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Abstract. Video object co-segmentation refers to the problem of simultaneously
segmenting a common category of objects from multiple videos. Most existing
video co-segmentation methods assume that all frames from all videos contain
the target objects. Unfortunately, this assumption is rarely true in practice, par-
ticularly for large video sets, and existing methods perform poorly when the
assumption is violated. Hence, any practical video object co-segmentation al-
gorithm needs to identify the relevant frames containing the target object from
all videos, and then co-segment the object only from these relevant frames. We
present a spatiotemporal energy minimization formulation for simultaneous video
object discovery and co-segmentation across multiple videos. Our formulation in-
corporates a spatiotemporal auto-context model, which is combined with appear-
ance modeling for superpixel labeling. The superpixel-level labels are propagated
to the frame level through a multiple instance boosting algorithm with spatial rea-
soning (Spatial-MILBoosting), based on which frames containing the video ob-
ject are identified. Our method only needs to be bootstrapped with the frame-level
labels for a few video frames (e.g., usually 1 to 3) to indicate if they contain the
target objects or not. Experiments on three datasets validate the efficacy of our
proposed method, which compares favorably with the state-of-the-art.

Keywords: video object discovery, video object co-segmentation, spatiotempo-
ral auto-context model, Spatial-MILBoosting.

1 Introduction

The problem of simultaneously segmenting a common category of objects from two
or more videos is known as video object co-segmentation. Compared with object seg-
mentation from a single image, the benefit is that the appearance and/or structure infor-
mation of the target objects across the videos are leveraged for segmentation. Several
previous methods [9,13,27] have attempted to harness such information for video object
co-segmentation.

However, these methods [9, 13, 27] all made the assumption that all frames from all
videos contain the target object, i.e., all frames are relevant. Moreover, a closer look
at the video datasets employed in previous papers reveals that the object instances in
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Fig. 1. The flowchart of our video object discovery and co-segmentation method

different videos are frequently the same object [9], or only exhibit small variations in
color, shape, pose, size, and location [13, 27]. These limitations render such methods
less applicable to real-world videos, such as those online videos gathered from a search
engine in response to a specific query. The common objects in these videos are usually
just of the same category, exhibiting dramatic variations in color, size, shape, pose, and
viewpoint. Moreover, it is not uncommon for such videos to contain many irrelevant
frames where the target objects are not present. This suggests that a practical video
object co-segmentation method should also be capable of identifying the frames that
contain the objects, i.e., discover the objects.

We present a spatiotemporal energy minimization formulation to simultaneously
discover and co-segment the target objects from multiple videos containing irrelevant
frames. Fig. 1 presents the flowchart of our method. Bootstrapped from just a few (of-
ten 1-3) labeled frames indicating whether they are relevant or not, our method incurs a
top-down modeling to propagate the frame-level label to the superpixels through a mul-
tiple instance boosting algorithm with spatial reasoning, namely Spatial-MILBoosting.
From bottom up, the labels of the superpixels are jointly determined by a spatiotem-
poral auto-context model induced from the Spatial-MILBoosting algorithm and an ap-
pearance model using colors.

The learning of the spatiotemporal auto-context model, cast together with the color
based appearance model as the data term, is embedded in a spatiotemporal energy mini-
mization framework for joint object discovery and co-segmentation. Due to the embed-
ded formulation, the learning of the spatiotemporal auto-context model (hence the object
discovery), and the minimization of the energy function conducted by min-cut [6, 7]
(hence the object co-segmentation), are performed iteratively until convergence. The
final output of our method includes a frame-level label for each frame indicating if it
contains the target object, and a superpixel-level labeling of the target object for each
identified relevant frame.

As a key component of our formulation, our proposed spatiotemporal auto-context
model extends the original auto-context model [31] to also capture the temporal context.
Our embedded formulation also facilitates learning the model with only weak super-
vision with frame-level labels using the Spatial-MILBoosting algorithm. The Spatial-
MILBoosting allows information to be propagated between the frame level and the
superpixel level, and hence facilitates the discovery of the objects and the co-
segmentation by effectively exploiting the spatiotemporal context across multiple
videos.
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In summary, the key contributions of this paper are: (1) We propose a method to
simultaneously discover and co-segment of a common category of objects from multi-
ple videos containing irrelevant frames. (2) To facilitate both the object discovery and
co-segmentation, we model the spatiotemporal contextual information across multiple
videos by a spatiotemporal auto-context model learned from a Spatial-MILBoosting
algorithm. (3) To exactly evaluate the proposed method, we collect and release a new
10-categories video object co-segmentation dataset with ground truth frame-level labels
for all frames and pixel-wise segmentation labels for all relevant frames.

