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Abstract. This paper studies the problem of associating images with
descriptive sentences by embedding them in a common latent space. We
are interested in learning such embeddings from hundreds of thousands
or millions of examples. Unfortunately, it is prohibitively expensive to
fully annotate this many training images with ground-truth sentences.
Instead, we ask whether we can learn better image-sentence embeddings
by augmenting small fully annotated training sets with millions of im-
ages that have weak and noisy annotations (titles, tags, or descriptions).
After investigating several state-of-the-art scalable embedding methods,
we introduce a new algorithm called Stacked Auxiliary Embedding that
can successfully transfer knowledge from millions of weakly annotated
images to improve the accuracy of retrieval-based image description.

1 Introduction

Describing images with natural language sentences is an ambitious goal at the
intersection of computer vision and natural language processing. Previous ap-
proaches to this problem can be roughly categorized into two groups: novel
sentence generation and retrieval-based description. Approaches in the former
group, e.g., [1–6], use natural language models or templates for generating sen-
tences, and learn predictors to “fill in” or compose parts of these models. How-
ever, image descriptions automatically composed in this way can often be unnat-
ural. More importantly, as argued by Hodosh et al. [7], it is difficult to objectively
compare the quality of novel sentences produced by different generation methods
for an image – not least because the sentences can vary in specificity, or exhibit
different types of quirks or artifacts. Retrieval-based systems, e.g., [7–9], describe
images by retrieving pre-existing sentences from a dataset. One representative
method, that of Ordonez et al. [8], uses millions of images from Flickr and their
corresponding descriptions as a source of image captions. For each query im-
age, it finds similar images in the Flickr database and transfers the descriptions
of these retrieved images to the query. However, since this method relies on
image-to-image matching to transfer sentences, it cannot return any sentences
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that have no images associated with them. Hybrid retrieval- and generation-
based methods are also possible: in follow-up to [8], Kuznetsova et al. [10] adopt
a template-based approach of composing parts of retrieved sentences to create
more query-specific and relevant descriptions.

To automatically evaluate the quality of image captioning systems, many
previous works have relied on the BLEU score [11], which is based on the n-
gram precision of the caption returned by a system against a human-produced
reference caption (or set of captions). However, BLEU was originally developed
for machine translation, and it has widely recognized shortcomings for the much
more open-ended image description task [7, 2, 8]: BLEU penalizes captions that
are relevant to the image but do not happen to overlap with the reference set;
it does not measure vision output quality directly; and it has poor correlation
with human judgment. As an automatic alternative to BLEU, Hodosh et al. [7]
propose a retrieval-based protocol: given a query image, use the model being
evaluated to retrieve sentences from a pool that also contains some reference
sentences associated with that image, and see how highly the model ranks them.
This protocol can be used with any systems that can score image-sentence pairs.
It can still underestimate performance by not reflecting when the system returns
a valid caption that was not originally associated with the image, but Hodosh et
al. [7] show that recall of the original caption has better correlation with human
judgment than BLEU.

In this paper, we adopt the retrieval-based protocol of [7], as well as their idea
of image-to-sentence retrieval in a joint image-sentence embedding space. To es-
tablish a baseline, they use Kernel Canonical Correlation Analysis (KCCA) [12]
with multiple visual and linguistic kernels to map images and sentences into a
space where similarity between them can be computed directly. They train this
embedding on 6,000 images associated with five ground-truth captions each.
However, to enable substantial further progress in techniques for mapping be-
tween images and sentences, we believe that a much larger amount of training
data is required. This leads to two fundamental challenges:

1. Nonlinear image-sentence embedding methods, such as KCCA, tend not to
scale to large training sets.

2. Obtaining high-quality sentence descriptions for millions of images is a pro-
hibitively expensive task.

To address the first challenge, we conduct a comparative evaluation of scalable
image-sentence embedding methods and show that linear Canonical Correlation
Analysis (CCA) with proper normalization [13] outperforms several state-of-
the-art alternatives in terms of both accuracy and efficiency, and is therefore a
promising framework on top of which to build a large-scale image-to-sentence
retrieval approach. To address the second challenge, we ask: Can the addition of
a large amount of Internet images with noisy textual annotations to a smaller
set of images with clean sentence annotations help us induce a better latent
space? Figure 1 shows an illustration of this scenario. It is a multi-view transfer
learning setting that, to our knowledge, has not been studied before. It has
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A woman in a headscarf and  a 
boy wearing blue look to the 
right while sitting against a 

wall. 

