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Abstract. Models defined using higher-order potentials are becoming
increasingly popular in computer vision. However, the exact representa-
tion of a general higher-order potential defined over many variables is
computationally unfeasible. This has led prior works to adopt paramet-
ric potentials that can be compactly represented. This paper proposes a
non-parametric higher-order model for image labeling problems that uses
a patch-based representation of its potentials. We use the transformation
scheme of [11, 25] to convert the higher-order potentials to a pair-wise
form that can be handled using traditional inference algorithms. This
representation is able to capture structure, geometrical and topological
information of labels from training data and to provide more precise seg-
mentations. Other tasks such as image denoising and reconstruction are
also possible. We evaluate our method on denoising and segmentation
problems with synthetic and real images.

Keywords: random fields, biomedical image analysis, higher-order mod-
els, image denoising, image segmentation, structured prediction.

1 Introduction

Conditional and Markov random fields (CRF/MRF) are popular models for
representing regularized solutions to many computer vision problems, such as
object segmentation, optical flow and disparity estimation [28]. One variant of
these models, the pairwise random field, has been extensively used in computer
vision because it allows efficient inference of its Maximum a Posterior (MAP)
solution. However, the pairwise random fields only allow the incorporation of
statistical relationships between pairs of random variables and are unable to
enforce the high-level structural dependencies between pixels that have been
shown to be extremely useful for a variety of computer vision problems. Some
approaches try to overcome the limitations of pairwise terms with dense, fully-
connected CRFs [16].

The last few years have seen the successful application of higher-order CRFs
and MRFs to some low-level vision problems such as image restoration, disparity
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estimation and object segmentation [6, 10, 17, 18, 23, 24, 29]. These models
are composed of higher-order potentials, i.e., potentials defined over multiple
variables, which have higher modeling power. In general, it is computationally
unfeasible to exactly represent a higher-order potential function defined over
many variables. Representation of a general m order potential function of k-
state discrete variables requires km parameter values. This has led researchers
to propose a number of parametric families of higher order potentials that can
be compactly represented [4, 8–12, 14, 17, 21, 24–26].

In this paper, we propose a non-parametric pattern-based higher-order ran-
dom field. The higher-order potentials used in our model are defined using a data
driven approach. We use a pattern based representation [11, 14, 25] to encode
the structure and shape of the labels. This allows us to use the transformation
scheme of [11, 25] to convert the higher-order potentials to a general pairwise
form that can be handled using traditional inference algorithms such as belief
propagation (BP) [23] and tree-reweighted message passing (TRW) [13]. We eval-
uate the performance of our method in synthetic images, medical images and
the MSRCv2 dataset, and compare our results with conventional pairwise energy
regularization, a higher-order method [25] and structured random forests [15].

Although we adopt the transformation scheme in [25], the resulting algorithm
is more general. The approach in [25] uses higher-order potentials to define a prior
for binary texture denoising. These potentials are defined over each patch in the
image, encouraging the pixels in the patch to take a joint labeling from a pre-
defined global set of patterns. To make the problem computationally tractable,
the size of the global set of patterns is limited to a small number. This makes
this approach inadequate for tasks such as segmentation. In contrast, the poten-
tials in our model are conditioned on the data. This means that every potential
can choose the most suitable joint labeling from a local set of patterns selected
according to the observations. Since this local set can be different for every po-
tential, the global set of patterns that our model considers can be as large as
required by the application. Hence, the expressive power of our model is much
greater than the one in [25], at the same computational cost.

A number of methods in the literature have also adopted a data-driven philos-
ophy to solve image labeling problems. These methods generally work by find-
ing, for the image patch under consideration, the closest matches in the training
dataset [3, 5, 6, 19]. Instead, our approach uses the labeling candidates from the
matching patches to define a higher order energy whose minimization performs
the label aggregation to obtain a consistent solution.

Higher-order potentials have also been used for curvature regularization. In [22]
each potential considers an exhaustive enumeration of possible joint labelings for
its pixels. Since the labeling enumeration is exponential in the size of the patches,
patches must be small and the potentials can only impose a weak regularization.
In our work, however, possible joint labelings are learned from data and are, in
consequence, sparser than exhaustive enumeration. This permits larger patches
and more expressive potentials.



