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Abstract. We propose an algorithm for segmenting natural images
based on texture and color information, which leverages the co-sparse
analysis model for image segmentation. As a key ingredient of this method,
we introduce a novel textural similarity measure, which builds upon the
co-sparse representation of image patches. We propose a statistical MAP
inference approach to merge textural similarity with information about
color and location. Combined with recently developed convex multilabel
optimization methods this leads to an efficient algorithm for interac-
tive segmentation, which is easily parallelized on graphics hardware. The
provided approach outperforms state-of-the-art interactive segmentation
methods on the Graz Benchmark.

1 Introduction

The segmentation of natural images is a fundamental problem in computer vi-
sion. It forms the basis of many high-level algorithms such as object recognition,
image annotation, semantic scene analysis, motion estimation, and 3D object
reconstruction.

Despite its importance, the task of unsupervised segmentation is highly ill-
posed and admittedly hard to evaluate. Therefore, we focus on supervised seg-
mentation where ambiguities are solved by additional user input (scribbles or
bounding boxes) and a clearly defined ground truth for performance evaluation
is available. One can compute data likelihoods from a given set of scribbles using
color texture or location. The simplest way is to compute the color distance of
each pixel to the mean color value for each label [17]. More sophisticated ap-
proaches use density estimators, e.g. histograms [1,30], mixtures of Gaussians
[25,28], or Parzen kernel density estimators [19]. Texture features were inte-
grated in interactive segmentation by learning classifiers [27,26], filter banks [31]
or SIFT features [29]. The integration of spatial information [2,19] also improved
the performance. While all features carry relevant information, for natural im-
ages texture features are particularly relevant, but harder to capture due to
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a) Original b) Santner et al.[26]
c) Nieuwenhuis &

Cremers[19]
d) Proposed

Fig. 1. Leveraging the co-sparse analysis operator for image segmentation yields a
simple texture descriptor that ultimately leads to state-of-the-art results on the Graz
interactive segmentation database. We compare against b) the texture-based approach
by Santner et al. [26], who train a random forest classifier on texture features and
c) spatially adaptive color models by Nieuwenhuis and Cremers [19], which locally
approximate texture. d) The proposed method based on co-sparsity.

their diversity and spatial extent. To extract textural information from images,
methods based on sparse representations are quite successful [13].

Commonly, sparsity is exploited via the synthesis model, aka sparse coding.
It assumes that every image patch can be approximated as a linear combination
of a few predefined atoms, which form the columns of a dictionary. With this,
the textural information is encoded in the set of active dictionary atoms, i.e.
the support of the sparse code. Finding this set for a given dictionary, however,
requires to solve a costly optimization problem.

In this paper, we propose a more efficient way to obtain textural information
by employing the co-sparse analysis model [7,18]. In this model, the sparse image
representation is determined efficiently by a simple matrix vector product. We
derive a novel textural similarity measure for image patches and demonstrate
that it can be successfully introduced into image segmentation approaches. To
the best of our knowledge, there has not yet been an attempt that employs
the co-sparse analysis model for extracting textural information. So far, the
model has only been successfully applied to regularize inverse problems such as
super-resolution, denoising or depth estimation [5,11]. We refer to [10,24,32] for
learning a co-sparse analysis model for natural images. The model has potential
impact also for segmentation tasks in other imaging methods, where structure
plays a prominent role, e.g. in medical imaging. Figure 1 shows that the pro-
posed measure combined with an efficient convex multilabel approach generates
convincing results for supervised segmentation problems, which outperform pre-
vious interactive state-of-the-art approaches [26,19].

Contributions

In this paper we present a novel approach for the task of supervised segmentation
of natural images, which yields state-of-the-art results on the Graz benchmark
for interactive segmentation. In particular, we make the following contributions.

– The co-sparse analysis model is leveraged for image segmentation through
a novel texture similarity measure. Until today, this model has only been
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employed for regularizing inverse problems, such as inpainting or denoising.
Showing that it is also useful for analyzing structural similarity (via the
proposed novel distance measure) is the main contribution of this paper.