2 Related Work

Video Object Discovery. Video object discovery has recently been extensively studied,
in both unsupervised [18,42] or weakly supervised [19,24] settings. Liu and Chen [18]
proposed a latent topic model for unsupervised object discovery in videos by combin-
ing pLSA with Probabilistic Data Association filter. Zhao et al. [42] proposed a topic
model by incorporating a word co-occurrence prior into LDA for efficient discovery of
topical video objects from a set of key frames. Liu et al. [19] engaged human in the loop
to provide a few labels at the frame level to roughly indicate the main object of inter-
est. Prest et al. [24] proposed a fully automatic method to learn a class-specific object
detector from weakly annotated real-world videos. Tuytelaars et al. [32] surveyed the
unsupervised object discovery methods, but with the focus on still images. In contrast,
our video object discovery is achieved by propagating superpixel-level labels to frame
level through a Spatial-MILBoosting algorithm.

Video Object Segmentation/Co-segmentation. Video object segmentation refers to
the task of separating the objects from the background in a video, either interac-
tively [4,28,30] or automatically [8,12,16,17,20,22,23,41]. A number of methods have
focused on finding the object-like proposals for this problem [16, 20, 23, 41]. Several
methods track feature points or local regions over frames, and then cluster the resulting
tracks based on pairwise [8, 30] or triplet similarity measures [17, 22]. Tang et al. [28]
proposed an algorithm for annotating spatiotemporal segments based on video-level la-
bels. Grundmann et al. [12] cluster a video into spatiotemporal consistent supervoxels.

Several video object co-segmentation methods [9, 13, 27] have been proposed re-
cently to simultaneously segment a common category of objects from two or more
videos. They made the assumption that all frames from all videos should contain the tar-
get object. Chiu and Fritz [10] proposed an algorithm to conduct multi-class video ob-
ject co-segmentation, in which the number of object classes and the number of instances
are unknown in each frame and video. Our method jointly discovers and co-segments
the target objects from multiple videos, in which an unknown number of frames do not
contain the target objects at all.

Image Co-segmentation. Our work is also related to image co-segmentation [5, 11,
15, 26, 33, 34], where the appearance or structure consistency of the foreground objects
across the image collection is exploited to benefit object segmentation. The objective
of image co-segmentation is to jointly segment a specific object from two or more
images, and it is assumed that all images contain that object. There are also several
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Table 1. Principal notations

V A collection of N videos lni The label of fn
i , lni ∈ {0, 1}, where 1

L The frame-level labels of V means that fn
i is relevant, i.e., fn

i contains
B A segmentation of V the target object
V n The nth video in V with Nn frames bni A segmentation of fn

i

Ln The frame-level labels of V n snij The jth superpixel in fn
i

Bn A segmentation of V n bnij The label of snij , bnij ∈ {0, 1}, where 1
fn
i The ith frame of V n with Nn

i superpixels means that snij belongs to the target object

co-segmentation methods that conduct the co-segmentation of noisy image collections
[25,38], in which several images do not contain the target objects. In our work, we focus
on video object discovery and co-segmentation with noisy video collections, where
many frames may not contain the target objects.

3 Problem Formulation

For ease of presentation, we first summarize the main notations in Table 1. Then we
present the proposed spatiotemporal energy minimization framework for simultaneous
object discovery and co-segmentation across multiple videos, along with details of the
spatiotemporal context model and the Spatial-MILBoosting algorithm.

Given a set of videos V , our objective is to obtain a frame-level label lni for each
frame fn

i indicating if it is a relevant frame that contains the target objects, and a
superpixel-level labeling bni of the target object for each identified relevant frame fn

i

(lni = 1). We cast this problem into a spatiotemporal energy minimization framework.
Then, our energy function for simultaneous object discovery and co-segmentation from
multiple videos V becomes

E(B) =
∑

snij∈V
D1

j (b
n
ij) +

∑

snij∈V n

D2
j (b

n
ij)

+
∑

snij ,s
n
ik∈Nj

S1
jk(b

n
ij , b

n
ik) +

∑

snij ,s
n
uk∈N̄j

S2
jk(b

n
ij , b

n
uk), (1)

n = 1, . . . , N, i = 1, . . . , Nn, j = 1, . . . , Nn
i ,

where D1
j (b

n
ij) and D2

j (b
n
ij) compose the data term, measuring the cost of labeling

superpixel snij to be bnij from a spatiotemporal auto-context model and a color based
appearance model, respectively. The spatiotemporal auto-context model builds a multi-
layer Boosting classifier on context features surrounding a superpixel to predict if it is
associated with the target concept, where subsequent layer is working on the probabil-
ity maps from the previous layer, detailed below in Sec. 3.1. Hence, D1