Title: The Skyscraper Of 
Self 
Tags: workers, building, 
construction, skyscraper 
Description: Each of us is 
carving a stone 

Title: reserved 
Tags: sign, barbed, 
wire, habitat, for, 
humanity 
Description:  -- 

 

…   + 

A person in a 
black jacket is 

jumping through 
the air on a bike. 

The two dogs are 
enjoying a run 

through the surf. 

A African man is 
pushing a very 

heavy cart, full of 
supplies. 

?     ? 

Weakly Annotated Data 
(Images and titles/tags/descriptions) 

Fully Annotated Data 
(Images and sentences) 

Testing 
(Associate each image with a sentence) 

… 

Fig. 1. The problem setting of our paper. We want to use large amounts of Flickr
images annotated with noisy tags, titles, and descriptions to help with learning of
an image-sentence embedding on a small dataset of images and clean ground truth
sentences. At test time, we embed images and sentences in the learned latent space
and perform image-to-sentence retrieval.

connections to multi-view learning [13, 7], transfer learning [14–16], and methods
that use Internet data to help recognition [17–21]. Starting with the normalized
CCA formulation, we propose a novel transfer learning approach we call Stacked
Auxiliary Embedding (SAE) and show its effectiveness in transferring knowledge
from two large-scale Flickr datasets of a million images each.

The rest of our presentation is organized as follows. Section 2 will introduce
our datasets, evaluation protocols, and feature representations for images and
text. In Section 3, we begin by conducting a comparative evaluation of several
scalable image-sentence embedding models in the fully supervised scenario – i.e.,
trained on tens of thousands of images annotated with ground-truth sentences.
Next, in Section 4, we take the winning embedding, CCA with normalization [13]
and consider how to improve it by adding millions of images weakly annotated
with noisy tags, titles, and descriptions. We introduce our Stacked Auxiliary
Embedding model and demonstrate that it outperforms a number of alternative
baselines in terms of image-sentence retrieval accuracy.

2 Datasets, Protocols, and Features

2.1 Datasets

We begin by describing our datasets for learning image-sentence embeddings.
Our fully annotated data comes from the dataset of Young et al. [22], which is
an expanded version of the one from [7]. This dataset, referred to as Flickr30K,
contains 31,783 images collected from different Flickr groups and focusing on
events involving people and animals. Each image is associated with five sentences
independently written by native English speakers from Mechanical Turk. Sample
data from Flickr30K is shown in Figure 2(a).

For the weakly annotated data for the transfer task, we experiment with two
datasets of about a million images each that do not overlap with Flickr30K or
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(a)

 

A lady wearing a Batman shirt is walking 
along the boardwalk. 

The lady wearing a batman tee is walking 
along the beach. 

A woman in a black Batman shirt walking 
near the ocean. 

A woman in a batman shirt walks down the 
boardwalk. 

A woman walking along a boardwalk. 

 

Two people in the photo are playing the 
guitar and the other is poking at him. 

A man in green holds a guitar while the other 
man observes his shirt. 

A man is fixing the guitar players costume. 

A guy stitching up another mans coat. 

The two boys playing guitar. 

(b)

Title: Walking out of the 
sanctioned zone. 
 
Tag: kagura snowboarding 
 
Description: That's where 
you go to catch the powder 
in the back country. 