– The proposed algorithm combines the co-sparse analysis model and recent
convex relaxation techniques within a single convex optimization problem.

– The method explicitly models the dependence between texture, color and
location leading to a space-dependent color and texture model. This accounts
for non-iid samples in scribble based probability density estimation.

– We merely require the four images in Figure 2 (which are not part of the
benchmark) to train the co-sparse analysis operator for texture recognition
and thus avoid over-fitting to specific benchmarks.

– The approach can be efficiently parallelized on graphics hardware with av-
erage runtimes of two seconds per image.

The paper is organized as follows. In Section 2, we derive a texture similarity
measure from co-sparse analysis. In Section 3, we integrate this likelihood into
a variational segmentation scheme, for which we give a convex relaxation and
minimization method in Section 4. In Section 5, we present experimental results.

2 Co-Sparse Textural Similarity

The co-sparse analysis model [7,18] is based on the assumption that if s ∈ R
N

denotes a vectorized image patch, there exists an analysis operator O ∈ R
k×N

with k > N such that a := Os is sparse. We refer to a ∈ R
k as the analyzed

version of s. Notice that the rows of O can be interpreted as filters and the
analyzed version of s as the corresponding filter responses. The two major dif-
ferences to the more commonly known synthesis model are: (i) the sparse code
is found via a simple matrix vector multiplication and (ii) the zero entries of a
are the informative coefficients describing the underlying signal. Concretely, the
textural structure of s is encoded in its co-support

Co(a) := {j | aj = 0}, (1)

where aj denotes the j-th entry of a. Geometrically, s is orthogonal to all rows
that determine the co-support and thus lies in the intersection of the respective
hyperplanes. Thus the co-sparsity of a vector s increases with the cardinality of

Fig. 2. The four training images used for learning the analysis operator
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Fig. 3. Sample filters from the co-sparse analysis operator O, which was learned from
natural images for 9x9 patches. The samples show that the operator includes low,
intermediate and high frequency signals as well as spatially global and local signals.

its co-support |Co(a)|, i.e. with the sparsity of its analyzed version a. A subset
of the signals learned by our operator is shown in Figure 3.

A prominent example for an analysis operator is the finite difference operator
in image processing. However, the advantage of the low computational complex-
ity of such an analytically given transformation comes at the cost of a poor
adaptation to specific signal classes of interest. It is now well-known that for
a particular class, sparser signal representations and thus better reconstruction
accuracies can be achieved if the analysis operator O is learned from a represen-
tative training set. Here, we employ an analysis operator learned according to the
geometric optimization procedure proposed in [10] from patches extracted from
natural images. As we only want to gather textural information independent of
varying illumination conditions, we follow the simple bias and gain model and
use patches s from a training set S that have been normalized to zero-mean and
unit-norm, i.e.

∑
i si = 0 and ‖s‖2 = 1. Given the smooth sparsity measure

g(a) :=
∑

j

log(1 + νa2j ), (2)

where ν > 0 is some constant, the optimal analysis operator aims at minimizing
the expected squared sparsity

O ∈ argmin
̂O

1
|S|

∑

s∈S
g(Ôs)2. (3)

This can be interpreted as a balanced minimization of expectation and variance
of the samples’ co-sparsity. For regularizing the set of feasible solutions, the
Euclidean norm of the rows of O is restricted to one, and the so-called coherence
property and the rank are controlled via two penalty functions. The optimization
problem is then tackled using a conjugate gradient method on an appropriate
manifold, cf. [10]. We initialize randomly, which - despite the non-convex nature
of the optimization problem - in practice leads to an optimal solution [10].

Since our ultimate goal is to discriminate between distinctive textures in nat-
ural images,a measure of textural similarity should better distinguish between
representative patches, i.e. patches that fit the co-sparse analysis model of nat-
ural image patches, while discriminating moderately for ”outlier”-patches, i.e.
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patches that seldom occur in natural images. This motivates us to measure the
textural similarity between two patches via

TSMO(s1, s2) :=

k∑

j=1

|1Co(Os1)(j)− 1Co(Os2)(j)|, (4)

where 1A is the indicator function of a set, i.e. 1A(j) = 1 if j ∈ A and zero
otherwise. This measure has two desired properties: 1) it distinguishes sensibly
between patches that fit the model well, i.e. patches with a large co-support, 2)
it does not heavily discriminate between patches that fit the model less.

