlinearity, but it is non-
trivial to apply it directly. In this paper, instead of a straightforward
application of deep network, we propose a Coarse-to-Fine Auto-encoder
Networks (CFAN) approach, which cascades a few successive Stacked
Auto-encoder Networks (SANs). Specifically, the first SAN predicts the
landmarks quickly but accurately enough as a preliminary, by taking as
input a low-resolution version of the detected face holistically. The fol-
lowing SANs then progressively refine the landmark by taking as input
the local features extracted around the current landmarks (output of the
previous SAN) with higher and higher resolution. Extensive experiments
conducted on three challenging datasets demonstrate that our CFAN out-
performs the state-of-the-art methods and performs in real-time(40+fps
excluding face detection on a desktop).

Keywords: Face Alignment, Nonlinear, Deep Learning, Stacked Auto-
encoder, Coarse-to-Fine, Real-time.

1 Introduction

Face alignment or facial landmark detection plays an important role in face recog-
nition, facial expression recognition, face animation, etc. Therefore, it has
receivedmore andmore attentions in recent years. However, it remains a challeng-
ing problem due to the complex variations in face appearance caused by pose, ex-
pression, illumination, partial occlusion, etc. Generally speaking, the existing ap-
proaches can be categorized into holistic feature based methods [7,21,14,34,19,6]
and local feature based methods [8,10,15,23,9,25,35,32,31,2,28,11].

As a typical model, Active Appearance Models (AAM) [7,21] firstly use Prin-
cipal Component Analysis (PCA) to model the shape and texture separately and
then integrate them together with another PCA to get the generative appearance
model. In the testing stage, the shape of a new face image is inferred by opti-
mizing the model parameters to minimize the difference between the observed
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Fig. 1. Overview of our Coarse-to-Fine Auto-encoder Networks (CFAN) for real-time
face alignment. H1,H2 are hidden layers. Through function FΦ, the joint local features
Φ(Si) are extracted around facial landmarks of current shape Si.

face image and the image generated by the appearance model. However, these
methods generally fail in case of complex appearance variations in real-world
applications, mainly because a single linear model can hardly cover all the non-
linear variations in facial appearance. To address this problem, Zhao et al. [34]
propose a locally linear AAM method to approximate the global nonlinear model
and report good performance. However the initialization of this approach needs
eyes locations. Moreover, it is difficult for AAM-like holistic methods to handle
partial occlusion problems.

Instead of modeling appearance with the entire face, local feature based meth-
ods like ASMs [8,15,23], CLM [9] build appearance models with local image
patches which are generally sampled around the current facial landmarks. In
these methods, partial occlusion problem can be easily handled by including a
shape constraint. But the shape constrains employed in these methods are rel-
atively weak so that they are prone to local minimum due to ambiguous local
regions [8,9]. Saragih et al. [25] propose a Regularized Landmark MeanShift fit-
ting method to solve the optimization problem of CLM, which achieves higher
performance for generic face alignment scenario. Recently, Asthana et al. pro-
pose a promising method named as discriminative response map fitting with
constrained local models (DRMF) [2], which learns the dictionaries of proba-
bility response maps based on local features and adopts linear regression-based
fitting method in the CLM framework. In another state-of-the-art work [31], a
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Fig. 2. Facial landmark detection under the par-
tial occlusion scenario (from Helen datasets [18]):
Results of DCNN [26] (top row) and our CFAN
(bottom row)

Fig. 3. Denition
of 68 (top) and
49 (bottom) fa-
cial landmarks

supervised descent method (SDM) is proposed to solve nonlinear least squares
optimization problem and achieves significant success in facial landmark detec-
tion.

SDM [31] achieves promising performance by using the supervised descent
strategy, but it is initialized by using the mean shape on the detected face region
which makes it heavily rely on the face detection results. Moreover, in each stage
of the cascades architecture of SDM, linear regression is exploited to model the
mapping from shape-index feature [12] to face shape, which may be insufficient
for the complex non-linear process from shape-index feature to face shape. In
contrast, the DCNN [26] employs a deep CNN model with the global feature to
predict the landmark locations as the initialization, which is more accurate than
the mean shape. After the initialization, the successive network of DCNN refines
each landmark separately without any shape constraints, which may fail in case
of partial occlusions as shown in the first row of Fig. 2. Therefore it is necessary
for the first stage to provide a strong shape prior for the following stages.