Title: Tobin and Bob 
together again 
 
Tag: blatant doom trip 
 
Description: Singing 
Awful Bliss 

Title: city of lights
 
 
Tag: -- 
 
 
Description: -- 
 

Fig. 2. (a) Sample images and sentences from the Flickr30K dataset [22]. (b) Sample
images from the Flickr1M dataset. These images come with titles, tags, and descrip-
tions, some of which may be missing.

each other. For the first one, referred to as Flickr1M, we used queries based on
the most frequent 350 keywords in Flickr30K to download more than two million
additional images from Flickr. After removing duplicates and images lacking
tags, we were left with one million images. We use these images and their tags,
titles and descriptions as weak supervision. Sample data from Flickr1M is shown
in Figure 2(b). As our second weakly annotated dataset, we use the SBU1M
dataset of [8], which also comes from Flickr, but has very different statistics from
Flickr30K because it was collected totally independently. We took the Flickr
IDs of the SBU1M images and downloaded all their titles, tags and descriptions.
We are interested in experimenting on both datasets because we would like to
investigate to what an extent the success of transfer embedding methods depends
on the similarity between the fully and the weakly supervised domains.

2.2 Evaluation Protocol

As stated in the Introduction, we follow the retrieval-based protocol of [7, 22].
For the Flickr30K dataset, we use the 3,000 test images from the split of [22]
and for each test image, we keep only the first sentence out of five. Each method
being evaluated is used to separately map the 3,000 images and 3,000 sentences
to the learned latent space, and then each of these images is used as a query
to retrieve the sentences based on some similarity measure in the latent space.
If the ground-truth sentence is within the top k retrieved sentences, we mark
this query as successful, otherwise, it is a failure. We report Recall@10, which is
the percentage of query images that have successfully found their ground truth
sentence within k = 10 nearest neighbors (numbers for other k exhibit exactly
the same trends). To learn the latent spaces, we use fixed training subsets ranging
in size from 5,000 to 25,000, together with all five sentences per each image. That
is, if we report results for a given training set size, we are in fact using five times
as many image/sentence pairs. We also use a disjoint set of 3,000 validation
images (also from the split of [22]) to tune parameters.
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Table 1. Recall@10 for CNN activations versus a combination of standard visual fea-
tures. The standard features consist of a 960-dimensional GIST [23], a 512-dimensional
RGB histogram, and three local descriptors densely sampled on a regular grid: CSIFT
[24], RGBSIFT [24], and HOG [25]. Each local descriptor type is quantized using a
codebook of size 500 and VLAD-pooled [26] to obtain 6, 400-dimensional image de-
scriptors. GIST and RGB histograms are PCA-reduced to 500 dimensions and VLAD
to 1,000 dimensions, and concatenated to get 4,000-dimensional combined descriptors.
The sentence features are 3,000-dimensional BoW vectors and the embedding model is
normalized CCA (Section 3).

method / training set size 5,000 15,000 25,000

Standard combined features (4,000 dim.) 11.07 18.40 22.13
CNN activations (4,096 dim.) 19.77 27.03 31.13

2.3 Visual and Textual Features

We represent the visual content of images using activations from a deep convo-
lutional neural network (CNN) [27]. CNNs have recently produced state-of-the-
art results on a wide range of recognition tasks. Specifically, we use the 4,096-
dimensional activations from the sixth hidden layer of the Decaf system [28]
pre-trained on ImageNet [29]. Table 1 confirms that CNN activations give sig-
nificantly higher accuracy on our problem than a combination of standard visual
descriptors like GIST and bags of visual words.

For the textual features, we use a standard bag-of-words (BoW) representa-
tion. In the following, we will refer as a “document” to each separate piece of text
associated with an image: a sentence, a title, a set of tags, or a description. We
first pre-process all the documents with WordNet’s lemmatizer [30] and remove
stop words. After that, we construct a dictionary by taking a few thousand most
common words, and represent documents as tf-idf-weighted BoW vectors. Table
2 compares different dictionary sizes for sentence features. We have found that
using 3,000 words is sufficient for good performance. For sentences, we have also
experimented with a bigram feature, but did not observe any improvement.