To identify an ”average” textural structure from a set of m patches S =
{s1, . . . , sm} that serves as their textural representative, we provide the following
definition. A patch r ∈ R

N is called a textural representative of S if

r ∈ arg min
z

m∑

i=1

TSMO(si, z). (5)

So far, we considered truly co-sparse image patches, i.e. patches whose analyzed
versions contain many coefficients that are exactly zero. However, this is an
idealized assumption and in practice those patches are not truly co-sparse but
rather contain many coefficients that are close to zero. To account for this,
we introduce the mapping ισ : R

k → R
k as a smooth approximation of the

indicator function of the co-support, which is defined component-wise with a
free parameter σ > 0 as

(ισ(a))j = exp(−a2j/σ). (6)

In fact, it is easily seen that 1Co(a)(j) = limσ→0(ισ(a))j and limaj→0(ισ(a))j = 1.
With this approximation of the co-support, the textural similarity measure in

(4) of two patches s1 and s2 associated with the analysis operator O and σ is
approximated by

TSMO,σ(s1, s2) = ‖ισ(Os1)− ισ(Os2)‖1, (7)

with ‖·‖1 denoting the �1-norm. According to Eq. (5), a structural representative
r ∈ R

N of a set S = {s1, . . . , sm} with respect to TSMO,σ is

r ∈ arg min
z

m∑

i=1

TSMO,σ(si, z). (8)

Using the well-known fact that the centroid of a cluster with respect to the
�1-distance is the median of all corresponding cluster points, the approximated
co-support of the analyzed version of a structural representative fulfills

ισ(Or) = median({ισ(Osj)}mj=1). (9)
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3 Variational Co-sparse Image Segmentation

In this section, we derive a statistical MAP inference formulation for supervised
image segmentation based on the novel proposed textural similarity measure.
We explicitly model the dependence of texture and color on the scribble location
in the image to account for texture variations within regions, e.g. a sky which is
partially covered by clouds. At the same time this model alleviates the issue of
spatially non-iid distributed scribble samples for density estimation.

3.1 A Space Variant Texture and Color Distribution

For an image domain Ω ⊂ R
2, let I : Ω → R

d denote the input color (or gray
scale) image.

The segmentation problem can be solved by computing a labeling l : Ω →
{1, .., n} that indicates, which of the n regions each pixel belongs to, i.e. Ωi :=
{x ∣∣ l(x) = i}. In a statistical MAP framework the labeling l can be computed
by maximizing the conditional probability

argmax
l

P(l | I) = argmax
l

P(I | l) P(l). (10)

In the following, we will model the dependence of color and texture on the image
location. We use the image for two sources of information, color and structure.
Structure is obtained by computing the gray value image by eliminating the hue
and saturation and only keeping the luminance channel. Let sx denote a small
gray value texture patch centered at pixel x. With the assumption that a pixel
color jointly depends on the local structure sx given a location x and a label
l(x), but is independent of the label of other pixels we obtain

P(I | l) =
n∏

i=1

∏

x∈Ω

P(I(x), sx | l(x) = i, x). (11)

In the following, we derive the probability P(I(x), sx | l(x) = i, x) that a pixel at
location x belonging to segment i has color I(x) and texture patch sx. Assuming
independence, we can compute the likelihood of a pixel for belonging to region
i as

P(I(x), sx, |l(x)= i, x) = P(I(x) |l(x)= i, x)P(sx |l(x)= i, x). (12)

Given the set of scribble samples consisting of location, color, and texture patches
for each segment i, i.e.

