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Abstract. The Lucas-Kanade (LK) method is a classic tracking algorithm ex-
ploiting target structural constraints thorough template matching. Extended Lucas
Kanade or ELK casts the original LK algorithm as a maximum likelihood opti-
mization and then extends it by considering pixel object / background likelihoods
in the optimization. Template matching and pixel-based object / background seg-
regation are tied together by a unified Bayesian framework. In this framework two
log-likelihood terms related to pixel object / background affiliation are introduced
in addition to the standard LK template matching term. Tracking is performed us-
ing an EM algorithm, in which the E-step corresponds to pixel object/background
inference, and the M-step to parameter optimization. The final algorithm, imple-
mented using a classifier for object / background modeling and equipped with
simple template update and occlusion handling logic, is evaluated on two chal-
lenging data-sets containing 50 sequences each. The first is a recently published
benchmark where ELK ranks 3rd among 30 tracking methods evaluated. On the
second data-set of vehicles undergoing severe view point changes ELK ranks in
1st place outperforming state-of-the-art methods.

1 Introduction

The famous Lucas-Kanade (LK) algorithm[19] is an early, and well known, algorithm
that takes advantage of object structural constraints by performing template based
tracking.

Structure is a powerful cue which can be very beneficial for reliable tracking. Early
methods performing template matching [19,21,20,7] later evolved and inspired the
use of multiple templates and sparse representations to represent target appearance
[30,5,14,24], and for known target classes a more complex use of structure can be made
[27]. Learning based tracking methods can also use template matching, some exam-
ples are by target appearance mining [15] or exemplar based classification [4]. Some
methods disregard target structure, for example by performing pixel-wise classification
[3,11] or using histogram representations [6]. Although this can be beneficial in cases
where targets are highly deformable, these methods are in most cases very pron to drift
as they do not enforce any structural constraints.

Using structure, in the form of template matching, can help tracking algorithms
avoid drift and maintain accurate tracking through target and scene appearance changes.
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These changes can be related to in/out-of-plane rotation, illumination changes, motion
blur, rapid camera movement, occlusions, target deformations and more. The drift prob-
lem is extremely difficult since tracking is performed without user intervention, apart
from some initialization in the first frame, which is usually a rectangle bounding the
target region.

One of the problems arising when using target templates, bounded by a rectangle, is
the inclusion of background pixels in the target image. When matching the template,
one is also required to match the included background pixels which can ultimately lead
to drift. Our proposed method therefore attempts to perform template matching, using
the structural cue, while requiring object / background consistencies between template
and image pixels.

The contribution of this work is a novel template tracking algorithm we denote Ex-
tended Lucas Kande or ELK. Inspired by the famous LK algorithm our algorithm ex-
tends the original one to accounts for pixels object / background likelihood. We first
cast the original LK problem is terms of probabilistic inference demonstrating the loss
function minimizing the sum-of-square-difference (SSD) between image and template
is equivalent to maximum likelihood estimation under Gaussian noise assumption. We
then introduce hidden variables related to image and template pixels object / back-
ground likelihoods. We derive an extension of the original LK algorithm which in-
cludes 2 additional log-likelihood terms in the loss function. These terms enforce that
object / background template pixels are matched to object / background image pixels
respectively. In addition, from this derivation emerge pixel weights, used in the tem-
plate matching term computation, as well as a factor regularizing between the template
matching term and the object / background log-likelihood terms, which can be used to
regularize between ordered template matching and disordered probability mode match-
ing. We derive an estimation-maximization (EM) algorithm which enables maximizing
the loss function and inferring the hidden variables.

We implement this new algorithm using a boosted stumps classifier for object / back-
ground modeling and equip it with a simple occlusion handling logic. The resulting
algorithm achieves results comparable to state-of-the-art methods on a challenging
tracking benchmark ranking in 3rd place among 30 trackers evaluated.

2 Extended Lukas Kanade Tracking

The Lucas-Kanade (LK) tracking algorithm works quite well when the template to be
tracked consists entirely of pixels belonging to the object. Problems arise when back-
ground pixels are added to the template which cause the algorithm to drift.

To combat that we propose a Bayesian model that combines template matching (i.e.,
regular LK) with objecthood reasoning at the pixel level. Tracking is performed by
finding a 2D transformation that maximizes the model likelihood.