For our weakly labeled datasets, Flickr1M and SBU1M, each image is asso-
ciated with up to three document types: tags, titles, and descriptions (Figure
2(b)). Among other things, we are interested in investigating which of these
types (or their combination) gives the best cues for transfer learning. Table 3
compares the BoW features constructed from each document type separately,
as well as a single BoW feature computed from a concatenation of all of them.
Surprisingly, titles achieve the highest performance despite having the shortest
average length. Thus, while tags are more commonly used, titles might actually
be the most informative source of annotations from Flickr. On the other hand,
descriptions of the Flickr images are by far the longest, but their predictive
power is the worst. In the end, combining all three document types achieves the
best performance, so in the following experiments, we will use the combined text
feature for Flickr1M and SBU1M.
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Table 2. Recall@10 for sentence features with different dictionary sizes and different
training set sizes. The embedding technique is normalized CCA (Section 3).

dictionary / training set size 5,000 15,000 25,000

1,000 19.03 23.30 26.53
3,000 19.77 27.03 31.13
5,000 20.20 27.40 31.07

Table 3. Recall@10 for different text cues on the weakly annotated datasets, together
with the average number of words for each type of cue. We train normalized CCA
(Section 3) on Flickr1M or SBU1M and directly apply it to the Flickr30K test set (the
Flickr30K training set is not used). All text is represented using 3,000-dimensional
tf-idf-weighted BoW vectors.

Average length Flickr1M→ Flickr30K SBU1M → Flickr30K

Title 2.93 17.83 14.57
Tag 5.09 15.97 12.90
Description 23.41 16.67 14.57
Combined 31.03 18.33 15.50

3 Fully Supervised Image-Sentence Embedding

To provide a foundation for developing transfer embeddings, we first conduct a
comparative evaluation of scalable methods for joint embedding of images and
sentences in the fully supervised scenario, i.e., training on images paired with
clean ground-truth sentences and no auxiliary data of any kind. The methods we
compare include textbook baselines of ridge regression and canonical correlation
analysis (CCA), as well as several state-of-the-art methods: CCA with normal-
ization [13], Wsabie with stochastic gradient descent [31], and Wsabie with an
adaptive learning rate [32, 33].

Assuming images and sentences are represented by vectors of dimension d
and D, respectively, our training data consists of a set of images X ∈ R

n×D

and associated sentences Y ∈ R
n×d, for n image/sentence pairs. Each image x

corresponds to a row in X , and each sentence y corresponds to a row in Y . The
goal of all the embedding methods is to find matrices W ∈ R

D×c and U ∈ R
d×c

to map images and sentences respectively as XW and Y U to a common c-
dimensional latent space in which image-to-sentence retrieval can be done by
directly computing a distance or similarity function between pairs of projected
image and sentence features.

Ridge Regression: Socher et al. [34] suggest mapping images to a sentence
space for zero-shot learning by minimizing the sum of squared distances between
the two views. This formulation is close to ridge regression, which we take as
our first baseline. The projection matrix U for sentences is given by the top c
PCA directions of Y . Then the mapping W from the image features X to the
PCA-projected sentence features Ŷ = Y U is found by minimizing ‖Ŷ −XW‖2F +

λ‖W‖2F . The optimal W is found in closed form as (XTX + λI)−1XT Ŷ . The
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regularization parameter λ is found on the validation set. Given a query image
feature x, image-to-sentence retrieval is performed by projecting this feature as
xW and finding the closest k sentences ŷ = yU according to their Euclidean
distance ‖xW − yU‖2.
Canonical Correlation Analysis (CCA) [35] aims to find projections W and
U for the two views X and Y such that the normalized correlation between the
projected data is maximized:

maxW,U trace(WTXTY U) s.t. WTXTXW = I, UTY TY U = I . (1)

The CCA objective function can be solved as a generalized eigenvalue problem,
and entries of the top c leading eigenvectors are concatenated to form W and U .
As with ridge regression, the distance function for image-to-sentence retrieval in
the projected space is Euclidean.