Si :=
{
(xij , Iij , sxij ), j = 1, ..,mi

}
(13)

we can estimate the joint distribution from sample data. We use Parzen density
estimators [21], since they come with the advantage that they can represent
arbitrary kinds of probability densities and provably converge to the true density
for infinitely many samples. However, they require independent and identically
distributed samples. This assumption may be acceptable for color, but for texture
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Fig. 4. Estimation of the variance ρbg(x) of the spatial kernel in (14) for the background
region from the red scribbles. The spatial variance is proportional to the distance of
each pixel to the closest background scribble point. The larger the minimum distance to
the scribbles the larger the uncertainty in the density estimation and the more samples
will be taken into consideration.

and location it is clearly violated since patches and scribbles are by no means
spatially independent and identically distributed.

As a remedy, in [19] we proposed a spatially varying color distribution using
the following Parzen density

P(I(x) | l(x)= i, x) = 1
mi

mi∑

j=1

kρi(x)(x− xij)kμ(I − Iij). (14)

Here k denotes a kernel function with variance indicated as subscript. The idea
behind the spatial dependence of ρi(x) on x is that each color kernel is weighted
by a spatial kernel with location dependent variance in order to account for
non-iid samples. An intuitive explanation is that for pixels close to a scribble
we only want to use few samples in the direct vicinity of the pixel (and thus
a small spatial kernel variance) to estimate the color distribution since we are
quite certain what the color should be at that pixel. In contrast, if we are far
from all scribbles we use a large number of scribble points (and thus a larger
kernel variance) since we are uncertain about the color at the current pixel.

The variance of the spatial kernel ρi(x) is therefore adapted to the distance
of the current pixel x from the nearest user scribble of this label:

ρi(x) = α|x− xvi |2 (15)

where xvi is the closest scribble location of all pixels in segment i and α a scaling
factor, which we set to 1.3. Figure 4 shows the function ρi(x) for the spider image
and the background region. Thus, the spatial dependence of ρi(x) accounts for
spatially non-iid samples and at the same time for the level of uncertainty in the
estimator.

After the spatially varying color distribution we will now formulate the spa-
tially varying texture distribution P(sx|l(x)= i,x) - see (12). Using a Parzen
density estimator in a similar way as in (14) to obtain a texture distribution
is only possible for very small patches due to the high dimensionality of the
distribution, which would require a prohibitively large amount of samples not
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Fig. 5. We exemplarily estimate the spatially varying texture distribution for the back-
ground region (red scribbles) at three different locations in the image (A, B and C). The
results are shown on the right. The horizontal axis represents the (high-dimensional)
texture space with two representative patches below, the vertical axis the corresponding
estimated probability. The three distributions are different since we only use sample
patches from scribbles, which are close to the current location. If we are close to a
scribble (A and C) we only use neighboring background scribble points, but if the
closest scribble is far away (B) we use all background scribble samples to estimate the
distribution. This results in three different estimated medians in (18) and thus three
different peaks in the distribution. This procedure accounts for the spatially non-iid
distributed scribble samples.

provided by the user scribbles. For this reason we will formulate a spatially
varying texture distribution based on the co-support in equation (1).

As our goal is to extract local textural information in the vicinity of a pixel
x, we multiply each patch element-wise with a Gaussian mask to assign more
weight to the central pixels prior to normalization to zero-mean and unit-norm
according to Section 2. From these patches, we compute the approximated co-
support of a textural representative of each set of scribble points according to
equation (9), i.e.

ci = median({ισ(Osxij )}mi

j=1). (16)

Based on this we assign to each pixel x the a posteriori probability of belonging
to class i depending on the corresponding patch as

P(sx|l(x)= i, x) =
exp(− 1

β ‖ci − ισ(Osx)‖1)
∑n

j=1 exp(− 1
β‖cj − ισ(Osx)‖1)

. (17)

The parameter β > 0 controls the variance of the labeling l. It can be interpreted
as a measure of how well we trust the similarity measure for deciding to which
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class x belongs. Large values of β assign a pixel to each of the classes with
approximately equal probability, whereas small values of β assign x to the most
similar class with very high probability.