We start in section 2.1 by introducing notation and casting traditional template match-
ing, as done by the LK algorithm, in a probabilistic framework. In section 2.2 we ex-
tend the probabilistic framework to include pixel objecthood reasoning, by introducing
a model including foreground/background hidden variables. In section 2.3 we derive an
EM formulation for inferring the hidden objecthood variables and optimizing some of



144 S. Oron, A. Bar-Hillel, and S. Avidan

the model parameters, not including the tracking transformation. Finally, in section 2.4,
we show how the tracking transformation can be found as part of the EM M-step, using
an extension of the traditional LK algorithm.

2.1 Template Matching and Traditional LK

We wish to track template T with the set of pixels P = {p}ni=1, where p = (x, y) is
the 2D pixel location, and T(p) denotes pixel p of template T. Let I denote the image
at time t. We say that image pixel I(W (p;ω)) is mapped to template pixel T(p) by the
transformation W with parameter vector ω. Examples are 2D translation or similarity
transformation. The algorithm assumes an estimated position of T in the image at time
t− 1 is known and given by ωt−1, i.e the set of pixels I(W (P;ωt−1)) is a noisy replica
of T.

Given template T, the estimated previous position ωt−1, and a new image I, LK
looks for an update Δω s.t. ω = ωt−1 +Δω with Δω minimizing:

Δω = argmin
∑

p∈P

(I(W (p, ωt−1 +Δω))−T(p))2 (1)

Using a Gauss-Newton method.
This algorithm has a natural probabilistic interpretation. Assuming a Gaussian in-

dependent pixel noise we look for the maximum likelihood pixel set I(W (P;ωt−1 +
Δω)) :

maxΔω logP (I(W (P;ωt−1 +Δω))|T)

= maxΔω

∑
p∈P logG(I(W (p, ωt−1 +Δω))−T|0, σ)

= − 1
2 |P|log(2πσ2) − 1

2σ2 minΔω [
∑

p∈P (I(W (p, ωt−1 +Δω))−T(p))
2
]

(2)

Where G (x|μ, σ) = 1√
2πσ

exp(− 1
2σ2 (x− μ)

2
) is the Gaussian density function. In

words, we assume that the (log) probability of the image given the template is (log)
Gaussian. Since the optimization in equations (1) and (2) are the same w.r.t the optimal
Δω, we see that LK is equivalent to searching for a maximum likelihood pixel set.

Note that in an important sense, this is not a traditional ML formulation: usually
the data to explain is fixed and we learn model parameters which makes it the most
likely. Here the model has no ’traditional’ parameters (it has σ, but it is not relevant
to the optimization), and the data to explain is what we optimize over, by treating the
transformation ω as a parameter and optimizing over it.

2.2 Template Matching with Objecthood Inference

In this section we present a graphical model that combines rigid template matching with
pixel based foreground/background reasoning. The model is presented as a Bayesian
network with an added event constraint. It is then simplified to a graphical model over
4 variables: the pixel values of template and image, and hidden variables determining
their foreground/background affiliation.
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(a) (b)

Fig. 1. Graphical Model: (a) before and (b) after simplification. (a) We observe image I and
template T and wish to estimate the hidden variables: hI

p (hidden binary variable, is the image
pixel an object or background?), Ĩp (hidden image), hT

p (hidden binary variable, is the template
pixel an object or background?), T̃p (hidden template). (b) After simplification, the hidden tem-
plate T̃p and image Ĩp vanish, and all we have to estimate are the binary variables hI

p and hT
p .

The match between T and I is assumed to come from a Gaussian distribution G with 0 mean and
σ variance.

The Model. The image I and the template T we observe are assumed to be noisy mea-
surements of some hidden and noisy source image Ĩ and template T̃. We further know
that pixels in the template and the image can belong to the object or the background.
Clearly, we would like to make sure that when we match pixels in the template to pixels
in the image we match object pixels and not background pixels.