In this paper, we further push the frontier of the area by resorting to deep
network and elaborately adapting it to disintegrate progressively the complex
nonlinearity in face shape inference. We propose an architecture named Coarse-
to-Fine Auto-encoder Networks (CFAN), as illustrated in Fig. 1, and show how it
can further beat the state-of-the-art methods such as SDM and DRMF. As seen
from Fig.1, instead of a single stacked auto-encoder network (SAN), our CFAN is
comprised of several successive SANs, each figuring out part of the nonlinearity.
Specifically, the first SAN predicts the face shape quickly by taking holistically
a low-resolution version of the detected face as input; the following SANs then
progressively refine the landmark locations by taking as input the joint local
features extracted around the current landmarks (output of the previous SAN) in
higher and higher resolution. By using such a progressive and resolution-variable
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strategy, the search space of each SAN, or in other words the difficulty of the
task for each SAN, is well controlled and thus more tractable. Benefitted from
the advantages of joint local features, our method is more robust to partial
occlusions than DCNN [26] as shown in the last row of Fig. 2.

Extensive evaluation results on several public databases, i.e., XM2VTS [22],
LFPW [3] and HELEN [18], show that our method achieves impressively bet-
ter accuracies, compared with the state-of-the-art methods, such as SDM and
DRMF. Furthermore, our method (in Matlab codes) takes about 23 milliseconds
per image to predict 68 facial points excluding the face detection time, on an
desktop machine with Intel i7-3770 (3.4 GHz CPU).

2 Related Works

2.1 Local Models with Regression Fitting

Recently local model methods with Regression Fitting [28,11,33,31,2] make great
progresses on facial point detection, especially SDM [31]. Local methods like
ASMs [8,15,23] and CLMs [9,25] solve the optimization problems with Gauss-
Newton method. Yet, instead of computing the Jacobian and Hessian matrices,
SDM learns generic descent directions and re-scaling factors by using the linear
regression. Specifically, given an image x ∈ Rd, S denotes the shape vector
containing the coordinates of the facial points. The objective of most regression
fitting model can be formulated as optimizing a sequence of successive update
ΔS for shape as follows:

f(S0 +ΔS) = ||Φ(S0 +ΔS)− Φ(Sg)||22, (1)

where S0 and Sg denote the initial shape and ground truth shape respectively
and Φ is a nonlinear feature extraction function from a shape. The shape update
ΔS can be obtained by employing Newton’s method as follows:

ΔS = −H−1Jf = −2H−1JT
φ(Φ(S0)− Φ(Sg)), (2)

where Jf and H are the Jacobian and Hessian matrices.
SDM directly estimates the descent direction R1 = −2H−1JT

φ by using a linear
regression between the appearance information and the shape deviation to avoid
the complex computations of Jacobian and inverse of Hessian matrices. Thus, in
SDM, Eq. (2) is formulated as bellow:

ΔS1 = R1Φ0 + b1, (3)

where b1 is a bias term corresponding to Φ(Sg). In a similar way, SDM can learn
a sequence of generic descent directions Rk and bias term bk after k iterations.

ΔSk = RkΦk−1 + bk. (4)

For most methods including SDM, the mean shape is used as the initialization,
which may suffer from local minimum problem in case of bad initializations. To
depress the effects from bad initializations, Cao et al. [6] use multiple initializa-
tions strategy and Burgos-Artizzu et al. [5] adopt smart restarts technique, but
it still leaves a long way to go.
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2.2 Deep Models

Recently, deep models like Deep Auto-encoders(DAEs), Convolutional Neural
Networks(CNNs), Restricted Boltzmann Machines(RBMs) and their variants are
widely used in the field of computer vision [4]. They have achieved great success
in many challenging tasks such as image classification [17], scene parsing [13],
human pose estimation [27], face alignment and facial feature tracking [26,30].

