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Abstract. We present a new dataset with the goal of advancing the
state-of-the-art in object recognition by placing the question of object
recognition in the context of the broader question of scene understand-
ing. This is achieved by gathering images of complex everyday scenes
containing common objects in their natural context. Objects are labeled
using per-instance segmentations to aid in precise object localization.
Our dataset contains photos of 91 objects types that would be easily
recognizable by a 4 year old. With a total of 2.5 million labeled in-
stances in 328k images, the creation of our dataset drew upon extensive
crowd worker involvement via novel user interfaces for category detec-
tion, instance spotting and instance segmentation. We present a detailed
statistical analysis of the dataset in comparison to PASCAL, ImageNet,
and SUN. Finally, we provide baseline performance analysis for bounding
box and segmentation detection results using a Deformable Parts Model.

1 Introduction

One of the primary goals of computer vision is the understanding of visual scenes.
Scene understanding involves numerous tasks including recognizing what objects
are present, localizing the objects in 2D and 3D, determining the objects’ and
scene’s attributes, characterizing relationships between objects and providing a
semantic description of the scene. The current object classification and detection
datasets [1,2,3,4] help us explore the first challenges related to scene understand-
ing. For instance the ImageNet dataset [1], which contains an unprecedented
number of images, has recently enabled breakthroughs in both object classifi-
cation and detection research [5,6,7]. The community has also created datasets
containing object attributes [8], scene attributes [9], keypoints [10], and 3D scene
information [11]. This leads us to the obvious question: what datasets will best
continue our advance towards our ultimate goal of scene understanding?

We introduce a new large-scale dataset that addresses three core research
problems in scene understanding: detecting non-iconic views (or non-canonical
perspectives [12]) of objects, contextual reasoning between objects and the pre-
cise 2D localization of objects. For many categories of objects, there exists an
iconic view. For example, when performing a web-based image search for the
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Fig. 1. While previous object recognition datasets have focused on (a) image classifi-
cation, (b) object bounding box localization or (c) semantic pixel-level segmentation,
we focus on (d) segmenting individual object instances. We introduce a large, richly-
annotated dataset comprised of images depicting complex everyday scenes of common
objects in their natural context

object category “bike,” the top-ranked retrieved examples appear in profile, un-
obstructed near the center of a neatly composed photo. We posit that current
recognition systems perform fairly well on iconic views, but struggle to recognize
objects otherwise – in the background, partially occluded, amid clutter [13] – re-
flecting the composition of actual everyday scenes. We verify this experimentally;
when evaluated on everyday scenes, models trained on our data perform better
than those trained with prior datasets. A challenge is finding natural images
that contain multiple objects. The identity of many objects can only be resolved
using context, due to small size or ambiguous appearance in the image. To push
research in contextual reasoning, images depicting scenes [3] rather than objects
in isolation are necessary. Finally, we argue that detailed spatial understanding
of object layout will be a core component of scene analysis. An object’s spa-
tial location can be defined coarsely using a bounding box [2] or with a precise
pixel-level segmentation [14,15,16]. As we demonstrate, to measure either kind
of localization performance it is essential for the dataset to have every instance
of every object category labeled and fully segmented. Our dataset is unique in
its annotation of instance-level segmentation masks, Fig. 1.

To create a large-scale dataset that accomplishes these three goals we em-
ployed a novel pipeline for gathering data with extensive use of Amazon Mechan-
ical Turk. First and most importantly, we harvested a large set of images con-
taining contextual relationships and non-iconic object views. We accomplished
this using a surprisingly simple yet effective technique that queries for pairs of
objects in conjunction with images retrieved via scene-based queries [17,3]. Next,
each image was labeled as containing particular object categories using a hierar-
chical labeling approach [18]. For each category found, the individual instances
were labeled, verified, and finally segmented. Given the inherent ambiguity of
labeling, each of these stages has numerous tradeoffs that we explored in detail.