We now introduce the spatial variation (i.e. the dependence on scribble loca-
tion) into the distribution in (17) in order to obtain a spatially varying texture
distribution. Avoiding the Parzen density due to prohibitive dimensionality we
compute a spatially varying median based on the spatial kernel variance ρi(x)
in (15). The idea is that we only use the texture samples which are close to the
current pixel x with respect to ρi(x) to estimate the median:

ci(x) = median
|x−xij|2≤ρi(x)

({ισ(Osxij )}mi

j=1). (18)

This yields a spatially varying median of co-sparse analyzed texture patches,
which we can now introduce into the posterior probability distribution in (17).
Figure 5 shows how the spatially varying texture distribution locally adapts to
the closer scribble points.

Based on (12) in combination with (14) and (17) we can now compute the
joined spatially varying distribution over color and texture, which alleviates the
problem of non-iid samples and accounts for variable estimator certainty with
respect to the scribble distance.

3.2 Variational Formulation

Based on the segment probabilities P(
I(x), sx

∣
∣ l(x)= i, x

)
given in (12), (14) and

(17) we now define an energy optimization problem for the task of segmentation.
We specify the prior P(l) in (10) to favor regions of shorter boundary

P(l) ∝ exp
(− 1

2

n∑

i=1

Perg(Ωi)
)
, (19)

where Perg(Ωi) denotes the perimeter of each regionΩi, i.e. the boundary length,
measured in the metric g : Ω → R

+ (see (24)).
Instead of maximizing the a posteriori distribution (11), we minimize its neg-

ative logarithm, i.e. the energy

E =

n∑

i=1

λ
2Perg(Ωi)−

∫

Ωi

log
(P(

I(x), sx
∣
∣ l(x)= i, x

))
dx. (20)

The weighting parameter λ ∈ [0,∞] balances the impact of the data term and
the boundary length.

4 Minimization via Convex Relaxation

Problem (20) is the continuous equivalent to the Potts model, whose solution is
known to be NP-hard. However, a computationally tractable convex relaxation
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of this functional has been proposed in [3,4,12,22,34]. For more information and
implementation details see [20]. Due to the convexity of the problem the resulting
solutions have the following properties: Firstly, the segmentation is independent
of the initialization. Secondly, we obtain globally optimal segmentations for the
case of two regions and near-optimal – in practice often globally optimal – so-
lutions for the multi-region case. In addition, the algorithm can be parallelized
and run on GPUs.

4.1 Conversion to a Convex Differentiable Problem

To apply convex relaxation techniques, we first represent the n regions Ωi by
the indicator function u ∈ BV(Ω, {0, 1})n, where

ui(x) =

{
1, if x ∈ Ωi

0, otherwise
i ∈ {1, .., n}. (21)

Here BV denotes the functions of bounded variation, i.e. functions with a finite
total variation. For a valid segmentation we require that the sum of all indicator
functions at each location x ∈ Ω amounts to one, so each pixel is assigned to
exactly one label. Hence,

B =
{
u ∈ BV(Ω, {0, 1})n

∣
∣
∣

n∑

i=1

ui(x) = 1 ∀x ∈ Ω
}
. (22)

denotes the set of valid segmentations. To rewrite energy (20) in terms of the
indicator functions ui, we have to rewrite the boundary length prior in (19).
The boundary of the set indicated by ui can be written by means of the total
variation. Let ξi ∈ C1

c (Ω,R2) denote the dual variables and C1
c the space of

smooth functions with compact support.
Then, following the coarea formula [8] the weighted perimeter of Ωi is equiv-

alent to the weighted total variation

λ

2
Perg(Ωi) =

λ

2

∫

Ω

g(x) |Dui | = sup
ξi∈Kg

∫

Ω

ξi Dui = sup
ξi∈Kg

−
∫

Ω

ui div ξi dx (23)

with Kg=
{
ξ ∈ C1

c (Ω,R2)
∣
∣
∣ |ξ(x)| ≤ λg(x)

2 ∀x ∈ Ω
}
, see [34,20]. Dui denotes the

distributional derivative of ui (which is Dui = ∇ui dx for differentiable ui). The
final transformation in (23) follows from integration by parts and the compact
support of the dual variables ξi. A commonly used choice for the metric g

g(x) = 1
2γ exp

(
− |∇I(x)|

γ

)
, γ = 1

|Ω|

∫

Ω

|∇I(x)| dx, (24)

favors boundaries coinciding with strong intensity gradients |∇I(x)| and, thus,
prevents oversmoothed boundaries. Relaxing the set B to the convex set B̃ =