Sun et al. [26] propose a cascaded regression approach for facial points detec-
tion with three-stage deep convolutional network. At the first stage, the carefully
designed convolutional neural networks provide accurate initial estimations of
facial points when given the full face as input. Then the initial estimations are
refined during next two stages. Impressive results are achieved on two public
datasets, BioID [16] and LFPW [3]. However, in the layers after the first one,
each landmark is refined separately, which makes it depend on and sensitive to
the accuracy of the first layer more heavily. Another interesting work [30] con-
structs a face shape prior model by using RBMs and their variants for facial
feature tracking under varying facial expressions and face poses. In [30], Wu et
al. use deep belief networks(DBNs) to capture the face shape variations from
facial expressions and handle pose variations with a 3-way RBM model. Luo et
al. [20] also use DBNs for facial component detection and then train the facial
component segmentators with deep auto-encoders.

Most of these deep models achieve promising results on facial landmarks de-
tection and tracking, benefitted from its favorable ability for modeling the non-
linearity, which can work well for the nonlinear mapping from the a face image to
the face shape. Some major concerns in these deep works are the time complexity
and the local minima, due to the highly nonlinear optimization.

3 Coarse-to-Fine Auto-Encoder Networks

In this paper, we present a novel Coarse-to-Fine Auto-encoder Networks method
(CFAN) for real-time facial landmark detection. Firstly, we will illustrate the
overview of the proposed framework; secondly, we will describe the details about
two components of CFAN, i.e., global SAN and local SANs; and finally we will
give a detailed discussion about the difference from some existing works.

3.1 Method Overview

As shown in Fig. 1, the proposed CFAN attempts to design the general cascade-
regression framework in a coarse-to-fine architecture, with the regression in each
stage modeled as a nonlinear deep network. Specifically, the CFAN framework
consists of several successive Stacked Auto-encoder Networks (SANs). Each SAN
attempts to characterize the nonlinear mappings from face image to face shape
in different scales based on the shape predicted from the previous SAN.

The first SAN (referred as global SAN) endeavors to roughly approximate the
facial landmark locations, and therefore a low-resolution image is exploited for



6 J. Zhang et al.

a large search step. A large step can alleviate the suffering from local minima
and meanwhile promise a fast model. Moreover, rather than local shape-indexed
feature from mean shape, the global image feature is employed as input to avoid
the inaccuracy of mean shape. As a result, the global SAN can approach the
ground truth facial landmark locations more accurately and more quickly.

After getting an estimation S0 of face shape from the first SAN, the successive
SANs (referred as local SANs) make an effort to refine the shape by regressing
the deviation ΔS between the current locations and the ground truth locations
step by step. The nonlinear regression model SAN is still exploited to model
the nonlinearity between the current feature and the ground truth shape. To
characterize fine variations, the shape-indexed feature extracted from current
shape at higher resolution is exploited to enforce smaller search step and smaller
search region. Furthermore, the shape-indexed features of all facial points are
concatenated together to enforce all facial points updated jointly so as to insure
a reasonable solution, even under the partial occlusion scenario.

3.2 Global SAN

The first SAN of the proposed coarse-to-fine deep networks, i.e., the global
SAN, directly estimates the face shape based on global raw features at a low-
resolution image. Given a face image x ∈ Rd of d pixels, Sg(x) ∈ Rp denotes
the ground truth locations of p landmarks. The face landmark detection is to
learn a mapping function F from the image to the face shape as follows:

F : S ← x. (5)

Generally, F is complex and nonlinear. To achieve this goal, k single hidden
layer auto-encoders are stacked as a deep neural network to map the image to
the corresponding shape. Specifically, the face alignment task is formulated as
minimizing the following objective:

F∗ = argmin
F
||Sg(x) − fk(fk−1(...f1(x)))||22, (6)

fi(ai−1) = σ(Wiai−1 + bi) � ai, i = 1, ..., k − 1, (7)

fk(ak−1) = Wkak−1 + bk � S0. (8)

where F = {f1, f2, ..., fk}, fi is the mapping function of ith layer in the deep
network, σ is a sigmoid function and ai is the feature representations of each
layer. Nonlinear mapping in term of sigmoid function is employed by the first
k − 1 layers to characterize the nonlinearity between the image feature and
the face shape. However, the output range of sigmoid function is [0 1] which is
inconsistent with the location range, therefore, linear regression is exploited in
the last layer fk to get an accurate shape estimation S0.
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To prevent over-fitting, a regularization term
∑k

i=1 ||Wi||2F(a weight decay
term) is added which tends to decrease the magnitude of the weights. The ob-
jective function is further re-formulated as bellow:

F∗ = argmin
F
||Sg(x)− fk(fk−1(...f1(x)))||22 + α

∑k

i=1
||Wi||2F. (9)

The function F contains lots of parameters and it is easy to fall into local
minimum during optimization. To achieve a better optimization, firstly, we adopt
the unsupervised pre-train process to initialize the first k− 1 layers in a stacked
strategy and random initialization for the kth layer; secondly, fine tune the whole
network in a supervised way.

For the ith layer, it is pre-trained by optimizing the following objective func-
tion:

{fi∗, gi∗} = argmin
fi,gi
||ai−1 − gi(fi(ai−1))||2 + α(||Wi||2F + ||WT

i ||2F), (10)

where fi(x) = σ(Wix+ bi), gi(x) = σ(WT
i x+ b′i), i = 1, 2, ..., k − 1.

Then the output of this single hidden layer network ai = fi(ai−1) is used as
the input of the next layer. For the first layer, the input is the raw image feature,
i.e., a0 = x.

After the initialization with Eq. (10), all layers of the whole network are fine-
tuned according to Eq. (9). As a result, the first few layers of a stacked auto-
encoder network tend to capture the low-level features such as texture patterns in
an image, while the higher layers tend to capture higher-level features containing
context information of texture patterns.

After the optimization, the prediction of the facial landmarks is achieved as
S0, which is a rough but robust and fast approximation of the ground truth.

3.3 Local SANs

The global SAN described above will give a rough shape estimation S0 of input
image x, which is already close to the ground truth locations but not close
enough due to the highly complicated variations in expression, pose, identity, etc.
To achieve finer locations, several successive SANs are employed to iteratively
predict the deviation ΔSj between current shape Sj−1 and the ground truth Sg

based on joint local shape-indexed features, referred as local SANs.
Shape-indexed features extracted around the landmark points have been

proved to be efficient and effective for face alignment [12,6,31,5]. The local fea-
ture from each facial point can only capture the information from itself while
ignore the relevance with the other points. Therefore, the facial points are mod-
eled jointly in our local SAN, by concatenating all local shape-indexed feature
together as the input.

Similarly as the global SAN, the successive local SAN is also designed as a
stacked deep auto-network to deal with the nonlinearity of predicting the face
shape, but with the local shape-indexed feature as input. With the estimated
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Fig. 4. Local patches extracted around the landmark points with different resolutions.
For the sake of concise display, we choose two eye centers and 17 facial points on the
face contour to describe the multi-resolution strategy used in each local SAN.

shape S0 from global SAN, the shape-indexed features, i.e., SIFT, can be ex-
tracted around each facial point, denoted as φ(S0). The objective of the first
local SAN is to achieve a nonlinear regression H1 from the shape-indexed fea-
ture φ(S0) to the deviation ΔS1 = Sg − S0 as follows:

H∗
1 = argmin

H1

||ΔS1(x)− h1
k(h

1
k−1(...h

1
1(φ(S0))))||22 + α

∑k

i=1
||W 1

i ||2F, (11)

where H1 = {h1
1, h

1
2, ..., h

1
k},

∑k
i=1 ||W 1

i ||2F is the weight decay term. Similar
to the global SAN, the whole deep network is firstly initialized by using the
unsupervised pre-training, and then fine-tuned according to Eq. (11).