The Microsoft Common Objects in COntext (MS COCO) dataset contains
91 common object categories with 82 of them having more than 5,000 labeled
instances, Fig. 6. In total the dataset has 2,500,000 labeled instances in 328,000
images. In contrast to the popular ImageNet dataset [1], COCO has fewer cate-
gories but more instances per category. This can aid in learning detailed object
models capable of precise 2D localization. The dataset is also significantly larger
in number of instances per category than the PASCAL VOC [2] and SUN [3]
datasets. Additionally, a critical distinction between our dataset and others is
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Fig. 2. Example of (a) iconic object images, (b) iconic scene images, and (c) non-iconic
images. In this work we focus on challenging non-iconic images.

the number of labeled instances per image which may aid in learning contex-
tual information, Fig. 5. MS COCO contains considerably more object instances
per image (7.7) as compared to ImageNet (3.0) and PASCAL (2.3). In contrast,
the SUN dataset, which contains significant contextual information, has over 17
objects and “stuff” per image but considerably fewer object instances overall.

An extended version of this work with additional details is available [19].

2 Related Work

Throughout the history of computer vision research datasets have played a crit-
ical role. They not only provide a means to train and evaluate algorithms, they
drive research in new and more challenging directions. The creation of ground
truth stereo and optical flow datasets [20,21] helped stimulate a flood of interest
in these areas. The early evolution of object recognition datasets [22,23,24] facil-
itated the direct comparison of hundreds of image recognition algorithms while
simultaneously pushing the field towards more complex problems. Recently, the
ImageNet dataset [1] containing millions of images has enabled breakthroughs
in both object classification and detection research using a new class of deep
learning algorithms [5,6,7].

Datasets related to object recognition can be roughly split into three groups:
those that primarily address object classification, object detection and semantic
scene labeling. We address each in turn.

Image Classification. The task of object classification requires binary labels
indicating whether objects are present in an image; see Fig. 1(a). Early datasets
of this type comprised images containing a single object with blank backgrounds,
such as the MNIST handwritten digits [25] or COIL household objects [26].
Caltech 101 [22] and Caltech 256 [23] marked the transition to more realistic
object images retrieved from the internet while also increasing the number of
object categories to 101 and 256, respectively. Popular datasets in the machine
learning community due to the larger number of training examples, CIFAR-10
and CIFAR-100 [27] offered 10 and 100 categories from a dataset of tiny 32× 32
images [28]. While these datasets contained up to 60,000 images and hundreds
of categories, they still only captured a small fraction of our visual world.
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Recently, ImageNet [1] made a striking departure from the incremental in-
crease in dataset sizes. They proposed the creation of a dataset containing 22k
categories with 500-1000 images each. Unlike previous datasets containing entry-
level categories [29], such as “dog” or “chair,” like [28], ImageNet used the Word-
Net Hierarchy [30] to obtain both entry-level and fine-grained [31] categories.
Currently, the ImageNet dataset contains over 14 million labeled images and
has enabled significant advances in image classification [5,6,7].

Object Detection. Detecting an object entails both stating that an object
belonging to a specified class is present, and localizing it in the image. The
location of an object is typically represented by a bounding box, Fig. 1(b). Early
algorithms focused on face detection [32] using various ad hoc datasets. Later,
more realistic and challenging face detection datasets were created [33]. Another
popular challenge is the detection of pedestrians for which several datasets have
been created [24,4]. The Caltech Pedestrian Dataset [4] contains 350,000 labeled
instances with bounding boxes.

For the detection of basic object categories, a multi-year effort from 2005 to
2012 was devoted to the creation and maintenance of a series of benchmark
datasets that were widely adopted. The PASCAL VOC [2] datasets contained
20 object categories spread over 11,000 images. Over 27,000 object instance
bounding boxes were labeled, of which almost 7,000 had detailed segmentations.
Recently, a detection challenge has been created from 200 object categories using
a subset of 400,000 images from ImageNet [34]. An impressive 350,000 objects
have been labeled using bounding boxes.

Since the detection of many objects such as sunglasses, cellphones or chairs
is highly dependent on contextual information, it is important that detection
datasets contain objects in their natural environments. In our dataset we strive
to collect images rich in contextual information. The use of bounding boxes also
limits the accuracy for which detection algorithms may be evaluated. We propose
the use of fully segmented instances to enable more accurate detector evaluation.