j (b
n
ij) relies on

the discriminative probability maps estimated by a learned spatiotemporal auto-context
model. It is learned to model the spatiotemporal contextual information across multi-
ple videos V , and thus is video independent. While the appearance model is estimated
by capturing the color distributions of the target objects and the backgrounds for each
video V n, and thus is video dependent.
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S1
jk(b

n
ij , b

n
ik) and S2

jk(b
n
ij , b

n
uk) compose the consistency term, constraining the seg-

mentation labels to be both spatially and temporally consistent.Nj is the spatial neigh-
borhood of snij in fn

i . N̄j = {↼snij ,
⇀snij} is the temporal neighborhood of snij , i.e., its

corresponding next superpixel ⇀snij in fn
i+1 and previous superpixel ↼snij in fn

i−1. The su-
perpixels are computed by using SLIC [1], due to its superiority in terms of adherence
to boundaries, as well as computational and memory efficiency. However, the proposed
method is not tied to any specific superpixel method, and one can choose others.

The particular spatiotemporal auto-context model embedded in the energy function is
learned through a multiple instance learning algorithm with spatial reasoning (Spatial-
MILBoosting), and hence it can propagate information between the frame level and the
superpixel level. From top down, the label of frame is propagated to the superpixel level
to facilitate the energy minimization for co-segmentation; from bottom up, the labels
of superpixels are propagated to the frame level to identify which frame is relevant.
Bootstrapped from just a few frame-level labels, the learning of the spatiotemporal
auto-context model (hence the object discovery), and the minimization of the energy
function conducted by min-cut [6,7] (hence the object co-segmentation) are performed
iteratively until it converges. At each iteration, the spatiotemporal auto-context model,
the appearance model, and the consistency term are updated based on the new segmen-
tation B of V .

3.1 Spatiotemporal Auto-context Model

FrameFrame Frame

Probability map Probability map Probability map

1
n
i
f
1

n
i
f 1

n
i
f
1

1
n
i
P

1
n
i
P

1
n
i
P

1

n
ij
s nnnnnsssss n

ij
s n

ij
s nnnnnsssss

n
ij
s nnnnssssssss n

ij
s n

ij
s nnssssss

Fig. 2. The spatiotemporal auto-context feature

We extend the auto-context model
originally proposed by Tu [31] and
later tailored by Wang et al. [36, 37,
40] for video object discovery and
co-segmentation. The original auto-
context model builds a multi-layer
Boosting classifier on image and con-
text features surrounding a pixel to
predict if it is associated with the tar-
get concept, where subsequent layer is
working on the probability maps from
the previous layer. In previous works,
it just modeled the spatial contextual
information, either from a single image [36, 40], or a set of labeled [31] or unla-
beled [37, 38] images. Here, we extend it to capture both the spatial and temporal
contextual information across multiple videos, and the extended model operates on su-
perpixels instead of pixels.

Spatiotemporal Auto-context Feature. Let cnij denote the context feature of superpixel
snij , Pn ∈ P the probability map set for video V n, Pn

i the probability map for frame fn
i ,

pnij the probability value of superpixel snij . The sampling structure of the spatiotemporal
auto-context model on the discriminative probability maps are illustrated in Fig. 2. cnij
consists of a backward-frame part, a current-frame part and a forward-frame part as

cnij = {{↼pnij(k)}, {pnij(k)}, {⇀pnij(k)}}Nc
k=1, (2)
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where pnij(k), ↼pnij(k) and ⇀pnij(k) are the probability values of the kth point on the sam-
pling structure centered at snij in Pn

i , its corresponding previous superpixel ↼snij in Pn
i−1,

and its corresponding next superpixel ⇀snij in Pn
i+1, respectively. Nc is the number of

sampled points on the sampling structure for the current superpixel in each frame, and
it is set to be 41 in our experiments. Here, we find the corresponding previous and next
superpixels of current superpixel between neighboring frames using optical flow [39].
If the pixel number of the intersection between a superpixel in the current frame and its
corresponding superpixel in neighboring frames, identified from the optical flow vec-
tor displacements of current superpixel, is larger than half of the pixel number of the
current superpixel, it is selected as the temporal neighbor.