After getting the face shape update (ΔŜ1) by the first local SAN, an updated
face shape can be obtained as S1 = S0 +ΔŜ1. Then the successive local SAN
extracts local features around the new shape, and optimizes a deep network to
minimize the new deviation between the current location and the ground truth.
The objective of the jth local SAN is shown as follows:

H∗
j = argmin

Hj

||ΔSj(x) − hj
k(h

j
k−1(...h

j
1(φ(Sj−1))))||22 + α

∑k

i=1
||W j

i ||2F. (12)

For each Local SAN, local features around the landmark points are extracted
in a local patch of the same size but at different resolutions as shown in Fig. 4.
Local patches of the same size at low-resolution face images contain more context
information and thus lead to a larger searching region for the Local SAN. It is
necessary for the anterior SANs to approximate with a large search step when
the current location is relatively far from the ground truth. On the other hand,
the local patches of the same size but at high resolution face images actually
constrain the searching within a small region which means that the posterior
SAN can refine the location with a tiny step leading to more accurate results.
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3.4 Discussions

Differences with SDM [31]. A sequence of generic descent directions are
learned by several successive local SANs as well as SDM [31], but they differ in
the following aspects: 1) SDM employs linear regression to model the mapping
from shape-indexed features to a face shape, while our CFAN employs nonlinear
regression, i.e., deep auto networks, to model the mapping from shape-indexed
feature to face shape, which can achieve lower regression error. 2) SDM employs
the mean shape as the initialization of the shape-indexed feature, which may
be trapped when the initialization is far away from the ground truth, especially
under the linear model. On the contrary, our CFAN designs a deep auto network
to directly predict a rough estimation of the face shape from the global image
feature rather than shape-indexed feature, and this can obtain a more accurate
initialization of the shape for the following local SANs.

Differences with DCNN [26]. Both DCNN and our CFAN follow the cascade
framework and use a global nonlinear regression as the first stage to achieve a
rough estimation of face shape. The differences lie on two aspects: 1) In DCNN,
after the global estimation, each facial point is refined independently, which
may distort the whole shape without the constraint between facial points. On
the contrary, all facial points are refined jointly in our CFAN and this can ensure
an effective shape, especially when several landmarks are occluded in which case
the rest will provide supports for locating the obscured one. 2) The separate
refinement of each point makes DCCN framework rely on and sensitive to the
accuracy of the first level more heavily than ours.

4 Implementation Details

Data Augmentation. To train a robust global SAN model, we augment the
training data by perturbing each training sample with random changes in trans-
lation, rotation and scaling. This can effectively prevent the deep models from
over-fitting and achieve robustness to various changes in the wild data.

Parameter Setting. The global SAN has four layers with three hidden layers
followed by a linear regression layer that is capable of learning non-linear map-
pings from a full face with 50 × 50 pixels to a face shape. Numbers of hidden
units in each layer are respectively 1600, 900, 400. For local SANs, SIFT features
are extracted around each landmark. The resolution of face images in each layer
becomes higher and higher gradually during the successive local SANs. Numbers
of hidden units in each layer of local SAN are respectively 1296, 784, 400. The
weight decay parameter α controls the relative importance of the two terms, the
average sum-of-squares error term and the weight decay term. Although α can
be set different, the same value α = 0.001 is used for both global SAN and local
SANs for simplicity.
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5 Experiments

In this section, we firstly illustrate the experimental settings for the evaluations
including the datasets and methods to compare; and then investigate the align-
ment results of each stage in our method; finally, compare the proposed CFAN
with the state-of-the-art methods.

5.1 Datasets and Methods for Comparison

To evaluate the effectiveness of the proposed CFAN algorithm, four public
datasets are used for our experiments, i.e., XM2VTS [22], LFPW [3], HE-
LEN [18] and AFW [35]. The images in XM2VTS dataset are collected under
laboratory conditions, while the images in LFPW, HELEN and AFW datasets
are collected in the wild environment formulating a more challenging scenario
than XM2VTS. Face detection results can be achieved from ibug websit [1], and
the ground truth annotations of 68 facial points (as shown in Fig. 3) are provided
by [24].