To do that, let h(p) be a binary variable that determines if the pixel belongs to
the background (i.e., is 0) or object (i.e., is 1). This gives us four variables per pixel:
the pixel in the hidden template T̃(p), its corresponding pixel in the hidden image
Ĩ(W (ω,p)), and their binary object/background binary variables hT

p = h(T̃(p)) and

hp
I = h(Ĩ(W (ω,p))), respectively. For brevity, from now on we will denote Tp =

T(p) and Ip = I(W (p, ω)).
The Connections between the hidden variables and the observables Tp and Ip are

given by the graphical model in Figure 1(Left), which is replicated for each pixel
p ∈ P. The prior probabilities of pixels (both template and image) to be foreground
are Bernoulli distributed with a parameter v, i.e. P (h = 1) = v, P (h = 0) = 1 − v.
The pixel appearance models, with parameters shared between template and image, are
given by P (Ip|hI

p, F ), P (Tp|hT
p , F ). We denote by F the parameters of this condi-

tional probability. For example, we can implement F using two discrete histograms of
pixel values, one for the object and one for the background, or we can use a discrimi-
native model. Finally, we let P (T̃p|Tp) = G(T̃p|Tp, σ), P (Ĩp|Ip) = G(Ĩp|Ip), σ) be
Gaussian connections.

The model described up until now is a standard Bayesian network. However, in the
space spanned by this network, we are interested in the subspace obeying the following
condition: if both template Tp and image Ip are object pixels, than T̃p and Ĩp are
identical, i.e. Tp and Ip are noisy replica of the same source. Denoting this event by Ω,
we are interested in:
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PΩ(h
T
p , h

I
p,Tp, Ip, T̃p, Ĩp) = P (hT

p , h
I
p,Tp, Ip, T̃p, Ĩp)1Ω (3)

where 1Ω is given by :

1Ω =

{
1, hT

p = 0 or hI
p = 0

δ(T̃p − Ĩp) hT
p = 1 and hI

p = 1
= δ(T̃p − Ĩp)

hT
p hI

p (4)

with δ(·) denoting the Dirac delta. The event-restricted joint probability we consider
is hence:

PΩ(h
T
p , h

I
p,Tp, Ip, T̃p, Ĩp) =

P (hT
p )P (hI

p)P (Tp|hT
p )P (Ip|hI

p)G(T̃p|Tp)G(Ĩp|Ip)δ(T̃p − Ĩp)
hT
p hI

p
(5)

The model parameters are Θ = {v, F, σ, ω}. Like in the formalism presented for
traditional LK, we optimize here not only over traditional model parameters {v, F, σ},
but also over the data we explain via the choice of ω.

Model Simplification. We can simplify the model by integrating T̃, Ĩ out:

PΩ(h
T
p , h

I
p,Tp, Ip) =

∫ ∫
PΩ(h

T
p , h

I
p,Tp, Ip, T̃p, Ĩp)dT̃dĨ = (6)

P (hT
p )P (hI

p)P (Tp|hT
p )P (Ip|hI)

×
∫ ∫

G(T̃p|Tp, σ) ·G(Ĩp|Ip, σ)δ(T̃p − Ĩp)
hT
p hI

pdT̃dĨ

If hT
p = 0 or hI

p = 0, the double integral decomposes into two independent integrals
of Gaussian CDF, hence it is 1. If hT

p = 1, hI
p = 1 the double integral collapses into a

single integral of a product of Gaussians. Such a product of two Gaussians is a scaled
Gaussian, with the scaling factor itself a Gaussian G(Tp − Ip|0,

√
2σ) [8] in the means

Tp, Ip. Therefore, the double integral at the end of the equation above simplifies to

G(Tp − Ip|0,
√
2σ)

hT
p hI

p . Following the elimination of T̃p, Ĩp we get a simpler model
structure over 4 variables:

PΩ(h
T
p , h

I
p,Tp, Ip) = (7)

P (hT
p )P (hI

p)P (Tp|hT
p )P (Ip|hI

p)G(Tp − Ip|0,
√
2σ)

hT
p hI

p

This simplified model is described in the graphical model is Figure 1(Right)

2.3 An EM Formulation

As in traditional LK, we are given a template T, the estimated position in the previous
frame ωt−1, and a new image It (we will omit the t super script for notation simplicity),



Extended Lucas-Kanade Tracking 147

and we look for an update ω = ωt−1 + Δω giving us the maximum-likelihood pixel
set:

max
Θ

logP (T, Iω |Θ) = max
Δω

max
v,F,σ

logP (T, Iωt−1+Δω|v, F, σ) (8)