Update the Spatiotemporal Auto-context Classifier. In the first round of the iterative
learning of the spatiotemporal auto-context model, the training set is built as

S1 = {{Cn
i′(α), l

n
i′(α)}|n = 1, . . . , N ; i′ = 1′, . . . , Nn′;α = 0, 1}, (3)

where i′ is the index of frame fn
i′ that was manually labeled by the user as relevant

(lni′ = 1) or irrelevant (lni′ = 0). Nn′ is the number of labeled frames in video V n, and

it is set to be 1 to 3 in our experiments. Cn
i′ = {cni′j}

Nn
i′

j=1 are the context features of su-
perpixels in fn

i′ , and Cn
i′(α) are the context features in the object (α = 1) or background

(α = 0) of fn
i′ . We treat Cn

i′(α) as a bag, and cni′j as an instance. lni′(α) is the label of
bag Cn

i′(α), and it equals to 1 when both lni′ and α equal to 1, and 0 otherwise. In other
words, we treat the objects of the relevant frames as positive bags, the backgrounds
of the relevant frames and both the objects and backgrounds of the irrelevant frames
as negative bags. The initial segmentations B for V are obtained by using an object-
ness measure [2] and a saliency measure [14], and the probability maps P for V are
initialized by averaging the scores returned by objectness and saliency.

Then, the first classifier H(·) is learned on S1 using Spatial-MILBoosting, detailed
immediately below. We proceed to use the learned classifier to classify all the context
features of the objects and backgrounds of all frames in V , and obtain the new probabil-
ity map set P for V , where the new probability of superpixel snij being positive is given
by the learned classifier as

pnij =
1

1 + exp (−H(cnij))
. (4)

The data term based on the spatiotemporal auto-context model in Eq(1) is defined as

D1
j (b

n
ij) = − log pnij . (5)

The probability of the object or background (bag) of frame fn
i being positive is a

“Noisy OR” defined as

pni (α) = 1−
Nn

i (α)∏

j=1

(1− pnij), (6)

where Nn
i (α) denotes the number of superpixels (instances) in the object or back-

ground (bag) of frame fn
i . In this way, the trained auto-context classifier can propagate

superpixel-level labels indicating if the superpixels belong to the target objects to the
object (or background) level label indicating if it contains the target object.
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Algorithm 1. Spatial-MILBoosting - Training
Input: Training set {xi, li}Ni=1 of N bags, where each bag xi = {xij}Ni

j=1 containing Ni

instances, the bag label li ∈ {0, 1}.

1. Initialize the instance weights wij = 2 ∗ (li − 0.5) and the instance classifier H = 0
2. Initialize estimated margins {ŷij}N,Ni

i,j=1 to 0
3. For t = 1, . . . , T

a. Set x̄ij = {ŷik|xik ∈ Nbr(xij)}
b. Train weak data classifier hd

t on the data {xij , li}N,Ni
i,j=1 and the weights {ωij}N,Ni

i,j=1 as

hd
t (xij) = argmaxĥ(·)

∑
i,j ĥ(xij)wij

c. Train weak spatial classifier hs
t on the data {x̄ij , li}N,Ni

i,j=1 and the weights {ωij}N,Ni
i,j=1

as hs
t (x̄ij) = argmaxĥ(·)

∑
i,j ĥ(x̄ij)wij

d. Set εd =
∑

i,j ωij |hd
t (xij)− li| and εs =

∑
i,j ωij |hs

t (x̄ij)− li|

e. Set ht(xij) =

{
hd
t (xij) if εd < εs

hs
t (x̄ij) otherwise

f. Find λt via line search to minimize likelihood L(H) =
∏

i (qi)
li(1 − qi)

(1−li) as
λt = argmaxλ L(H + λht)

g. Update margins ŷij to be ŷij = H(xij) = ŷij + λtht(xij)
h. Compute the instance probability qij = 1

1+exp(−ŷij)

i. Compute the bag probability qi = 1−∏Ni
j=1(1− qij)

j. Update the instance weights wij = ∂ logL(H)
∂yij

= li−qi
qi

qij

Output: Instance classifier H(xij) =
∑T

t=1 λtht(xij).

From the second round of the iterative learning process, we update the training set as

S2 = {{Cn
i (α), l

n
i (α)}|n = 1, . . . , N ; i = 1, . . . , Nn;α = 0, 1}, (7)

and learn a new classifier on the updated context features, which are based on the dis-
criminative probability map set P obtained from the previous iteration. Then, the new
P for V are computed by the new spatiotemporal auto-context classifier. This process
will iterate until convergence, where P no longer changes. Indeed, the spatiotemporal
auto-context model is alternatively updated with the iterative co-segmentation of V , i.e.,
the iterative minimization of the energy in Eq(1).

Spatial-MILBoosting Algorithm. Compared to the original MILBoost algorithm [35],
we incorporate the spatial information between the neighboring superpixels [3] into the
multiple instance boosting algorithm [19,35] to infer whether the superpixel is positive
or not, and name this algorithm Spatial-MILBoosting. To present the algorithm in a
more general sense, we use xi, li and xij ∈ xi instead of Cn

i (α), l
n
i (α) and cnij ∈ Cn

i (α)
to denote the bag, its label and its instance, respectively. The training and testing details
of Spatial-MILBoosting are presented in Alg. 1 and Alg. 2, respectively.