We evaluate a few state-of-the-art methods, i.e., DRMF [2], SDM [31], Zhu
et al. [35] and Yu et al. [32]. For Zhu et al.’s method, we use the model released
by Asthana et al. [2], which performs better as illustrated in [2]. The 68 facial
landmarks predicted by Zhu et al. [35] are shown in Fig 3. Both of the publicly
available codes from [2] and [32] predict 66 facial points (as shown in Fig. 3
except two inner mouth corners), and the released code of SDM only estimates
49 landmarks (as shown in Fig. 3) located in the inner regions of the face. For fair
comparisons with these methods, we implement the SDM algorithm to estimate
68 points using the same training set, among which the common 66 facial points
are used for evaluation. The normalized root mean squared error (NRMSE) is
employed to measure the error between the estimated facial landmark locations
and the ground truth. The NRMSE is normalized by the distance between centers
of eyes. The cumulative distribution function (CDF) of NRMSE is applied for
performance evaluation.

5.2 Investigation of Each SAN in CFAN

As the proposed CFAN method consists of several successive SANs, we inves-
tigate how each SAN contributes to the performance improvement for facial
landmark detection. The experiments are conducted on LFPW dataset in terms
of average detection accuracy of 66 facial points, i.e., CDF. The images from
LFPW training set [3], HELEN [18] and AFW [35] are used for training and the
images in LFPW test set [3] are used for evaluation.

The evaluation results are shown in Fig. 5. As seen, the CDF of global SAN is
0.65 when NRMSE is 0.1, which is much better than mean shape. However, the
estimated shape is still far away from the ground truth since global SAN just
gives a roughly accurate estimation of facial landmark locations. But benefited
from this more accurate shape estimation rather than the mean shape as shape
initialization for local SANs, accuracy of facial landmark detection is significantly
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improved by 25% in the first local SAN. In the second local SAN, the detection
accuracy is improved up to about 5.7% when NRMSE is 0.1 and 44% when
NRMSE is 0.05. In the third local SAN, no improvement when NRMSE is 0.1,
and the improvement is up to 11% when NRMSE is 0.05. It demonstrates that
the former SANs mainly handle the large variations due to pose and expression
and the latter ones precisely refine the landmark locations in a smaller search
region as the resolution becomes higher and higher.

Besides the performance, another important factor is the time complexity.
We evaluate the run time of each SAN on LFPW as shown in Table 1. The
method is run in matlab 2012 on a desktop (Intel i7-3770 3.4 GHz CPU). To
avoid the influence of random factors, the method is repeated several times, and
the average of running time is reported. As shown in the table, it takes only
0.25 millisecond per image for global SAN to give a rough estimation of the face
shape. Each local SAN costs about 7 milliseconds and only 3 local SANs are
enough. So, totally our CFAN takes less than 25 milliseconds per image for 68
facial points locating, which can easily meet the real-time requirement.

5.3 Comparison on XM2VTS Dataset

Firstly, we evaluate our CFAN and the existing methods under the controlled
settings on XM2VTS dataset [22]. The XM2VTS dataset contains 2360 face
images of 295 individuals collected over 4 sessions. In this experiment, our CFAN
is trained by using the images from LFPW training set [3], HELEN [18] and
AFW [35] and all methods are tested on XM2VTS. For DRMF method [2], the
Viola-Jones face detector [29] is employed since all images in XM2VTS are almost
frontal. For a fair comparison, only the common images with face detected by
all methods are employed for the testing.

The cumulative error distribution curves of these methods are shown in Fig. 6.
As seen, DRMF performs better than [35,32], followed by SDM which benefits
from its supervised descent solution. Furthermore, our method performs the best
on this dataset, even better than SDM, which attributes to the nonlinear model
and coarse-to-fine strategy. The training set of our CFAN is composed of different
datasets including large variations from pose, expression, illumination, partial
occlusions etc, and while the major variation of XM2VTS is from the identity
with similar pose, expression and illumination. This means that the distribution
of training set of our CFAN is extremely different from the testing samples. Even
trained from a different distribution, CFAN still works well, which demonstrate
our method is robust to the out-of-database scenario.

Table 1. Run time of each stage in terms of millisecond (ms)

Global SAN Local SAN1 Local SAN2 Local SAN3 Total

Run Time (ms) 0.25 7.63 7.28 7.68 22.84
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Fig. 8. Comparison on Helen

Furthermore, we compare our CFAN with DCNN [26] on this dataset in terms
of five landmarks for a fair comparison since only the model of five landmarks
is released. We directly run the model provided by [26] on XM2VTS dataset.
The comparison results are shown in Fig. 9(a). As seen, our CFAN outperforms
DCNN in general.