Assuming pixel independence we have

logP (T, Iω) =
∑

p∈P

logP (Tp, Ip) (9)

=
∑

p∈P

∑

hT
p ∈{0,1}

∑

hI
p∈{0,1}

logP (hT
p , h

I
p,Tp, Ip)

With P (hT
p , h

I
p,Tp, Ip) given by Eq. 7. Expressions like this, containing a summation

inside the log function are not optimization-friendly in a direct manner, so we resort
to EM [9] optimization. In our case the parameters are Θ = {v, F, σ, ω}, the hidden
variables are:

H = {HT, HI} = {hT
p , h

I
p}p∈P

, (10)

and the observables are
O = {T, I} = {Tp, Ip}p∈P. (11)

Following the EM approach, we will optimize Θ by

Θnew = argmax
Θ

Eold logP (HT, HI,T, I) (12)

where Eold = EP (HT,HI|T,I,Θold).

E-step: Given known T, I, Θold, the distribution P (HT, HI|T, I, Θold) over the hid-
den variables is easy to infer. P (HT, HI|T, I, Θold) decomposes into a product of

P (hT
p , h

I
p|Tp, Ip, Θold) (13)

for each pixel p, using pixel independence assumption. Since hT
p , h

I
p are discrete binary

variables, we can get the conditional probability for any pixel p, hidden values b1, b2 ∈
{0, 1}, by:

P (hT
p = b1, h

I
p = b2|Tp, Ip) =

P (hT
p =b1,h

I
p=b2,Tp,Ip)∑

a1∈{0,1}
∑

a2∈{0,1} P (hT
p =a1,hI

p=a2,Tp,Ip)

(14)

Computing the conditional distribution hence requires only evaluating Eq. 7 four times,
for the four possible combinations of hT

p , h
I
p values. We will see below that the ob-

jecthood probability P (hT
p = 1, hI

p = 1|Tp, Ip) has the role of template-matching
pixel weights in the optimization of ω and σ. For the optimization of other parame-
ters, the probabilities P (hI

p|Tp, Ip),P (hT
p |Tp, Ip) are used, and they are obtained from

P (hT
p = 1, hI

p = 1|Tp, Ip) by simple marginalization.
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M-step: For notation convenience, let Pold(H
T, HI) = P (HT, HI|T, I, Θold). For a

single pixel we have to maximize the expectation of the log of Eq. 7 which, after some
manipulation leads to the following update equations:

vnew =

∑
p∈P Pold(h

I
p) + Pold(h

T
p )

2|P| (15)

σnew =

√∑
p∈P Pold(hI

p = 1, hT
p = 1)(Tp − Ip)2∑

p∈P Pold(hI
p = 1, hT

p = 1)

As stated before, F can be implemented using two histograms F = (F 0, F 1), with
F 0(c), F 1(c) keeping the frequency of pixel value c according to figure (F 0) and back-
ground (F 1) histogram respectively. In that case, the update rule would be

F l(c) =

∑
p:p=c Pold(h

I
p = l) + Pold(h

T
p = l)

2|P| for l ∈ {0, 1} (16)

However, we use instead a discriminative model. In this case we use the previous pixel
weights Pold(h

I
p), Pold(h

T
p ) as pixel weights when training the parameters F of the

model. As for the transformation parameters ω, gathering the terms dependent on it
from the expected log-likelihood gives the following optimization problem:

max
ω

∑

b∈{0,1}

∑

p∈P

[Pold(h
I
p = b) logP (Ip|hI

p = b)) (17)

− 1

4σ2

∑

p∈P

Pold(h
I
p = 1, hT

p = 1)(Tp − Ip)
2
]

We see that ω has to optimize a balance of two terms: The first is a foreground (and
background) likelihood term, demanding that foreground pixels will correspond to the
foreground appearance model (and similarly for background pixels). The second term
requires rigid template matching and traditional LK, but only for pixels with high prob-
ability of being foreground. The relative weight of the two terms depends on σ, so adap-
tively changing this parameter moves the emphasis between appearance-based orderless
matching and rigid template matching. We next see that the Gauss Newton optimization
technique used in standard LK can be extended for the new objective function.