The score of the instance xij is yij = H(xij), where H(xij) =
∑T

t=1 λtht(xij) is a
weighted sum of weak classifiers. The probability of the instance xij being positive is
defined as a standard logistic function,
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Algorithm 2. Spatial-MILBoosting - Testing
Input: Unlabeled testing set {xij}N,Ni

i,j=1, and the instance classifier H(·).

1. Initialize estimated margins {ŷij}N,Ni
i,j=1 to 0

2. For t = 1, . . . , T
a. Set x̄ij = {ŷik|xik ∈ Nbr(xij)}
b. Update margins ŷij to be ŷij = ŷij + λtht(xij)

Output: Labels {ŷij}N,Ni
i,j=1.

qij =
1

1 + exp (−yij)
. (8)

The probability of the bag xi being positive is a “Noisy OR” as

qi = 1−
Ni∏

j=1

(1− qij). (9)

The goal now is to estimate λt and ht, so qij approaches its true value. The likelihood
assigned to a set of training bags is L(H) =

∏
i (qi)

li(1 − qi)
(1−li), and is maximum

when qi = li, where li ∈ {0, 1} is the label of bag xi. To find an instance classifier that
maximizes the likelihood, we compute the derivative of the log-likelihood with respect
to yij as ∂ logL(H)

∂yij
= wij =

li−qi
qi

qij .
In each round t of gradient descent, one solves the optimal weak instance clas-

sifier ht(·). Here, we train a weak data classifier on the data {xij , li}N,Ni

i,j=1 and the

weights {ωij}N,Ni

i,j=1 as hd
t (xij) = argmaxĥ(·)

∑
i,j ĥ(xij)wij . Meanwhile, we train

a weak spatial classifier on the data {x̄ij , li}N,Ni

i,j=1 and the weights {ωij}N,Ni

i,j=1 as

hs
t (x̄ij) = argmaxĥ(·)

∑
i,j ĥ(x̄ij)wij , where x̄ij = {ŷik|xik ∈ Nbr(xij)} are the pre-

dicted labels of the neighbors Nbr(xij) of the current instance xij .
The classifier which has lower training error is selected as the weak instance classi-

fier ht(xij),

ht(xij) =

{
hd
t (xij) if εd < εs

hs
t (x̄ij) otherwise

, (10)

where εd =
∑

i,j ωij |hd
t (xij)− li| and εs =

∑
i,j ωij |hs

t (x̄ij)− li| are the training er-
rors of the weak data classifier hd

t (xij) and the weak spatial classifier hs
t (x̄ij), respec-

tively. This is the major difference of the proposed Spatial-MILBoosting algorithm and
traditional MILBoost algorithm [19, 35].

The parameter λt is determined using a line search as λt = argmaxλ L(H + λht).
Then, the instance classifier H(·) is updated by H(·)← H(·) + λtht(·).

3.2 Appearance Model

Since the appearance of the object instances (also the backgrounds) are similar within
each video V n while exhibiting large variations across V , we independently learn the
color distributions of the target objects and the backgrounds for each video V n.
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In detail, with a segmentation B for V , we estimate two color Gaussian Mixture
Models (GMMs) for the target objects and the backgrounds of each video V n, denoted
as hn

1 and hn
0 , respectively. The corresponding data term based on the appearance model

in Eq(1) is defined as
D2

j (b
n
ij) = − log hn

bn
ij
(snij), (11)

where D2
j (b

n
ij) measures the contribution of labeling superpixel snij to be bnij , based on

the appearance model learned from video V n.

3.3 Consistency Term

The consistency term is composed of an intra-frame consistency model and an inter-
frame consistency model, and is leveraged to constrain the segmentation labels to be
both spatially and temporally consistent.
Intra-frame Consistency Model. The intra-frame consistency model encourages the
spatially adjacent superpixels in the same frame to have the same label. In Eq(1), the
consistency term computed between spatially adjacent superpixels snij and snik in frame
fn
i of video V n is defined as

S1
jk(b

n
ij , b

n
ik) = δ(bnij , b

n
ik) exp (−||Inij − Inik||22), (12)

where I is the color vector of the superpixel, and bnij and bnik are the segmentation labels
of snij and snik . δ(·) denotes the Dirac delta function, which is 0 when bnij = bnik, and 1
otherwise.
Inter-frame Consistency Model. The inter-frame consistency model encourages the
temporally adjacent superpixels in consecutive frames to have the same label. In Eq(1),
the consistency term computed between temporally adjacent superpixels snij and snuk in
consecutive frames of video V n is defined as

S2
jk(b

n
ij , b

n
uk) = δ(bnij , b

n
uk) exp (−||cnij − cnuk||1), (13)

where c is the context vector of the superpixel, and bnij and bnuk are the segmentation
labels of snij and snuk. snuk is the temporal neighbor of snij , i.e., its corresponding next
superpixel ⇀snij in frame fn

i+1 or previous superpixel ↼snij in frame fn
i−1.