Normalized Canonical Correlation Analysis: Recently, Gong et al. [13]
reported significantly improved results for cross-modal retrieval by scaling the
columns of the CCA projection matrices by a power of the corresponding eigen-
values, and using cosine similarity instead of Euclidean distance. Specifically,
given the projection matrices W and U obtained by solving the CCA objec-
tive (eq. 1) with columns corresponding to c eigenvectors, and their eigenvalues
λ1, . . . , λc, the similarity between image x and sentence y is measured as:

(
xW diag(λt

1, . . . , λ
t
c)
)(

yU diag(λt
1, . . . , λ

t
c)
)T

‖xW diag(λt
1, . . . , λ

t
c)‖2‖yU diag(λt

1, . . . , λ
t
c)‖2

, (2)

where t is the power to which the eigenvalues are taken (we use t = 4, the same
value as in [13]). The cosine similarity is a natural choice for test data as it
is exactly the quantity that the CCA objective function is maximizing for the
training data. In this work, we would like to see whether this similarity also
improves image-to-sentence retrieval, a task that was not considered in [13].

Wsabie with SGD: Weston et al. [31] have proposed the Wsabie approach for
mapping images and tags to the same space using stochastic gradient descent.
Several other works, e.g., [36], have also reported good results for this model.
We adapt Wsabie to our problem as follows. Given the training set of n im-
age/sentence pairs, we iterate through them in random order. For each pair of
image feature xi and positive sentence yi, we keep sampling negative sentences
(i.e., sentences not originally associated with this image) until we find a negative
sentence yj that violates the margin constraint:

xiWUTyT
j > xiWUTyT

i − 1

(here, we use correlation as the similarity function between images and sentences
in the latent space). Assuming we have sampled s sentences until we find a
violation, we estimate the rank of the positive sentence given the current model
by ri = �n−1

s �. Then we weight the amount of margin violation by the ranking
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Table 4. Recall@10 for different image-sentence embedding methods

method / training set size 5,000 15,000 25,000

Ridge regression 10.63 11.40 12.77
CCA 8.76 12.37 15.43
CCA+Normalization 19.77 27.03 31.13
Wsabie with SGD 15.43 17.86 18.10
Wsabie with AdaGrad 18.20 24.33 26.60

loss L(r) =
∑r

l 1/l as in [31]. For a small rank (corresponding to a good model),
the value of the loss is small, and for a large one, it is large. This leads to the
following stochastic objective function:

∑n
i=1 L(ri)max(0, 1− xiWUTyT

i + xiWUTyT
j ) (3)

s.t. ‖wk‖22 ≤ α, ‖uk‖22 ≤ α, k = 1, . . . , c, (4)

where wk and uk denote the columns of W and U . To minimize the objective
function, whenever we find a violation, we take a gradient step to adjust the
weights (entries of U and W ) and project them to enforce the constraints (eq.
4). We initialize the weights using a random Gaussian with zero mean and unit
variance, tune the learning rate by searching a grid of values [0.01, 0.05, 0.1,
0.2, 0.5, 1] on the validation set, and run the algorithm for 300 epochs. The
parameter α is also tuned on the validation set using a grid of [50, 100, 150, 200].
At retrieval time, we use normalized correlation or cosine similarity between
projected images and sentences: (xWUTyT )/(‖xW‖2‖yU‖2) (we have found it
to work better than unnormalized correlation or Euclidean distance).

Wsabie with AdaGrad: We also minimize the loss of eq. (3) with AdaGrad [32,
33], a per-dimensional learning rate adjustment method that has been shown to
improve performance of SGD. We tune the global learning rate over a grid of
[0.2, 0.4, 0.6, 0.8, 1] on the validation set. Once again, we initialize the weights
using a random Gaussian and train for 300 epochs. As with the regular Wsabie,
we use cosine similarity for image-to-sentence retrieval.

Comparative Evaluation. Table 4 compares the performance of the above
image-sentence embedding methods. For all methods, we set the dimension of
the latent space to c = 96, which we have found to work the best in all cases. We
can see that neither ridge regression nor vanilla CCA are competitive with the
rest of the approaches. However, when combined with the normalized similarity
function (eq. 2), CCA yields dramatically better performance, which is consistent
with the findings of [13] on other cross-modal search tasks. As for Wsabie, the
SGD version is better than CCA but much worse than normalized CCA, while
Wsabie with AdaGrad is only 2-5% below normalized CCA. The advantage of
normalized CCA over Wsabie with AdaGrad is probably due to two reasons.
First, our experiments seem to indicate that cosine similarity (i.e., normalized
correlation) works the best for image-to-sentence retrieval in the latent space,
and the CCA objective function, unlike the Wsabie one, directly optimizes this
measure. Furthermore, CCA finds the globally optimal solution in closed form.
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By contrast, our current Wsabie objective (eq. 3) is already non-convex and SGD
might not be able to obtain its global optimum (and reformulating the objective
in terms of normalized correlation would only make matters worse).