Non-parametric Higher-Order Random Fields 271

Our higher order potential can be seen as encoding a higher order likelihood [7]
function that takes into account all patches in the training set.

2 Non-parametric Higher-order Random Field (NHRF)

The energy of the pattern-based model for texture denoising is [25]

E(y) =
∑

i∈V
φi(yi|x) +

∑

c∈P
φ(yc), (1)

where V is the set of pixels of the image, x is the observed image data, y is the
vector of labels and P ⊂ 2V represents a set of cliques in the pixels of the image.
In this model there are two kinds of potentials: unary potentials φi defined over
individual pixels and higher-order potentials φ defined over many pixels. The
expressions xc and yc represent the elements of the image x and the labeling y
that correspond to the clique c. Notice that only the unary potentials φi, and
not the higher-order potentials, are dependent on the data x.

In our model, however, the higher order potentials defined over a set of vari-
ables directly depend on the pixel observations. The energy of our model is a
sum of higher order potentials φc,

E(y) =
∑

c∈P
φ(yc | xc) =

∑

c∈P
φc(yc). (2)

The cliques in P can overlap, have different sizes and shapes and be centered
on any pixel. For simplicity we work with square, fixed sized and overlapping
cliques centered on a grid of pixels with a given separation among them, that we
call stride. This layout has proven to be powerful enough for all our experiments.
The size of the m ×m clique and the stride of the grid s are hyper-parameters
of the model. It is required that s < m, or otherwise there would be pixels not
affected by any clique. The order of the energy is the number of pixels of every
clique in P , i.e., m2. Figure 1(a) shows the factor graph of our model.

The key idea for our higher-order potentials φc is that they have a data-
driven, non parametric representation based on a set of m × m patterns Y =
{Y(1),Y(2), . . . ,Y(t)}. As a first approach, the potential φc(yc) is defined so
that yc can only be equal to one of the patterns in Y. Otherwise, if the value of
yc is not in Y, φc(yc) will be infinity. To encode the fact that not all patterns
equally suit the observations xc of each patch, we use a set of costs {θc1, . . . , θct}
associated to each pattern. The cost θcq will be small when the pattern q provides
a good explanation for the observations xc.

Given these considerations, we could define the potential φc as

φc(yc) =

{
θcq if yi = Y

(q)
i ∀i ∈ c

∞ otherwise
. (3)

Hence, the variables of every patch can only have values that perfectly match one
of the patterns in Y, which we will call the active pattern of the patch. This model
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is constrained to use the patterns in Y, something very restrictive in practice. To
alleviate this restriction we will also allow deviations from patterns Y, but we
will penalize those deviations using a set of deviation cost functions dc1, . . . , d

c
t :

L|c| → R. Since their input is discrete, they can be defined as:

dcq(yc) =
∑

i∈c,l∈L
wc

qilδ(yi = l), (4)

where wc
qil is the cost of assigning the label l to the variable yi of the clique c when

that clique is considered to be associated to the pattern Yc
q. When a variable

has no deviation from the active pattern, the corresponding deviation cost is 0.
With the deviation functions we can define our potentials as

φc(yc) = min
q∈{1,...,t}

θcq + dcq(yc), (5)

where θcq and dcq depend on observation xc. Thus, given a labeling yc, the po-
tential φc(yc) will be the cost of the best pattern for the labeling plus the costs
of the deviations from that pattern.

Since the patches overlap, a pixel i can be included in multiple patches, and
it may occur that the labelings for those patches do not agree. The energy min-
imization solves these disagreements by assigning to yi the label that minimizes
the sum of deviations of the potentials that share the pixel.

The higher-order random field defined in this section does not specify the
structure model of the problem. Instead, the structure itself, and not only a set
of parameters, is learned from data. Thus, this is a non-parametric higher-order
random field (NHRF).