{
u ∈

BV(Ω, [0, 1])n
∣∣
∣
∑n

i=1 ui(x) = 1 ∀x ∈ Ω
}
we finally obtain the convex problem

min
u∈B̃

sup
ξ∈Kn

g

n∑

i=1

∫

Ω

− log
(P(

I(x), sx
∣
∣ l(x)= i, x

))
ui dx−

∫

Ω

ui div ξi dx. (25)
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4.2 Implementation

To solve the relaxed convex optimization problem, we employ a primal- dual
algorithm proposed in [22]. Essentially, it consists of alternating a projected
gradient descent in the primal variables ui with projected gradient ascent in the
dual variables ξi. An over-relaxation step in the primal variables gives rise to
auxiliary variables ūi:

ξt+1
i = ΠKg

(
ξti + τξ∇ūt

i

)

ut+1
i = ΠB̃

(
ut
i − τu(− div ξt+1

i + fi)
)

(26)

ūt+1
i = ut+1

i + (ut+1
i − ut

i) = 2ut+1
i − ut

i

where fi(x) := − log
(P(

I(x), sx
∣
∣ l(x)= i, x

))
, Π denotes the projections onto

the respective convex sets and the different τ denote step sizes for primal and
dual variables. These are optimized based on [23]. The projections onto Kg are

straightforward, the projection onto the simplex B̃ is given in [14]. As shown in
[22], the update scheme in (26) provably converges to a minimizer of the relaxed
problem.

Due to the relaxation we may end up with non-binary solutions ui ∈ B̃. To
obtain binary solutions in the set B, we assign each pixel to the label with max-
imum value ui, i.e. l(x) = arg maxi ui(x). This operation is known to preserve
optimality in case of two regions [4]. In the multi-region case optimality bounds
can be computed from the energy difference between the minimizer of the relaxed
problem and its reprojected version. Typically the projected solution deviates
less than 1% from the optimal energy, i.e. the results are very close to global
optimality [20].

5 Experiments and Results

To evaluate the proposed algorithm we apply it to the interactive Graz bench-
mark [26] for supervised segmentation and compare against state-of-the-art seg-
mentation algorithms. For all experiments we use a patch size of 9 × 9, and a
two times over complete analysis operator, i.e. k = 2∗81, which we have learned
from 50 000 randomly extracted patches from the images shown in Figure 2.

Note, that we do not require any training of the operator on the Graz bench-
mark set but use it as is, avoiding overfitting to specific benchmarks. The pa-
rameter σ in (6) required to measure the textural similarity was set to σ = 0.01.

5.1 Results on the Graz Benchmark

The Graz benchmark consists of 262 scribble-ground truth pairs from 158 natural
images containing between 2 and 13 user labeled segments. We used a brush
size of 13 pixels in diameter for scribbling as done by Santner et al. [26] and
Nieuwenhuis and Cremers [19], set λ = 2000 and the color kernel variance in
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(14) to μ = 1.3 for all experiments. To rank our method, we compare our results
with state-of-the-art interactive segmentation algorithms. The Random Walker
algorithm by Grady [9] for each pixel computes the probability that a random
walker starting from any scribble seed reaches it first based on color and texture
edges. In [27,26] Santner et al. train a random forest classifier based on CIELab
color as well as Haralick and Local Binary Pattern (LPB) texture features.