In terms of computational requirements, normalized CCA is faster and easier
to tune thanWsabie. CCA only requires solving a generalized eigenvalue problem
involving the cross-covariance matrix. The complexity of this step scales roughly
quadratically in the combined input feature dimension and is insensitive to train-
ing set size. In practice, it is very fast: on our four-core Xeon 3.33GHz machine
with 64GB RAM, it takes 5 minutes for 5,000 training examples or 15 minutes
for one million. On the other hand, training for Wsabie involves multiple passes
over the data and validation for parameter tuning. For 5,000 examples, just one
epoch of Wsabie already takes around 15 minutes on the same machine, and the
time scales linearly with the training set size. Thus, we will use the normalized
CCA approach as the basis for our transfer embedding model.

4 Transfer Embedding

In this section, we get to the main focus of our work: adding a large amount of
weakly annotated images to a smaller amount of fully annotated ones to learn
a better image-sentence embedding. In this setting, the weakly annotated data
comes from the Flickr1M or SBU1M datasets (described in Section 2.1), and the
fully annotated data comes from Flickr30K. Training is done on one of Flickr1M
or SBU1M, plus the training subset of Flickr30K. Testing is done on the same
test subset of Flickr30K as all the preceding experiments.

Bride and groom 
walking side by 

side out of focus 
on pathway next to 

brick building 

A woman in pigtails 
talks to the red-

hatted man under 
the shade of a tree 

Two men are 
holding hands and 
walking through a 

grassy area 

Two woman are 
walking by 
discussing 
something 
seriously 

A man in a red shirt 
looking to his right 

while a lady in a 
black and green 

jacket walks behind 
him  

A woman in a white dress 
with a bouquet talks with 
an older man as a woman 

walks away in the 
background and a 

younger man in a suit 
looks on from afar  

Two men are standing 
outdoors on a sunny 

day holding pieces of a 
new item, possibly a 

small grill, while one of 
the men studies the 

assembly instructions 

Title: mike and his 
cool sunglasses 

 
 

Title: father walks 
her down the aisle 

 

Title: Robin & Eric 1 
Tag: wedding 

Title: newlyweds 
laugh 

 

Tag: the HH team 
in an exclusive 
snap ... a real 

cherished 

Title: Gayer, Fatter, 
More Married 

Tag: mistakes idiots 
future divorcee 

Fig. 3. A Flickr30K query image (left) with its nearest neighbors (according to CNN
visual features) from Flickr30K (top) and Flickr1M (bottom). Associated sentences
(resp. Flickr text) are shown beneath the retrieved images. Words relevant to the
content of the query are manually highlighted in blue for visualization purposes.
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4.1 Stacked Auxiliary Embedding

Our basic assumption is that images and annotations in Flickr1M share some
similarity with the images and sentences in Flickr30K. To illustrate this, Figure
3 shows a sample image from Flickr30K together with its nearest neighbors in
Flickr1M and Flickr30K. We can see that the Flickr1M neighbors have much
more relevant content to the query than the Flickr30K ones. This suggests that
Flickr1M can provide additional useful information for learning the embedding
(although, as will be shown in Section 4.3, a naive attempt to transfer text from
nearest neighbors via the method of [21] does not succeed).