2.4 ELK Optimization Algorithm

maximizing Equation 17 in the context of a forward-additive LK algorithm is straight-
forward. Given image I taken at time t, we use F , the parameters of the conditional
distribution, to obtain a log probability images for foreground I1 = logP (I|hI = 1)
and background I0 = logP (I|hI = 0). Then, we use the standard first order Taylor
expansion to approximate each of them and arrive at the following objective function
that we wish to maximize:
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L(Δω) =
∑

p∈P

{Q0(p)[I0(p, ω) +∇I0
dW (ω)

dω
Δω] (18)

+Q1(p)[I1(W (p, ω)) +∇I1
dW (ω)

dω
Δω]

−Q(p)[T(p) − I(W (p, ω))−∇I
dW (ω)

dω
Δω]2}

where

Q0(p) = Pold(h
I(W (p, ω)) = 0) (19)

Q1(p) = Pold(h
I(W (p, ω)) = 1)

Q(p) =
1

4σ2
Pold(h

I(W (p, ω)) = 1, hT(p) = 1)

Equation 18 is an extension of the standard LK objective function. The third row works
on the input image I and is the regular LK objective function measuring the similarity
between the template and the image, weighted by Q. This term requires the pixels of the
template and image to match each other, but only if both of them are likely to be object
pixels. The first row works on the (log) likelihood background image I0 and requires the
motion to match the prior assignment of pixels to foreground and background, as given
by the weight function Q0. Similarly, the second row works on the (log) likelihood
foreground image I1 and requires the motion to match the prior assignment of pixels to
foreground and background, as given by the weight function Q1.

Taking the derivative of L with respect to Δω, setting it to 0 and rearranging into the
following vector notation:

V0 =
∑

p∈P

Q0(p)∇I0
dW (ω)

dω
(20)

V1 =
∑

p∈P

Q1(p)∇I1
dW (ω)

dω

V =
∑

p∈P

Q(p)[T(p)− I(W (p, ω))]∇I
dW (ω)

dω

M =
∑

p∈P

Q(p)[∇I
dW (ω)

dω
]T [∇I

dW (ω)

dω
]

Leads to the following equation:

V0 + V1 − 2V + 2MΔω = 0 (21)

And the solution is:

Δω = M−1(V − V0 + V1

2
) = M−1V −M−1(

V0 + V1

2
) (22)
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where the vectors V0, V1, V2, V are in Rl (l is the number of parameters of the transfor-
mation, i.e., l = 6 for 2D affine transformation) and the matrix M is an invertible l × l
matrix.

We obtained a simple extension of the standard LK solution which is Δω = M−1V
in our current notation, by adding a term corresponding to the gradient of the foreground
/ background (log) likelihood. Like in standard LK this step should be iterated several
times until convergence, and repeating the algorithm in multiple scales can enhance the
convergence range.

Note that since Q(p) is inversely proportional to σ (see Eq. 19), so is the vector V
and the matrix M , but not V0, V1. The term M−1V is invariant to σ, but the newly added
term M−1

(
V0+V1

2

)
is proportional to σ. Small σ values hence lead to the traditional

LK algorithm, and large σ emphasizes the new term. This is reasonable, as large σ
corresponds to a weak demand for template matching.

Figure 2 illustrates the main components of ELK. When a new image arrives, we
wish to maximize the expected log likelihood (Eq. 17) containing the two terms. In this
case, trying to match the template, or the foreground/background images separately
leads to wrong answer. Only the combined optimization function tracks the template
correctly.

a) Image b) Template c) Template term d) Log-likelihood term e) Combined

Fig. 2. Contribution of new log-likelihood terms to combined optimization function. From left
to right: a) Image with final target bounding box overlaid. b) Target template. c) optimization
function template matching term (weighted SSD), maximum marked in blue (brighter is better).
d) optimization function combined log-likelihood terms, maximum marked in red. e) Combined
optimization function including both template and log-likelihood, maximum marked in green.
On their own both template matching and log-likelihood terms do not point to the correct target
position however the combined loss does point out the correct target position.