4 Optimization

The proposed approach is bootstrapped from a few manually annotated relevant and
irrelevant frames (e.g., usually 1 to 3), and an objectness measure [2] and a saliency
measure [14] to initialize the segmentationB and the discriminative probability map set
P of V . We proceed to start the first round learning of the spatiotemporal auto-context
model, and propagate the superpixel labels estimated from the learned auto-context
classier H(·) to frame-level labels L of V through the Spatial-MILBoosting algorithm.
We then update the spatiotemporal auto-context model together with the appearance
model and consistency term, and perform energy minimization on Eq(1) by using min-
cut [6, 7] to obtain an updated segmentation B of V .
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The learning of the spatiotemporal auto-context model (the object discovery), and
the minimization of the energy function in Eq(1) (the object co-segmentation) are iter-
atively performed until convergence, which returns not only a frame-level label L of V
and a segmentation B of V , but also a spatiotemporal auto-context model.
Object Discovery. The object discovery is to identify the relevant frames containing
the target objects from multiple videos V . As we obtained a current frame-level labels
L, segmentation B, and discriminative probability map set P estimated by the spa-
tiotemporal auto-context model from the previous iteration, the probability of frame fn

i

containing the target object is updated as

pni = 1− (1− pni (1))(1− pni (0)), (14)

where pni (1) and pni (0) are the probabilities of the object and background of fn
i being

positive, respectively. They are calculated by Eq(4) and Eq(6) above in Sec. 3.1. Then,
the label lni indicating if fn

i is relevant can be predicted by binarizing pni . lni equals to
1 when fn

i is relevant, and 0 irrelevant. In this way, the label lni can be inferred from
the probabilities of the object and background inside fn

i indicating if they contain the
target objects; while the probability of the object (or background) can be inferred from
the probabilities of the superpixels inside it denoting if they belong to the target object.

Object Co-segmentation. The video object co-segmentation is to simultaneously find
a superpixel-level labeling B for the relevant frames identified from V . As we obtain
a current frame-level labels L, segmentation B and discriminative probability map set
P estimated by the spatiotemporal auto-context model, we can update the video in-
dependent spatiotemporal auto-context model. Naturally, the spatiotemporal contextual
information across multiple videos V are leveraged for the segmentation of each frame.
The new segmentation Bn of each video V n also serves to update the corresponding
video dependent appearance model and consistency term. We then minimize the energy
function in Eq(1) using min-cut [6, 7] to obtain the new segmentation B of V .

5 Experiments and Discussions

We conduct extensive experiments to evaluate our method on three datasets, including
the SegTrack dataset [30], the video co-segmentation dataset [12, 27, 29], and a new
10-categories video object co-segmentation dataset collected by ourselves.

5.1 Evaluation on the SegTrack v1 and v2 Datasets

The SegTrack (v1 [30] and v2 [17]) is a video segmentation dataset consisting of 8
videos containing one object and 6 videos containing multiple adjacent/interacting ob-
jects, with full pixel-level annotations on the objects at each frame. As our method fo-
cuses on single object segmentation, we test our method on the 8 videos containing one
object. By initializing all frames as relevant, we segment each video using our method.

We first compute the average per-frame pixel error rate for each video, and compare it
with 8 other methods [8,12,17,20,22,23,41] on 3 videos from SegTrack v1 dataset [30],
as summarized in Table 2. We also compare the average intersection-over-union score of
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Table 2. The per-frame pixel error rates of our method and 8 other methods [8,12,17,20,22,23,41]
on SegTrack v1 dataset [30]. Lower values are better.

Video Ours [23] [17]-1 [17]-2 [41] [20] [22] [12] [8]
girl 1053 3859 1573 1564 1488 1698 5683 5777 7595

birdfall 152 217 188 242 155 189 468 305 468
parachute 189 855 339 328 220 221 1595 1202 1113

Table 3. The intersection-over-union scores of our method and 4 other video segmentation meth-
ods [12, 16, 17] on SegTrack v2 dataset [17]. Higher values are better.