We follow related work where embedded features learned from auxiliary
sources are concatenated with the original features to form a stacked repre-
sentation [37, 38]. As the first step, we use CCA to learn a joint c1-dimensional
embedding from our weakly annotated dataset, say Flickr1M. Let A ∈ R

d×c1

and B ∈ R
D×c1 denote the resulting projection matrices for visual and textual

features, respectively, with each column already scaled by the t-th power of its
eigenvalue. We then apply these projections to X and Y , the visual and textual
feature vectors from the Flickr30K training set. Next, we nonlinearly transform
the embedded features XA and Y B using a mapping φ(·) and concatenate the
result with the original features to form the stacked representation:

X̂ = [X,φ(XA)], Ŷ = [Y, φ(Y B)]. (5)

The goal of φ(·) is to raise the dimensionality of its input and help avoid degra-
dation of the stacked model. We use the random Fourier feature (RFF) map-
ping [39]: φ(x) =

√
2 cos(xR + b), where R is drawn from Normal(0, σ2) (σ is

set to the average distance to the 50th nearest neighbor) and b is drawn from
Unif[0, 1]. For the CCA embedding, we set the output dimensionality to c1 = 128,
and then use RFF to raise the dimensionality to 3,000 (note that we have found
the results to be insensitive to the exact choice of these values). We have also
tested other nonlinear functions such as sigmoid or tanh, but found they do not
work well for our case.

Given the augmented Flickr30K features X̂ and Ŷ as defined by eq. (5), we
again learn a CCA model on top of them to obtain the projections Ŵ and Û for
images and sentences. The dimensionality of the final output space is 96 as in
Section 3 (this value is much more sensitive than the c1 = 128 of the first round
of CCA and needs to be tuned on the validation set). At test time, we apply the
entire sequence of learned transformations to the test images and sentences and
use the cosine similarity of eq. (2) to perform image-to-sentence retrieval.

We dub our method Stacked Auxiliary Embedding (SAE). It is inspired
by stacked denoising autoencoders [40, 41] and the recent work on using stacked
corrupted features for domain adaptation [38]. Like these approaches, we also use
an embedding learned from noisy data to augment the feature representation.
Unlike them, we are trying to use a large amount of noisily annotated images as
auxiliary sources, instead of randomly added corruptions. Also, to our knowledge,
we are the first to apply such techniques to a multi-view setting.



Improving Image-Sentence Embeddings 539

4.2 Baseline Models

We compare our proposed SAE model to a number of baselines.

Fully Supervised Only:We only use the clean annotated images and sentences
from Flickr30K to learn the normalized CCA model. This corresponds to the
setting of Section 3.

Weakly Supervised Only: We only use the images and noisy textual informa-
tion (titles, tags, descriptions) from Flickr1M or SBU1M to learn the normalized
CCA model, and no clean data from Flickr30K.

Joint Training: We treat the fully and weakly annotated training samples as
being the same, merge them together into a single dataset, and train a normalized
CCA embedding. That is, if X and Y denote the image and sentence features
of the Flickr30K training set, and F and T denote the image and noisy text
features of Flickr1M or SBU1M, we concatenate them vertically as [X ;βF ] and
[Y ;βT ]. The weight β controls the contribution of the weakly annotated data.

Text Feature: This method was proposed by Wang et al. [21] for using large
noisily annotated image collections to improve image classification. To obtain
the text feature for each image in the Flickr30K dataset, we find its k nearest
neighbors in the weakly annotated dataset based on visual similarity of CNN
features. Then we construct a single text feature for each Flickr30K image by
averaging the BoW vectors (formed from combined titles, tags, and descriptions)
of the retrieved images. We denote the new text feature as as T̂ . Next, we
concatenate the original visual features and text features as X̂ = [X, T̂ ], and
perform CCA on X̂ and the clean sentences Y to obtain the image-sentence
embedding. We have experimented with different values of k and did not find
much variation in performance, so we report results for k = 50 in the following.

Stacked Training: We first learn a c1-dimensional CCA embedding of images
and text from Flickr1M or SBU1M, and embed the images and sentences from
Flickr30K in that latent space. Then we learn another CCA embedding on top
of these features. This corresponds to setting X̂ = XA and Ŷ = Y B in eq. (5).