3 Experiments

We evaluate ELK tracking performance using two data-sets1. The first is a recently
published tracking benchmark [26]. comparing 29 tracking algorithms on a challenging
set of 50 sequences. The sequences include abrupt motion, object deformations, in/out-
of-plane rotations, illumination changes, occlusions, blur and clutter. The second data-
set [22], also containing 50 sequences, depicts road scenes captured from 3 backwards
facing cameras mounted on a maneuvering vehicle. The data contains vehicle targets

1 Code and data will be made available at
http://www.eng.tau.ac.il/˜oron/ELK/ELK.html
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undergoing severe view point changes related to turning, overtaking maneuvers and
going around traffic circles, some examples are shown in figure 5. Results for 7 tracking
algorithms have been reported on this data-set, among which are recently published
algorithms which produce state-of-the-art results on the benchmark mentioned above.

We adopt the one-pass success criterion, suggested in the benchmark, which quan-
tifies both centering accuracy and scale. We measure the overlap between predicted
and ground truth bounding boxes, i.e. the intersection area of the boxes divided by the
union area, for each frame. A success curve is then computed for each sequence by mea-
suring the fraction of frames with overlap ≥ threshold for threshold values in [0, 1].
The success is then averaged over all sequences producing a final curve showing overall
performance of each method at every threshold value. In addition the area-under-curve
(AUC) is used as a figure of merit to compare between the different tracking methods.

3.1 Implementation Details

For each frame we run a single EM iteration: the transformation ω is optimized for
Pold(H

T, HI) computed in the previous frame, followed by an E-step to recompute
P (HT, HI). Taking a region-of-interest (ROI) around the last target position, we use
two scales, in the lower scale we search only for a 2D-translation in an exhaustive
manner. We then use this as an initial guess for the full resolution level where we search
for both location and scale using the Gauss-Newton iterations described in section 2.4.
We limit the number of Gauss-Newton iterations to 5 per frame. In addition we always
consider zero-order-hold (ZOH). This practice was found to help avoid singular scale
errors induced by gradient decent. Choosing between these two states is done using a
confidence measure as will be explained later.

The images processed are transformed into YCbCr representation, and photometri-
cally scaled to have standard deviation of 1 in every channel. We use a discriminative
classifier in order to obtain pixel foreground/background probabilities. The classifier
is trained by boosting random decision stumps [1]. Our feature space consists of pixel
YCbCr values in a 8x8 window around each pixel as well a histogram-of-oriented-
gradients (HOG) feature of 8 bin histograms built in 4 spatial cells of size 2 × 2. The
margins provided by the classifier are transformed into the range [0, 1] using a sigmoid.

In order to cope with target deformations and appearance changes we regularly up-
date both our target model and our foreground/background model every K frames (in
our experiments K = 5). This is done only when tracking confidence is high mean-
ing we are not occluded or drifting. We use two measures to establish tracking confi-
dence. The first is the weighted mean-square-error (MSE), between the current target
image and the predicted target location, normalized by mean weight value (punishing
for overall low foreground likelihood). As a threshold for this measure we use twice
its median value in a sliding temporal window. The second confidence measure is de-
manding that the median of the weight map exceeds a threshold (in our experiments
we use threshold= 0.75, meaning we require at least 50% of pixels to have fore-
ground likelihood greater than 0.75). The template and foreground/background model
are updated only if both measures indicate high confidence. When updating the tem-
plate we consider the current appearance, the previous appearance, or the initial ap-
pearance, taking the one producing the minimal normalized MSE. When updating the
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foreground/background model the image foreground/background weights are used as
weights for classifier training.

We note that using a standard PC our non-optimized Matlab implementation runs at
∼ 1fps, processing rate may vary according to target size.

3.2 Results

For the benchmark data-set [26], ELK produces results comparable to state-of-the-art
methods as presented in figure 3. It is ranked in 3rd place for overall performance on this
benchmark data-set (among 30 tracking methods evaluated), with AUC of 0.454 (fol-
lowing Struck 0.474 and SCM with 0.499). See table 2 for a full list of tracking methods
appearing in all figures. Performance of simple LK tracking (without our extensions) are
not presented since the simple LK tracker produces very poor results achieving an AUC
score of 0.05. Table 1 presents AUC and ELK rank for different sequence attributes
in the benchmark data-set. We observe that ELK ranks first or second for sequences
exhibiting out-of-plane rotations or deformation. It also produces decent results for se-
quences with fast motion scale variations, occlusions and in-plane rotations ranking 4th
in all categories. The lowest rank (7) is obtained for sequences with illumination varia-
tion. This is not surprising as both template appearance and object / background models
suffer from abrupt illumination variations affecting all terms in the optimized.
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     SCM  [0.499]
  Struck  [0.474]
     ELK  [0.454]
     TLD  [0.437]
    ASLA  [0.434]
     CXT  [0.426]
     VTS  [0.416]
     VTD  [0.416]
     CSK  [0.398]
     LSK  [0.395]