Algorithm girl birdfall parachute frog worm soldier monkey bird of paradise

Ours 90.5 70.3 92.4 83.1 80.4 85.3 89.8 94.5
[17]-1 89.1 62.0 93.2 65.8 75.6 83.0 84.1 88.2
[17]-2 89.2 62.5 93.4 72.3 82.8 83.8 84.8 94.0
[16] 87.7 49.0 96.3 0 84.4 66.6 79.0 92.2
[12] 31.9 57.4 69.1 67.1 34.7 66.5 61.9 86.8

our method with 4 video segmentation methods [12,16,17] on the videos from SegTrack
v2 dataset [17], as summarized in Table 3.

The per-frame pixel error rate is the number of pixels misclassified according to
the ground truth segmentation, and is calculated as error = Nseg⊕gt. The intersection-
over-union is calculated as Nseg∩gt/Nseg∪gt, where Nseg∩gt and Nseg∪gt are the pixel
numbers of the intersection and the union of the segmentation result and the ground
truth segmentation, respectively. The [17]-1 and [17]-2 in Table 2 and Table 3 denote the
original method [17], and the method [17] plus a refinement process using composite
statistical inference, respectively. Some qualitative example results of our method are
presented in Fig. 5 of the supplementary material.

As the results in Table 2 shown, our method outperforms the other 8 methods on
the 3 videos. The results in Table 3 showed that our method is superior among the
4 other methods on 6 videos, but underperforms the other methods on 2 videos. The
intersection-over-union score on parachute is slightly lower because of the complex
background caused by difficult lighting conditions. The worm is difficult to segment
since the boundaries between the worms and the background in some frames are too
weak. For the birdfall, the frames are complex due to the cluttered background and
the small size of the birds. In general, as the results shown, our method has the ability
to segment the objects with certain variations in appearance (bird of paradise), shape
(girl and frog), size (soldier), and backgrounds (parachute), but has encountered some
difficulties when the objects are too small (birdfall), or the boundaries between the
objects and the background are too weak (worm).

5.2 Evaluation on the Video Co-segmentation Dataset

We also test our method on videos of 3 categories, i.e., 4 videos of the Cha-cha-cha
category from Chroma dataset [29], 3 videos of the kite surfing category and 3 videos
of the ice dancing category both from [12] and [27]. Because all frames from all videos
of each category contain the target objects, we treat all frames of each category as
relevant, and simultaneously segment the videos of each category using our method.
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We compute the average labeling accuracy on each video of the Cha-cha-cha cate-
gory, and compare them with 2 other video object co-segmentation methods [13,27], as
presented in Table 4. Since the method presented in [13] produces the results in terms
of dense trajectories, they use the method in [21] to turn their trajectory labels into pixel
labels for comparison.

Table 4. The labeling accuracy of our method
and two video object co-segmentation meth-
ods [13,27] on 4 videos of the Cha-cha-cha cat-
egory. Higher values are better.

Algorithm cha.1 cha.2 cha.3 cha.4
Ours 97.1 96.9 97.0 97.5

[13] + [21] 96 96 95 96
[27] 61 81 56 74

Table 5. Labeling accuracy on the
kite surfing and ice dancing categories

Algorithm kite.1 kite.2 kite.3 ice.1 ice.2 ice.3
Ours 93.7 94.1 95.8 97.2 96.5 98.1

(a)

(b)

Fig. 3. Some qualitative results of our method com-
pared with other methods [12, 13, 16, 27, 27]. (a) From
left to right: original frames, results of [27], [13], [13]
plus [21], and our results on the Cha-cha-cha category.
(b) From left to right: original frames, results of [12],
[16], [27], and our results on the kite surfing and ice
dancing categories.

The labeling accuracy is calcu-
lated as Nseg�gt/Ntotal, i.e., it is
the ratio of the number of pixels
classified correctly in accordance
with the ground truth segmenta-
tion to the total number of pixels.
We also present some qualitative
results of our method compared
with [13, 27] on the Cha-cha-cha
category in Fig. 3 (a). These re-
sults showed that our method out-
performs the other 2 video object
co-segmentation methods [13, 27],
and is not limited to the initial seg-
mentation generated by combing
the objectness and saliency mea-
sures that the method in [27] is sen-
sitive to.

The average labeling accuracies computed on videos of the kite surfing and ice danc-
ing categories by our method are presented in Table 5. We also present some qualitative
results of our method compared with [12, 16, 27] on the two categories in Fig. 3 (b).
They showed that our method compares favorably or is on par with [12, 16, 27].