2.1 Transformation to a Pair-Wise Form

The energy (2) cannot be minimized directly. Instead, we use the sparse nature
of the potentials to transform the higher-order energy into a pairwise one by
introducing a pattern selection variable zc ∈ {1, . . . , t} for every patch c. This
variable selects the active pattern in that patch. This allows the transformation
of potentials to the equivalent form

φc(yc) = min
zc

hc(zc) +
∑

i∈c

gc(zc, yi), (6)

that has only unary and pairwise terms. The unary term hc(z) = θcz encodes
the cost of choosing the pattern z, and the pairwise terms gc(z, yi) = wc

ziyi

encode the deviation costs. Figure 1 depicts how this transformation changes
the appearance of the factor graph.

The global energy function (2) becomes

E(y) = min
z

∑

c∈P
hc(zc) +

∑

i∈c

gc(zc, yi), (7)
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Fig. 1. (a) Factor graph of a simple higher-order random field. (b) Transformation of
the higher-order random field to a pairwise random field.

and computing the MAP estimation y∗ = argminy E(y) is just a minimization
of a pairwise energy over the labels y and the selection variables z. We resort to
the standard inference algorithms tree-reweighted (TRW) message passing and
belief propagation (BP) to minimize it.

3 Training Non-parametric Higher-order Random Fields

Just like other structured prediction methods, our model requires pairs (x,y) of
images and their corresponding segmentations for training. The learning consists
on inferring the pattern set Y from data, as well as a method for estimating
the costs of the patterns for an observation of a patch xc. We could also learn
the deviation costs wc

qil from data, but the huge amount of parameters needed
would complicate both the model and the learning algorithm. We have seen in
our experiments that a single cost α for all deviations,

wc
qil =

{
0 if l = Y

(q)
i

α otherwise
, (8)

suffices for all practical cases. The deviation cost α is a hyper-parameter of
our model. It could be learned by cross-validation, but we have verified in our
experiments that large changes in α affect little or nothing the results. Therefore,
an arbitrary value such as α = 1 is typically used.

The training data consists of a set of images M = {x(1), . . . ,x(p)} and their
labelings N = {y(1), . . . ,y(p)}. From training data, we extract many pairs of
m×m image and label patches. We consider all overlapping patches centered on
a grid of pixels with a given stride. We will call X = {X(1), . . . ,X(t)} to the set
of patches extracted from training images, and the corresponding set of patches
extracted from labelings is the set of patterns Y described in previous section.

The patches in X and Y are used to estimate the costs when a new patch xc

from a testing image arrives. The costs θcq are computed by a dissimilarity func-
tion

θcq = d(xc,X
(q),Y(q)) (9)
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that measures how different the testing patch xc is from the training patch
with image X(q) and labeling Y(q). Therefore, equation (9) assigns higher costs
to patterns with higher dissimilarity with xc. This framework is very flexible
and many different dissimilarity functions can be considered depending on the
characteristics of the problem. We will discuss two of them.

Perhaps the simplest approach consists on ignoring the dependence on the
labeling patch and performing the dissimilarity computations only in the space
of image patches:

θcq = dX(xc,X
(q)). (10)

The function dX is in this case just a metric in the space of image patches. This
metric could be the standard Euclidean distance but, unless the relationship
between images and labels is simple, more involved alternatives such as learned
metrics are required. An interesting advantage of using dX as the dissimilarity
function is that, as a metric, it permits using a kd-tree for fast search of patches.

A second, more interesting approach is dropping the dependence on the image
patch and computing the dissimilarity directly with the labeling patch that will
be used for defining the corresponding higher-order potential:

θcq = dY (xc,Y
(q)). (11)

Since dY is not a metric, we need a way to relate the image observations from
patch xc to the labels in Y(q). We model this relationship with a probability
function P (Y(q) | xc), that estimates the probability that the pattern Y(q)

explains the observation xc, and define

dY (xc,Y
(q)) = − logP (Y(q)|xc). (12)

To deal with the number of parameters needed by this probability function, we
assume independence between variables, what leads to the factorization:

P (Y(q) | xc) =
∏

i

P (y
(q)
i | xc). (13)

This may seem a very strong assumption, since the labels in a pattern are
strongly correlated. However, label dependencies are already implicitly encoded
in the set of possible patterns Y and we do not need to learn them again in the
joint probability.