Fig. 3. Success plot for the benchmark data-set [26], showing top 10 methods (out of 30): ELK (in
Green) is ranked 3rd in overall performance demonstrating results comparable to state-of-the-art
methods (best viewed in color)
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Table 1. ELK success and rank for different sequence attributes in the benchmark [26] data-set

Attribute Number of Seq. AUC Rank

In-plane rotation 31 0.430 4
Out-of-plane rotation 39 0.462 2
Deformation 19 0.479 1
Scale variation 28 0.423 4
Occlusion 29 0.409 4
Illumination variation 25 0.390 7
Motion blur 12 0.336 5
Fast motion 17 0.387 4
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     ELK  [0.706]
      L1  [0.635]
    ASLA  [0.632]
     SCM  [0.603]
     LOT  [0.580]
     TLD  [0.576]
      CT  [0.372]

Fig. 4. Success plot for the vehicle data-set [22]: ELK (in Green) is ranked 1st in overall perfor-
mance, with a large margin, among 8 tracking methods evaluated on this data (best viewed in
color).

On the vehicles data set of [22], where template matching playes a more significant
role, ELK outperforms all the other methods tested with a significant margin. The suc-
cess plots are presented in figure 4. As can be seen in figure 5, this data set contains
challenging scenarios with respect to viewpoint, scale change, and illumination. How-
ever, the fact that vehicles are rigid provide more opportunities for template matching,
and makes ELK the clear winner. For this data simple LK achieved AUC of only 0.35.
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Frame 1 Frame 1 Frame 1 Frame 1

Frame 101 Frame 99 Frame 154 Frame 74

Frame 220 Frame 170 Frame 255 Frame 130

Fig. 5. Sample frames from the vehicle data-set [22] depicting vehicles undergoing severe view
point changes. Each column shows frames taken from the same sequence.

Table 2. List of tracking methods appearing in result figures

Method Paper

ASLA[14] Visual Tracking via Adaptive Structural Local Sparse Appearance Model
CSK[13] Exploiting the Circulant Structure of Tracking-by-Detection with Kernels
CT[29] Real-time Compressive Tracking
CXT[10] Context Tracker: Exploring Supporters and Distracters in Unconstrained Environments.
ELK Extended Lucas Kanade Tracking - Proposed method
L1[5] Real Time Robust L1 Tracker Using Accelerated Proximal Gradient Approach
LOT[23] Locally Orderless Tracking
LSK[18] Robust Tracking using Local Sparse Appearance Model and K-Selection
SCM[30] Robust Object Tracking via Sparsity-based Collaborative Model
Struck[12] Struck: Structured Output Tracking with Kernels.
TLD[15] Tracking-Learning-Detection
VTD[16] Visual Tracking Decomposition
VTS[17] Tracking by Sampling Trackers

4 Conclusions

ELK is a novel tracking algorithm combining template matching with pixel object /
background segregation. This special combination allows ELK to be more resistive to
drift as it can perform template matching while disregarding template background pix-
els. Additionally the new log-likelihood terms introduced into the optimization, can
direct the algorithm when deformation, that cannot be accounted for by the template,
occur. This allows the algorithm to maintain reliable tracking in the presence of severe
deformations until the model is updated.
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ELK was demonstrated to produce results comparable to state-of-the-art methods
on a recently published tracking data-set ranking 3rd among 30 tracking methods. In
addition, on a second challenging data-set, of vehicles undergoing severe view point
changes, ELK came in first outperforming 7 other tracking methods.

ELKs performance can be further improved through better occlusion reasoning and
explicit handling of illumination variations which is currently a weak spot for the
algorithm.
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