5.3 Evaluation on the New Video Object Co-segmentation Dataset

New Video Object Co-segmentation Dataset. To exactly evaluate the efficacy of our
method and to establish a benchmark for future research, we have collected 10 cate-
gories of 101 publicly available Internet videos, in which some videos include irrele-
vant frames. We manually assign each frame a label (1 for relevant and 0 for irrelevant),
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Table 6. The new video co-segmentation dataset. “Video (R./I.)” denotes the numbers of all
videos, videos only containing the relevant frames, and videos containing irrelevant frames;
“Frame (R./I.)” denotes the numbers of all frames, relevant frames, and irrelevant frames in videos
of each category.

Category Video (R./I.) Frame (R./I.) Category Video (R./I.) Frame (R./I.)
airplane 11(4/7) 1763(1702/61) balloon 10(4/6) 1459(1394/65)

bear 11(6/5) 1338(1282/56) cat 4(3/1) 592(578/14)
eagle 13(12/1) 1703(1665/38) ferrari 12(9/3) 1272(1244/28)

figure skating 10(7/3) 1173(1115/58) horse 10(5/5) 1189(1134/55)
parachute 10(4/6) 1461(1421/40) single diving 10(0/10) 1448(1372/76)

Table 7. The discovery performance of our method by varying the number of manually annotated
frames (the number in the 1st row). The number in the table is the misclassified frames when 1,
2, and 3 labeled frames are provided.

Category 1 2 3 Category 1 2 3 Category 1 2 3
airplane 20 10 0 balloon 13 4 3 bear 3 3 2

cat 4 5 5 eagle 23 12 8 ferrari 11 7 6
figure skating 0 0 0 horse 5 1 1 parachute 14 10 2
single diving 18 13 5 - - - - - - - -

and also manually assign pixel-wise ground truth foreground labels for each relevant
frame. The statistical details of the new dataset are given in Table 6. We present some
example relevant and irrelevant frames for each category of the new dataset in Fig. 6 of
the supplementary material. The objects in videos of each category are of the common
category, but exhibit large differences in appearance, size, shape, viewpoint, and pose.

Performance Evaluation. To better understand the contributions of the different
aspects of our proposed method, we perform an ablative study. To this end, in addi-
tion to the proposed method (denoted V-1), we implemented a variant where Spatial-
MILBoosting was replaced by MILBoost [35] (denoted V-2).

We first evaluate the discovery performance of our method by varying the number of
manually annotated relevant and irrelevant frames. In our experiments, the number of
manually annotated relevant and irrelevant frames of each video are set from 1 to 3, and
they are randomly selected from each video given the ground truth frame-level labels.
We present the number of misclassified frames of each category tested on the new video
co-segmentation dataset in Table 7. As the results shown, our method works well when
just provide each video 1 relevant or irrelevant frame, and can identify almost all the
relevant frames from multiple videos when we provide 3 relevant and irrelevant frames.
This validated the efficacy of the spatiotemporal auto-context model learned through
the Spatial-MILBoosting algorithm.

Table 8 presents the average intersection-over-union scores of two versions of our
method tested on each category of the new dataset. Some qualitative results of two ver-
sions of our method on videos of each category are presented in Fig. 4. They demon-
strate the advantages of our method. In addition, it also demonstrates the advantages of
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Table 8. Ablative study comparing Spatial-MILBoosting vs. MILBoost [35] on intersection-over-
union on the new video co-segmentation dataset

Category V-1 V-2 Category V-1 V-2 Category V-1 V-2
airplane 86.4 84.7 balloon 94.6 93.9 bear 90.5 89.3

cat 92.1 89.4 eagle 89.5 86.2 ferrari 87.7 86.3
figure skating 88.5 86.9 horse 92.0 90.7 parachute 94.0 91.7
single diving 87.7 85.2 - - - - - -

Fig. 4. Qualitative results of two versions of our method tested on each category of the new
dataset. The 1, 3, 5 and 7 columns: results of V-1; the 2, 4, 6 and 8 columns: results of V-2.

the Spatial-MILBoosting algorithm, which considers the spatial relationship of neigh-
boring superpixels while predicting the segmentation label of superpixel.

To summarize, as shown above, our method has the capability of discovering the
relevant frames from multiple videos containing irrelevant frames, and clearly co-
segmenting the common objects from them.

6 Conclusion

We presented a spatiotemporal energy minimization formulation to simultaneously dis-
cover and co-segment a common category of objects from multiple videos contain-
ing irrelevant frames, which only requires extremely weak supervision (i.e., 1 to 3
frame-level labels). Our formulation incorporates a spatiotemporal auto-context model
to capture the spatiotemporal contextual information across multiple videos. It facili-
tates both the object discovery and co-segmentation through a MIL algorithm with spa-
tial reasoning. Our method overcomes an important limitation of previous video object
co-segmentation methods, which assume all frames from all videos contain the target
objects. Experiments on three datasets demonstrated the superior performance of our
proposed method.
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