Every factor P (y
(q)
i | xc) is just the probability of a label in a single pixel given

the observations. A pixel-wise classifier is responsible of learning this probability.
In our experiments, we have used a variety of pixel-wise classifiers ranging from
simple Gaussian classifiers to random forests.

A very convenient consequence of dropping the dependence on X(q) from
the dissimilarity function is that the cardinality of the pattern set Y can be
greatly reduced. Indeed, it is not necessary to store the image patches from X to
compute the costs with dY . Also, the set Y has lots of very similar or repeated
elements. Therefore, a clustering on Y is able to reduce the number of patterns
by removing duplicates and similar patterns.
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Inference. Given a new testing image x, first the set of cliques P must be
defined. Then, for every patch xc corresponding to a clique c in the testing image,
we should compute the costs, d (9), of all patches extracted in the training step
and build the higher-order potentials of the random field with them. However,
such an amount of data per potential function is prohibitive in terms of memory.

In practice, we do not keep all t costs and patterns in every higher-order
potential φc, but only a subset of the t′ patterns with the lowest costs, with
t′ � t. The subset of t′ patterns with lowest costs for a clique c of the testing
image will be called the set of local patterns, or candidates, of that clique. The
rest of patterns in Y with larger costs are simply ignored, assuming than their
costs are too large to be considered. For reference, t′ is in the order of tens or,
at most, hundreds.

The NHRF is defined once every potential φc has been fully determined with
its candidates and their associated costs. Then, it is converted to pair-wise form
as defined in Section 2.1 and inference is performed via energy minimization
with TRW or BP.

To clarify previous discussion, Figure 2 shows an example of the training of a
NHRF and Figure 3 shows some details of a NHRF built for a testing image.

4 Experiments

By using patterns previously seen in training data, the NHRFs implicitly in-
tegrate high-order geometric and topological information. We have conducted
several experiments with both synthetic and real images to assess the power of
the NHRFs in image denoising and segmentation, respectively.

4.1 Occluded Squares

In this experiment we analyze the performance of NHRFs and compare it with
other approaches using synthetic images. These images feature occlusions and a
high level of noise. We use a dataset of 150 × 150 images with 50 × 50 squares
in several orientations. The images are highly perturbed with noise and circular
holes that occlude the squares. Figure 4(a,b) shows some images of the testing
dataset and the corresponding labelings.

We use 500 images with their labelings for training. We extract all possible
21 × 21 patches with a stride of 2 pixels. We end up with more than 2 million
image and label patches. Since we will use the Euclidean distance in the space
of image patches (i.e., dX) as our dissimilarity function, we build a kd-tree with
the image patches.

For a new image, we define our set of cliques P as all the 21 × 21 squared
cliques with a stride s = 2 pixels. For every clique, we look for the nearest
t′ = 15 candidates in the space of image patches.

Figure 4(d) shows the segmentation obtained for a test image. The accuracy
of the method is 99.7%, and the average Jaccard index is 97.28%. The NHRF
model is able to discover that circular structures are not part of the objects of
interest, while straight lines and corners are.
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Fig. 2. Training of a NHRF. Given the training data (a), we extract all m×m patches
with stride s as shown in (b). For clarity, (b) shows only a small 40×40 fragment from
training data. In this example, m = 24 and s = 16 pixels. The patches extracted from
images and labelings form the sets X and Y, respectively. (c) shows some elements of
these sets. When costs are estimated with dissimilarity dX , a kd-tree with elements
of X is built (d). When dY is used instead, clustering over Y is performed to obtain a
reduced set of patterns without repeated elements. (e) shows some patterns obtained
after clustering.