Semantic Scene Labeling. The task of labeling semantic objects in a scene
requires that each pixel of an image be labeled as belonging to a category, such as
sky, chair, floor, street, etc. In contrast to the detection task, individual instances
of objects do not need to be segmented, Fig. 1(c). This enables the labeling of
objects for which individual instances are hard to define, such as grass, streets,
or walls. Datasets exist for both indoor [11] and outdoor [35,14] scenes. Some
datasets also include depth information [11]. Similar to semantic scene labeling,
our goal is to measure the pixel-wise accuracy of object labels. However, we also
aim to distinguish between individual instances of an object, which requires a
solid understanding of each object’s extent.

A novel dataset that combines many of the properties of both object de-
tection and semantic scene labeling datasets is the SUN dataset [3] for scene
understanding. SUN contains 908 scene categories from the WordNet dictionary
[30] with segmented objects. The 3,819 object categories span those common
to object detection datasets (person, chair, car) and to semantic scene labeling
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(wall, sky, floor). Since the dataset was collected by finding images depicting
various scene types, the number of instances per object category exhibits the
long tail phenomenon. That is, a few categories have a large number of instances
(wall: 20,213, window: 16,080, chair: 7,971) while most have a relatively modest
number of instances (boat: 349, airplane: 179, floor lamp: 276). In our dataset,
we ensure that each object category has a significant number of instances, Fig. 5.

Other Vision Datasets. Datasets have spurred the advancement of numer-
ous fields in computer vision. Some notable datasets include the Middlebury
datasets for stereo vision [20], multi-view stereo [36] and optical flow [21]. The
Berkeley Segmentation Data Set (BSDS500) [37] has been used extensively to
evaluate both segmentation and edge detection algorithms. Datasets have also
been created to recognize both scene [9] and object attributes [8,38]. Indeed,
numerous areas of vision have benefited from challenging datasets that helped
catalyze progress.

3 Image Collection

We next describe how the object categories and candidate images are selected.

Common Object Categories. The selection of object categories is a non-
trivial exercise. The categories must form a representative set of all categories,
be relevant to practical applications and occur with high enough frequency to
enable the collection of a large dataset. Other important decisions are whether
to include both “thing” and “stuff” categories [39] and whether fine-grained
[31,1] and object-part categories should be included. “Thing” categories include
objects for which individual instances may be easily labeled (person, chair, car)
where “stuff” categories include materials and objects with no clear boundaries
(sky, street, grass). Since we are primarily interested in precise localization of
object instances, we decided to only include “thing” categories and not “stuff.”
However, since “stuff” categories can provide significant contextual information,
we believe the future labeling of “stuff” categories would be beneficial.

The specificity of object categories can vary significantly. For instance, a dog
could be a member of the “mammal”, “dog”, or “German shepherd” categories.
To enable the practical collection of a significant number of instances per cate-
gory, we chose to limit our dataset to entry-level categories, i.e. category labels
that are commonly used by humans when describing objects (dog, chair, per-
son). It is also possible that some object categories may be parts of other object
categories. For instance, a face may be part of a person. We anticipate the inclu-
sion of object-part categories (face, hands, wheels) would be beneficial for many
real-world applications.

We used several sources to collect entry-level object categories of “things.” We
first compiled a list of categories by combining categories from PASCAL VOC
[2] and a subset of the 1200 most frequently used words that denote visually
identifiable objects [40]. To further augment our set of candidate categories,
several children ranging in ages from 4 to 8 were asked to name every object
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they see in indoor and outdoor environments. The final 271 candidates may be
found in [19]. Finally, the co-authors voted on a 1 to 5 scale for each category
taking into account how commonly they occur, their usefulness for practical
applications, and their diversity relative to other categories. The final selection of
categories attempts to pick categories with high votes, while keeping the number
of categories per super-category (animals, vehicles, furniture, etc.) balanced.
Categories for which obtaining a large number of instances (greater than 5,000)
was difficult were also removed. To ensure backwards compatibility all categories
from PASCAL VOC [2] are also included. Our final list of 91 proposed categories
is in Fig. 5(a).