5.4 Comparison on LFPW Dataset

Furthermore, we evaluate the methods on the Labeled Face Parts in the Wild
(LFPW) dataset [3] which is collected from wild condition. LFPW dataset con-
sists of 1132 training images and 300 test images with large variations in pose,
expression, illumination, partial occlusion, etc, which makes the facial point
detection quite challenging on this dataset. The original URLs of images are
provided by [3], but some of them are not available any longer. So, the 811
training samples and 224 test samples provided by ibug websit mentioned above
are directly used for training and testing. For our method, we directly use the
landmark detector trained for XM2VTS experiments for the evaluation. For
DRMF method, the tree-based face detector is used to achieve more accurate face
detection.
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(b) LFPW Datasets
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(c) Helen Datasets

Fig. 9. Comparison with DCNN [26]

The performance of all methods are shown in Fig. 7. As seen, SDM still
performs the best among the existing methods, and our method achieves a better
detection accuracy with an improvement up to about 15% than SDM when
NRMSE is below 0.05. Similarly, we also compare our CFAN with DCNN [26] in
terms of five landmarks. As seen from the Fig. 9(b), our CFAN performs much
better than DCNN when NRMSE is below 0.06, but comparable or a little worse
when NRMSE is 0.1. On average, our CFAN outperforms DCNN in terms of five
landmarks, and a further significant improvement can be expected in terms of
more points, e.g., 68 points, especially considering those hard points around the
contour.

5.5 Comparison on Helen Dataset

Similar to LFPW, the Helen dataset [18] is also collected under uncontrolled
condition, i.e., Flicker. Helen consists of 2330 high-resolution images with large
variations in pose, lighting, expression, occlusion, and identity. For our CFAN,
the images from the Helen training set, the LFPW training set [3], and AFW [35]
are used for training the model. All methods are valuated on the 330 images from
the Helen test set.

The comparison results are shown in Fig. 8. As seen, our CFAN still performs
the best, which demonstrates the superiority to the existing methods again. As
analyzed in Sec. 3.4, DCNN cannot well handle partial occlusion problem since
each landmark is refined independently without any support from other points.
Some failed examples are shown in Fig. 2. On the contrary, our method is more
robust than DCNN under the partial occlusion scenario. Fig. 9(c) further shows
that our CFAN performs better than DCNN on this dataset.

Fig. 10 shows the detection results of CFAN on some extremely challenging
example faces from XM2VTS, LFPW and HELEN. It can be observed that our
algorithm is robust to the variations from pose, expression, beard, sunglass and
partial occlusion. However, as shown in the last column of Fig. 10, the perfor-
mance of CFAN degrades on some images with simultaneous large out-of-plane
rotations and exaggerated expressions, partially due to the lack of such samples
in training set. Models specific to large pose or with latent pose estimation will
be considered in the future.
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Fig. 10. Example results from XM2VTS, LFPW and HELEN. The first five column
samples contain diverse variations in pose, expression, beard, sunglass and occlusion
respectively. Some failure cases are shown in the last column.

6 Conclusions and Future Works

Aiming at dealing with the nonlinearity in inferring face shapes from face images,
we make use of a sequence of Stacked Auto-encoder Networks in a coarse-to-fine
architecture, each of which figures out part of the nonlinearity. The first SAN
takes directly a low-resolution version of the detected face as input, to globally
estimate a roughly accurate shape. Then, the subsequent SANs take as input
the shape-index local features at higher and higher resolution to refine the shape
better and better. Such a coarse-to-fine strategy is proved well matching the
capacity of SAN and the difficulty of the problem to solve, thus achieves better
results than the state-of-the-art methods, such as SDM and DRMF, on three
databases with extensive variations. Furthermore, our method can work rather
efficiently, with 40+ fps even with Matlab codes on a common desktop with no
parallel programming.

Our work further validates the effectiveness of regression-based methods for
facial landmarks localization. By decomposing the nonlinearity of the image-
to-shape mapping elaborately into a cascaded stages, facial landmarks can be
accurately predicted progressively. In the future, we will try other types of deep
networks with similar principle.
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