Fig. 3. Example of a higher-order potential in a NHRF. Given a testing image (a),
m×m cliques are configured in a grid with stride s in a similar way to Figure 2(b). For
every clique, we look for the t′ patterns with lowest costs. These are the candidates for
those cliques. (b) shows the candidates found for the the clique marked in (a).
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(a) (b) (c) (d)

Fig. 4. Results for the square dataset. (a) Testing images. (b) Ground-truth. (c) Results
with a random forest pixel-wise classifier with pairwise regularization. (d) NHRF.

We have also segmented these images using a pixel-wise random forest classi-
fier trained with the same training dataset. The results of the classifier are then
regularized minimizing a 4-connected pair-wise energy via graph-cuts [2]. The
capacities of the edges are equal across the grid and set via cross-validation. The
accuracy reached with pair-wise regularization is 98.45% and the Jaccard index
is 86.89%. Figure 4(c) shows the results obtained. Despite the good quantitative
results, this figure proves that pixel-wise classifiers and pair-wise regularization
are not powerful enough to regularize the segmentation of objects where high-
level shape information is present. Instead, the NHRF method exploits that kind
of information to obtain better labelings with straight lines and sharp corners.
Moreover NHRFs do not present the undesirable effect of the shrinking bias and
metrication errors present in pair-wise regularization (see Figure 4(c)).

4.2 Binary Image Reconstruction and Denoising

In this experiment we examine the performance in image reconstruction and
denoising. We use the Brodatz D101 texture shown in Figure 5. A fragment of
that texture is used both as the training image M = {x(1)} and as labeling im-
age N = {y(1)} (Figure 5(a)). A different fragment is selected as ground-truth
(Figure 5(c)). The ground-truth is perturbed with 30% of noise, (Figure 5(b))
and used as input. The patch size is m = 10 pixels, and the stride between
consecutive patches is s = 1 pixel. The costs of the patterns θcq are computed
using the dissimilarity dX . The deviation cost is set to an arbitrarily large num-
ber α = 1000. The resulting energy is finally minimized using TRW. Figure 5(f)
shows the result of the minimization.

We also reconstructed the input image in Figure 5(b) using, first, a standard
pair-wise regularization approach with 4-connected pixels, submodular terms
and equal capacities for all edges and, second, the global patterns algorithm
introduced in [25]. Figure 5(e,f) shows the results obtained with these methods.

Quantitative pixel error of the reconstruction for the NHRF is 5.96%. The
error of pair-wise regularization and global patterns are respectively 9.68% and
9.32%.

Qualitatively, the results show that pair-wise regularization does not maintain
the overall image structure. The global pattern method of [25] partially maintains
the image structure, although it makes some small holes disappear. Moreover,
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(a) (b) (c) (d) (e) (f)

Fig. 5. Example of binary image reconstruction. The training is done with image (a)
and the testing with image (b), whose ground-truth is (c). (d) Results with pair-wise
regularization, (e) global patterns [25], (f) NHRF. The size of all images is 200 ×
200 pixels.

the reconstruction also keeps part of the noise, specially visible in the jagged
image boundaries, due to the unary terms. The reconstruction obtained with
the NHRF is superior to the others both in terms of maintenance of image
structure and noise removal.

This experiment is a good example of the limitations of the global pat-
terns [25]. As discussed in Section 1, the number of global patterns is restricted
by practical considerations. In this experiment the chosen number of global pat-
terns, 50, cannot model the variety of shapes and structures that occur in the
simple repetitive texture under consideration. In the segmentation of real world
images this limitation is expected to be even more pronounced. However, for the
NHRF, 50 local patterns for every potential chosen according to the observations,
are more than adequate for this problem.

4.3 Mitochondria Segmentation

The segmentation of electron microscopy (EM) imaging of the brain is one of
the areas where the NHRFs can provide better results. In the first place, brain
structures such as mitochondria have a very characteristic shape and topology:
they are simply connected structures with no holes and tubular-like shapes. The
NHRFs capacity for learning shape and topology makes them a suitable tool for
this application.

We will use the EM dataset from [20]. This dataset is a labeled sample of
the rat hippocampus (see Figure 2(a)). The dataset is divided in two stacks of
the same size for training and testing. Each stack consists of 165 slices with
size 384× 512 pixels.