Non-iconic Image Collection. Given the list of object categories, our next
goal was to collect a set of candidate images. We may roughly group images
into three types, Fig. 2: iconic-object images [41], iconic-scene images [3] and
non-iconic images. Typical iconic-object images have a single large object in a
canonical perspective centered in the image, Fig. 2(a). Iconic-scene images are
shot from canonical viewpoints and commonly lack people, Fig. 2(b). Iconic im-
ages have the benefit that they may be easily found by directly searching for
specific categories using Google or Bing image search. While iconic images gen-
erally provide high quality object instances, they can lack important contextual
information and non-canonical viewpoints.

Our goal was to collect a dataset such that a majority of images are non-
iconic, Fig. 2(c). It has been shown that datasets containing more non-iconic
images are better at generalizing [42]. We collected non-iconic images using two
strategies. First as popularized by PASCAL VOC [2], we collected images from
Flickr which tends to have fewer iconic images. Flickr contains photos uploaded
by amateur photographers with searchable metadata and keywords. Second, we
did not search for object categories in isolation. A search for “dog” will tend to
return iconic images of large, centered dogs. However, if we searched for pairwise
combinations of object categories, such as “dog + car” we found many more non-
iconic images. Surprisingly, these images typically do not just contain the two
categories specified in the search, but numerous other categories as well. To
further supplement our dataset we also searched for scene/object category pairs,
see [19]. We downloaded at most 5 photos taken by a single photographer within
a short time window. In the rare cases in which enough images could not be
found, we searched for single categories and performed an explicit filtering stage
to remove iconic images. The result is a collection of 328,000 images with rich
contextual relationships between objects as shown in Figs. 2(c) and 6.

4 Image Annotation

We next describe how we annotated our image collection. Due to our desire to
label over 2.5 million category instances, the design of a cost efficient yet high
quality annotation pipeline was critical. The annotation pipeline is outlined in
Fig. 3. For all crowdsourcing tasks we used workers on Amazon’s Mechanical
Turk (AMT). Examples of our user interfaces can be found in [19].
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Fig. 3. Our image annotation pipeline is split into 3 primary worker tasks: (a) Labeling
the categories present in the image, (b) locating and marking all instances of the labeled
categories, and (c) segmenting each object instance.

Category Labeling. The first task in annotating our dataset is determining
which object categories are present in each image, Fig. 3(a). Since we have 91
potential categories and a large number of images, asking workers to answer
91 binary classification questions per image would be prohibitively expensive.
Instead, we used a hierarchical approach [18]. Individual object categories are
grouped into 11 super-categories (see [19]). For a given image, a worker was
presented with each group of categories in turn and asked to indicate whether
any instances exist for that super-category. This greatly reduces the time needed
to classify the various categories. For instance, a worker may easily determine
whether any animals are present in the image without having to specifically look
for cats, dogs, etc. If a worker determines an instance in the super-category is
present (animal), they indicate the instance’s specific category (dog, cat, etc.)
by dragging the category’s icon onto the image over one instance of the category.
The placement of these icons is critical for the following stage. To ensure high
recall, five workers were asked to label each image; a detailed analysis of perfor-
mance is presented shortly. This stage took 17,751 worker hours to complete.

Instance Spotting. In the next stage all instances of the object categories in
an image were labeled, Fig. 3(b). In the previous stage each worker labeled one
instance of a category, but multiple category instances may exist. For each image,
a worker was asked to place crosses on top of each instance of a specific category
found in the previous stage. To boost recall, the location of the instance found
by the worker in the previous stage was shown to the current worker to help
them in finding an initial instance. Without this priming, it can be difficult for a
worker to quickly find an instance of a category upon first seeing the image. The
workers could also use a magnifying glass to find small instances. Each worker
was asked to label at most 10 instances of a specific category per image. Each
image was completed by 5 workers for a total of 8,417 worker hours.