Finally, the approach by Nieuwenhuis and Cremers [19] uses spatially varying
color distributions which locally represent the texture in the image. Table 1 shows
the average Dice-score [6] for all methods. This score compares the overlap of
each region Ωi with its ground truth Ω̄i

dice(Ω1, ..Ωn) =
1

n

n∑

i=1

2|Ω̄i ∩Ωi|
|Ω̄i|+ |Ωi| . (27)

The results show that our proposed approach outperforms all of the previous
approaches. Especially for images, where texture is important to obtain the cor-
rect segmentation due to strongly overlapping color distributions in foreground
and background, the proposed method shows significant improvements. We show
several of these images in Figure 6. For example for the cats, the scorpion, the
leopard and the bears image the texture of the animals is the main distinction
criterion with respect to the background. The airplane image contains many dif-
ferent textures with similar colors, which are hard to distinguish, and the sign
on the wall can only be distinguished from the background by its texture. The
ground beneath the walking men changes color due to lighting and can only
be recognized by texture as well. For images, where color is sufficient to dis-
tinguish between the objects the improvements were minor, which explains the
moderate increase of the overall average benchmark score despite substantial
improvements for texture based images.

Table 1. Comparison of the average Dice-score (27) to state-of-the-art supervised
segmentation approaches by Grady [9], Santner et al. [26] and Nieuwenhuis and Cre-
mers [19] on the Graz benchmark.

Method Score

Santner et al. [26], Grayscale images, no texture 0.728

Grady [9], Random Walker 0.855

Santner et al. [26], RGB, no texture 0.877

Nieuwenhuis & Cremers [19], space-constant, no texture 0.889

Santner [26], CIELab plus texture 0.927

Nieuwenhuis & Cremers [19], space-varying color (texture approximation) 0.931

Proposed, space-varying color and co-sparse texture 0.937
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a) Original b) Grady [9] c) Santner et al.[26]
d) Nieuwenhuis &

Cremers [19] e) Proposed

Fig. 6. Comparison of supervised segmentation results based on the proposed co-sparse
analysis model to the approaches by Grady [9], Santner et al. [26] and Nieuwenhuis and
Cremers [19] on the Graz interactive segmentation benchmark. Note that our model
obtains strong improvements especially for those images, where color is insufficient and
texture is required to distinguish between objects.
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Original Yang et al. [33] Mignotte [15] Mobahi et al.[16] Proposed

Fig. 7. Application of our method to a few texture based images from the Berkeley
segmentation database. To obtain color and texture samples we use simple k-means
clustering with a hand-selected number of labels. We compare against texture segmen-
tation methods by Yang et al. [33], Mignotte [15] and Mobahi et al. [16]

5.2 Results on the Berkeley Segmentation Database

In order to compare against other texture segmentation approaches we finally
apply our method to a set of images from the Berkeley segmentation database.
Since this database does not provide user scribbles we use simple k-means clus-
tering with a hand-selected number of segments to obtain a set of representative
samples for each class in color and texture space. Even though this clustering
method yields highly suboptimal scribble information we still obtain good results
on several images that require texture for correct segmentation, see Figure 7. We
compare against the texture based segmentation methods by Mobahi et al. [16],
Yang et al. [33] and Mignotte [15].

5.3 Runtimes

The textural similarity analysis is based only on highly parallelizable filter op-
erations. Due to the additional inherently parallel structure of the optimization
problem in (26), the algorithm can be easily and efficiently implemented on
graphics hardware. The experiments were carried out on an Intel Core i7-3770
3.4 GHz CPU with an NVIDIA Geforce GTX 580 GPU. The average compu-
tation time on the Graz Benchmark is 2 seconds, which is along the lines of
Santner et al. [26] with 2 seconds and Nieuwenhuis and Cremers [19] with 1.5
seconds.
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6 Conclusion

In this paper we introduced co-sparse operator learning for texture recognition
into interactive image segmentation. The rows of the learned operator can be
interpreted as filters that are trained to deliver sparse filter responses for natural
image patches. In contrast to segmentation approaches that use filter banks, we
thus do not rely on the typically employed locally windowed filter histograms, but
can use an easy-to-implement measure to determine local structural similarity.
From this measure, a data likelihood is derived and integrated in a statistical
maximum a posteriori estimation scheme in order to combine color, texture, and
location information within a spatially varying joint probability distribution. The
arising cost functional is minimized by means of convex relaxation techniques.
With our efficient GPU implementation of the convex relaxation, the overall
algorithm for multiregion segmentation converges within about two seconds.
The approach outperforms state-of-the-art methods on the Graz segmentation
benchmark.
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