We use the the dissimilarity function dY to estimate the costs of candidates.
From the labeling slices of the training stack we extract all m×m patches with
a stride of s pixels. We have performed experiments with several patch sizes. For
reference, in the case of m = 24 pixels this gives about 2 million patches. After
clustering, the number of patterns drops to 12261. Some of them are shown in
Figure 2(e). For our pixel-wise classifier, we use boosted context cues [1], a set
of features that has proved to perform specially well for the segmentation of
synaptic junctions and other brain structures.
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We compare the NHRF method with the performance of the pixel-wise clas-
sifier with and without pair-wise regularization. We also include the structured
random forest (SRF) method from [15] in our comparison. The SRF is an ex-
tension to the standard random forest that aims to integrate structural label
information of the images to segment. Table 1(left) presents results for some
combinations of patch size m and deviation cost α.

As expected, the NHRF model improves the results obtained by the pixel-wise
classifier alone and with pair-wise regularization. These results are, to the best
of our knowledge, the state-of-the-art in this dataset.

The performance of the SRF is poor in this dataset. This could be attributed
to the fact that SRFs are good learning the relative position and relations among
the labels, but they do not learn the shapes and topological features of each label,
as the NHRFs do.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Results for the hippocampus dataset. (a) Testing image. (b) Ground-truth.
(c) Pixel-wise classifier. (d) Pair-wise regularization. (e) Structured random forest [15],
(f) NHRF (m = 24 pixels, α = 1).

Although the quantitative results prove the good performance of the NHRFs,
the qualitative results give complementary insights. In Figure 6 the effects of the
higher-order regularization are very noticeable. The regions obtained with pair-
wise regularization do not resemble the appearance of real mitochondria. The
boundaries are ragged and background regions with arbitrary shapes are still
present. The NHRF leads to much more realistic looking results. Most regions
have smooth, rounded boundaries like real mitochondria. With the SRF the
shapes of the regions look less alike real mitochondria.

The running time depends on the size of the patch. For the best size m = 24,
the inference takes around 10 minutes per image using the TRW implementation
from [13]. For m = 15 this time falls to 4 minutes.

Figure 7 clarifies some aspects of our method. The patch size m noticeably
affects to the results of the segmentation (see Table 1(a)). However, the method
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(a) (b)

Fig. 7. (a) Jaccard score vs. patch size m. The horizontal dashed line marks the
performance of the pixel-wise classifier. (b) Energy and lower bound evolution during
the inference procedure of a slice. Both plots are for the mitochondria dataset.

is robust to the choice of m, providing similar performance in a broad range of
values (m ∈ [10, 30]) as seen in Figure 7(a). The performance falls for larger patch
sizes since the available training data is insufficient to provide a representative
sample of the space of labeling patches. However, even for patches as large as
m = 50 the NHRF performs better than the pixel-wise classifier.

Missing the energy optimum is another issue commonly raised with minimiza-
tion methods such as TRW or BP. Figure 7(b) plots the evolution of the energy
and the lower bound computed by TRW for a slice of the mitochondria dataset.
The energy comes very close to the lower bound. This has been the case in all
our experiments.

4.4 MSRCv2 Dataset

The MSRCv2 dataset [27] consists of 591 images annotated with 21 classes. The
annotations are coarse and incomplete, with areas marked as void where none
of the classes is valid. The 591 images are split into 315 training and 276 testing
images (roughly 55%-45%).

From the training images we extract all patches centered at pixels of a grid
with a stride of 5 pixels. We repeat this procedure with two different values for
the patch size m: 11 and 21 pixels. This leads to approximately 800K patches
extracted for m = 11 pixels and 750K for m = 21 pixels. As in the previous
experiment, we use the dissimilarity dY to compute costs. After clustering, we
obtain t = 8417 patterns for the patch of size m = 11 pixels and t = 19549 pat-
terns for the patch of size m = 21 pixels.