Instance Segmentation. Our final stage is the laborious task of segmenting
each category instance, Fig. 3(c). For this stage we modified the excellent user
interface developed by Bell et al. [16] for image segmentation. Our interface asks
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Fig. 4. (a) Precision and recall of experts (red) and the majority vote of AMT workers
(blue). Note that the aggregate of 3 workers has better or similar recall to most experts.
(b) illustrates the precision and recall of workers, with color indicating how many jobs
they completed. For details and definition of ground truth for each plot see text.

the worker to segment a category instance specified by a worker in the previous
stage. If other instances have already been segmented in the image, those seg-
mentations are shown to the worker. If the worker does not see an instance of the
category in the image (false positive from the previous stage) the worker may
click “No <object name> in the image.” Similarly if a worker does not find an
unsegmented instance in the image they may specify “No unsegmented <object
name> in the image.”

Segmenting 2,500,000 object instances is an extremely time consuming task
requiring over 22 worker hours per 1,000 segmentations. To minimize cost we
only had a single worker segment each image. However, we initially found that
most workers only produce a coarse outline of the instance resulting in poor
segmentations. As a consequence, we required all workers to complete a training
task for each object category. After reading the instructions, the training task
asked workers to segment an object instance. If the worker’s segmentation did
not adequately match the ground truth segmentation the worker is repeatedly
asked to improve their segmentation until it passes. The use of a training task
vastly improves the quality of the workers (only about 1 in 3 workers passed
the training stage) and resulting segmentations. Finally, the work of approved
workers was periodically verified to ensure segmentation quality remains high.
Example segmentations may be viewed in Fig. 6.

In some images many instances of the same category are tightly grouped
together and it is hard to distinguish individual instances. For example, it might
be difficult to segment an individual person from a crowd. In these cases, the
group of instances is marked as one segment and labeled “do not care” for
evaluation, e.g., finding people in a crowd will not affect a detector’s score.

Annotation Performance Analysis. To ensure the quality of our annotations
we analyze the quality of our workers by comparing them to expert workers.
In Fig. 4 we show results for the task of category labeling. We compare the
precision and recall of seven expert workers (co-authors of the paper) with the
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results obtained by taking the union of one to ten AMT workers. For this task
precision is of less importance since false positives will be removed at later stages,
where adding false negatives is much more difficult. Fig. 4(a) shows that 5 AMT
workers, the same number as was used to collect our labels, achieves the same
recall as most of the expert workers. Note that the expert labelers achieved
between 65% and 80% recall. These low values of recall are due to our liberal
definition of a category being present. If only one expert labels an object category
as being present, we assume the category is indeed present. However, the presence
of many categories is often ambiguous. Upon closer inspection, we find recall
values of 70% to 75% are generally sufficient to capture the non-ambiguous
categories. Fig. 4(b) shows the precision and recall of our workers on category
labeling. Unlike in Fig. 4(a), the ground truth labels were now estimated using a
majority vote. The color indicates the number of jobs completed by each worker.
Notice that workers who complete more hits have generally higher precision and
recall. All jobs from workers below the black line were rejected.

5 Dataset Statistics

Next, we analyze the properties of the Microsoft Common Objects in COntext
(MS COCO) dataset in comparison to several other popular datasets. These in-
clude the ImageNet [1], PASCAL VOC 2012 [2], and SUN [3] datasets. Each of
these datasets varies significantly in size, list of labeled categories and types of
images. ImageNet was created to capture a large number of object categories,
many of which are fine-grained. SUN focuses on labeling scene types and the ob-
jects that commonly occur in them. Finally, PASCAL VOC’s primary application
is object detection in natural images. MS COCO is designed for the detection
and segmentation of objects occurring in their natural context. The number of
instances per category for all 91 categories collected so far are shown in Fig. 5(a).
The completion of our final segmentation stage is still ongoing. Please see [19]
for a complete list of collected segmentations, including over 580,000 people.

A summary of the datasets showing the number of object categories and the
number of instances per category is shown in Fig. 5(d). While MS COCO has
fewer categories than ImageNet and SUN, it has more instances per category
which we hypothesize will be useful for learning complex models capable of
precise localization. In comparison to PASCAL VOC, MS COCO has both more
categories and instances.

An important property of our dataset is we strive to find non-iconic images
containing objects in their natural context. The amount of contextual informa-
tion present in an image can be estimated by examining the number of object
categories and instances per image, Fig. 5(b, c). For ImageNet we plot the object
detection validation set, since the training data only has a single object labeled.
On average our dataset contains 3.5 categories and 7.7 instances per image. In
comparison ImageNet and PASCAL VOC both have less than 2 categories and
3 instances per image on average. Another interesting comparison is only 10%
of the images in MS COCO have only one category per image, in comparison to
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Fig. 5. (a) Number of annotated instances per category for MS COCO and PASCAL
VOC. (b,c) Number of annotated categories and annotated instances, respectively, per
image for MS COCO, ImageNet Detection, PASCAL VOC and SUN (average number
of categories and instances are shown in parentheses). (d) Number of categories vs. the
number of instances per category for a number of popular object recognition datasets.
(e) The distribution of instance sizes for the MS COCO, ImageNet Detection, PASCAL
VOC and SUN datasets.

over 60% of images containing a single object category in ImageNet and PAS-
CAL VOC. As expected, the SUN dataset has the most contextual information
since it is scene-based.

Finally, we analyze the average size of objects in the datasets. Generally
smaller objects are harder to recognize and require more contextual reasoning
to recognize. As shown in Fig. 5(e), the average sizes of objects is smaller for
both MS COCO and SUN.
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Fig. 6. Samples of annotated images in the MS COCO dataset

6 Algorithmic Analysis

To establish a concrete benchmark, we split our dataset into training, validation,
and test data. We have a training set of 164,000 images and a validation and test
set of 82,000 images each. We took care to minimize the chance of near-duplicate
images existing across splits by explicitly removing duplicates (detected with
[43]) and splitting images by date and user. Following now-established protocol,
we will release annotations for train and validation images, but not test.

Bounding-box Detection. Webegin by examining the performance of thewell-
studied 20 PASCAL object categories on our dataset. We take a subset of 55,000
images from train/val data for the following experiment and obtain tight-fitting
bounding boxes from the annotated segmentation masks. We evaluate
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Table 1. Top: Detection performance evaluated on PASCAL VOC 2012. DPMv5-P
is the performance reported by Girshick et al. in VOC release 5. DPMv5-C uses the
same implementation, but is trained with MS COCO. Bottom: Performance evaluated
onMS COCO for DPMmodels trained with PASCALVOC 2012 (DPMv5-P) and MS
COCO (DPMv5-C). For DPMv5-C we used 5000 positive and 10000 negative training
examples. While MS COCO is considerably more challenging than PASCAL, use of
more training data coupled with more sophisticated approaches [5,6,7] should improve
performance substantially.

plane bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv Avg.

DPMv5-P 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6

DPMv5-C 43.7 50.1 11.8 2.4 21.4 60.1 35.6 16.0 11.4 24.8 5.3 9.4 44.5 41.0 35.8 6.3 28.3 13.3 38.8 36.2 26.8

DPMv5-P 35.1 17.9 3.7 2.3 7 45.4 18.3 8.6 6.3 17 4.8 5.8 35.3 25.4 17.5 4.1 14.5 9.6 31.7 27.9 16.9

DPMv5-C 36.9 20.2 5.7 3.5 6.6 50.3 16.1 12.8 4.5 19.0 9.6 4.0 38.2 29.9 15.9 6.7 13.8 10.4 39.2 37.9 19.1

models tested on both theMS COCOand PASCAL datasets, see Table 1.We eval-
uate two different models.DPMv5-P: the latest implementation of [44] (release 5
[45]) trained on PASCAL VOC 2012. DPMv5-C: the same implementation
trained on COCO (5000 positive and 10000 negative images). We use the default
parameter settings for training COCOmodels.

If we compare the average performance of DPMv5-P on PASCAL VOC and
MS COCO, we find that average performance on MS COCO drops by nearly a
factor of 2, suggesting that MS COCO does include more difficult (non-iconic)
images of objects that are partially occluded, amid clutter, etc. We notice a
similar drop in performance for the model trained on MS COCO (DPMv5-C).

The effect on detection performance of training on PASCAL VOC or MS
COCO may be analyzed by comparing DPMv5-P and DPMv5-C. They use
the same implementation with different sources of training data. Table 1 shows
DPMv5-C still outperforms DPMv5-P in 6 out of 20 categories when testing on
PASCAL VOC. In some categories (e.g., dog, cat, people), models trained on
MS COCO perform worse, while on others (e.g., bus, tv, horse), models trained
on our data are better.