From the training data we also train a random forest classifier with HOG,
texture and color features. The HOG features are extracted with 6×6 pixels per
cell and 4× 4 cells per patch, with 9 bins for each histogram. For every cell we
also include 4 texture descriptors and 2 color values (the a and b channels of the
CIELAB color space), leading to a total of (9 + 4+ 2)× 16 = 240 dimensions of
the feature vector.
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We perform segmentation and regularization of the testing images with NHRFs
for the mentioned patches size, and for different values of the deviation costs.
Table 1(right) summarizes the results and compares the performance with other
algorithms. In this table we report the global accuracy (the percentage of pixels
that were correctly classified) and the average Jaccard index over all classes.
As in [15], we ignore the pixels annotated as void in the ground-truth from the
estimation of all validation metrics.

Table 1. Quantitative results for hippocampus (left) and MSRCv2 (right) datasets.
Numbers in parentheses indicate parameters (m,α) of the NHRF.

Hippocampus
Method JAC ACC

Boost context cues (BCC) 72.50 98.20
BCC+pw regularization 73.62 98.31
BCC+NHRF (24, 1) 76.20 98.51
BCC+NHRF (24,100) 75.94 98.49
BCC+NHRF (50, 1) 72.92 98.32
SRF [15] 31.68 94.27

MSRCv2
Method Avg. JAC ACC

Random forest (RF) 23.6 56.6
RF+pw regularization 24.6 58.4
RF+NHRF (11, 1) 24.5 58.6
RF+NHRF (21, 1) 25.7 59.9
RF+NHRF (21, 10) 25.7 59.9
SRF [15] 27.0 57.6

We also compare our results with the SRF [15]. We use the same training
parameters given in [15]: feature patch size of 24×24, 10 trees and 500 iterations
per node stopping when less than 5 samples per leaf were available. The results
obtained with this method are better for this dataset than for the hippocampus.
This is reasonable, since this dataset relies on the relative positions of the classes
much more than on the shapes of the classes. In fact, the shapes and geometry
of the classes are rather unimportant in this dataset due to the coarse labeling of
the training data. This affects negatively the performance of the NHRF method,
which is very dependent on shapes. Nevertheless, the NHRF results are still
compelling. This proves that they are also able to learn and make use of the
relative positions of the classes in a similar way as the structured random forests
do. Moreover, the MSRCv2 dataset has been manually segmented in a coarse
way, with loose boundaries and imprecise shapes. The Jaccard index is very
sensitive to differences in the segmentation of boundaries with respect to the
ground-truth, so this affects its reliability in this particular dataset. Hence, the
performance differences related to this index are not very informative.

Figure 8 shows a qualitative comparison of the segmentations obtained with
different methods for several images. The NHRFs get good results in many im-
ages of the dataset. Thanks to the learned shapes and relative positions of la-
bels, they are able to overcome the noisy segmentations produced by the random
forests, and in many cases their results are better than the ones obtained with
the SRFs.
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(a) (b) (c) (d) (e) (f)

Fig. 8. Qualitative results. (a) Test images. (b) Ground-truth. (c) Random forests.
(d) Pair-wise regularization. (e) Structured random forests [15]. (f) NHRF with m =
21 pixels and α = 1. The last row presents a difficult case where the NHRF fails.

5 Conclusions

Higher-order potentials are required to capture structural, geometric and topo-
logical information that weaker pair-wise potentials are unable to exploit. How-
ever, parameterizing higher-order potentials is hard. In this paper we propose to
use a soft and sparse representation of higher-order potentials based on a set of
patterns extracted from training data. Our higher-order potentials are directly
conditioned on data and no unary terms are required. This allows us to define a
set of local patterns for every higher-order potential, making our method more
expressive than approaches with global patterns.

A NHRF is defined as the sum of these higher-order potentials. The inference
procedure in a NHRF is constrained to use the patterns of its potentials with
small deviations to build the resulting labeling.

Our experiments prove, both in synthetic and real datasets, that NHRFs
provide better results than pixel-wise classifiers alone and with pair-wise regu-
larization. Moreover, our results are comparable or better than those of the SRF,
that was designed to learn labeling structure, but not shape or topology. The
NHRFs have also applications in areas other than segmentation, such as image
denoising and reconstruction, where they get appealing results.
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