Consistent with past observations [46], we find that including difficult (non-
iconic) images during training may not always help. Such examples may act as
noise and pollute the learned model if the model is not rich enough to capture
such appearance variability. Our dataset allows for the exploration of such issues.

Torralba and Efros [42] proposed a metric to measure cross-dataset gener-
alization which computes the ‘performance drop’ for models that train on one
dataset and test on another. The performance difference of the DPMv5-P mod-
els across the two datasets is 12.7 AP while the DPMv5-C models only have
7.7 AP difference. Moreover, overall performance is much lower on MS COCO.
These observations support two hypotheses: 1) MS COCO is significantly more
difficult than PASCAL VOC and 2) models trained on MS COCO can generalize
better to easier datasets such as PASCAL VOC given more training data. To
gain insight into the differences between the datasets, see [19] for visualizations
of person and chair examples from the two datasets.
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Fig. 7. We visualize our mixture-specific shape masks. We paste thresholded shape
masks on each candidate detection to generate candidate segments.

Fig. 8. Evaluating instance detections with segmentation masks versus bounding
boxes. Bounding boxes are a particularly crude approximation for articulated objects;
in this case, the majority of the pixels in the (blue) tight-fitting bounding-box do not
lie on the object. Our (green) instance-level segmentation masks allows for a more
accurate measure of object detection and localization.

Generating Segmentations from Detections. We now describe a simple
method for generating object bounding boxes and segmentation masks, follow-
ing prior work that produces segmentations from object detections [47,48,49,50].
We learn aspect-specific pixel-level segmentation masks for different categories.
These are readily learned by averaging together segmentation masks from aligned
training instances. We learn different masks corresponding to the different mix-
tures in our DPM detector. Sample masks are visualized in Fig. 7.

Detection Evaluated by Segmentation. Segmentation is a challenging task
even assuming an object detector reports correct results as it requires fine lo-
calization of object part boundaries. To decouple segmentation evaluation from
detection correctness, we benchmark segmentation quality using only correct
detections. Specifically, given that the object detector reports a correct bound-
ing box, how well does the predicted segmentation of that object match the
groundtruth segmentation? As criterion for correct detection, we impose the
standard requirement that intersection over union between predicted and
groundtruth boxes is at least 0.5. We then measure the intersection over union
of the predicted and groundtruth segmentation masks, see Fig. 8. To establish
a baseline for our dataset, we project learned DPM part masks onto the image
to create segmentation masks. Fig. 9 shows results of this segmentation baseline
for the DPM learned on the 20 PASCAL categories and tested on our dataset.
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Fig. 9. A predicted segmentation might not recover object detail even though detection
and groundtruth bounding boxes overlap well (left). Sampling from the person category
illustrates that on a per-instance basis, predicting segmentation from top-down pro-
jection of DPM part masks is difficult even for correct detections (center). Averaging
over instances for each of the PASCAL VOC categories on our dataset demonstrates
that it presents a challenge for object segmentation algorithms (right).

7 Discussion

We described a new dataset for detecting and segmenting objects found in ev-
eryday life in their natural environments. Utilizing around 60,000 worker hours,
a vast collection of category instances was gathered, annotated and organized to
drive the advancement of object detection and segmentation algorithms. Empha-
sis was placed on finding non-iconic images of objects in natural environments
and varied viewpoints. Dataset statistics indicate the images contain rich con-
textual information with many objects present per image.

There are several promising directions for future annotations on our dataset.
We currently only label “things”, but labeling “stuff” may also provide sig-
nificant contextual information that may be useful for detection. Many object
detection algorithms benefit from additional annotations, such as the amount an
instance is occluded [4] or the location of keypoints on the object [10]. Finally,
our dataset could provide a good benchmark for other types of labels, including
scene types [3], attributes [9,8] and full sentence written descriptions [51].

To download and learn more about MS COCO please see the project website1.
Additional details are presented in an extended version of this work [19]. MS
COCO will evolve and grow over time; up to date information is available online.
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