SAE (Linear): We apply our SAE framework, only without the nonlinear map-
ping. That is, we set X̂ = [X,XA] and Ŷ = [Y, Y B] in eq. (5). Together with
stacked training, this baseline examines whether every component of SAE is
indeed necessary in order to obtain good performance.

4.3 Empirical Results

Table 5 compares SAE to all the baselines. We separately report results for using
Flickr1M and SBU1M as the weakly annotated domains. The most important
observation is that none of the methods except SAE can consistently exceed the
fully supervised baseline – i.e., they are unable to benefit from the million weakly
annotated images. For joint training, we have varied the weight β of the weakly
annotated dataset (two of the values tried are shown in the table), but could
only obtain an improvement for the smallest amount of fully annotated data
(5,000 examples). For stacked training, we could not obtain any improvement
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Table 5. Recall@10 for methods that train both on the weakly annotated images and
Flickr30K. See Section 4 for description of methods and parameters.

Flickr1M SBU1M
method / training set size 5,000 15,000 25,000 5,000 15,000 25,000

Fully Supervised Only 19.77 27.03 31.13 19.77 27.03 31.13
Weakly Supervised Only 18.33 18.33 18.33 15.10 15.10 15.10

Joint Training (β = 0.01) 20.80 25.90 28.47 20.87 25.87 28.47
Joint Training (β = 1) 20.63 23.50 25.37 20.07 24.10 25.63

Text Feature (k = 50) 19.67 27.00 30.97 19.63 27.03 30.93

Stacked Training (c1 =256) 19.30 22.93 24.30 19.13 21.97 22.73
Stacked Training (c1 =1024) 15.10 22.83 26.17 15.17 22.63 25.87

SAE (linear) 23.53 28.57 30.73 22.67 28.43 30.97
SAE (nonlinear) 23.60 29.80 32.83 23.17 29.50 32.40

Table 6. Recall@10 for training the SAE model on different numbers of weakly anno-
tated images. The number of Flickr30K training images is 5,000.

Internet dataset size Flickr1M SBU1M

0 (fully annotated only) 19.77 19.77

1,000 20.93 20.20
10,000 20.23 20.53
100,000 21.90 22.60
1,000,000 23.60 23.17

by varying the dimensionality c1 of the intermediate embedding learned from
the weakly annotated dataset, or by nonlinearly transforming the output of the
intermediate embedding. Text features also fail to make a difference over the
fully supervised baseline.

By contrast, both the linear and the nonlinear versions of our proposed SAE
method achieve a substantial improvement over the fully supervised model, with
the nonlinear consistently being the best. Figure 4 shows the top-ranked sen-
tences for a few sample images for the fully supervised baseline vs. SAE. Note
that even the incorrect sentences retrieved by SAE tend to contain many key-
words closely related to the content of the image. Interestingly, we get very
similar results with SAE by using either Flickr1M or SBU1M. This is unex-
pected, as we have specifically downloaded Flickr1M to match the statistics of
Flickr30K – indeed, by looking at the results of the weakly supervised baseline
(second line of Table 5), we can see that directly training on Flickr1M does pro-
duce a better embedding for Flickr30K than training on SBU1M (18.33% vs.
15.10%). However, after applying SAE, the advantage of Flickr1M disappears,
which suggests that a sufficiently complex statistical model is somehow able to
extract roughly the same information from any sufficiently large-scale weakly
annotated dataset.

Next, Tables 5 and 6 allow us to examine how the performance of SAE changes
when we vary the amounts of fully and weakly supervised training data. By
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comparing the first and last lines of Table 5, it is easy to ascertain that as
we increase the number of Flickr30K training examples, the benefit afforded
by the Flickr1M or SBU1M examples diminishes. Nevertheless, even when we
use the largest number of fully supervised training examples available (25,000),
SAE still gives us around 1.3-1.5% improvement. It is important to note that
Flickr30K is already the largest dataset of images and sentences available to date;
increasing the amount of available fully annotated data by orders of magnitude
is likely to be prohibitively expensive, whereas weakly annotated data can be
downloaded in unlimited quantities essentially for free. To our knowledge, SAE
is the first attempt at combining the two sources of annotation to improve image
description. Our main contribution is to confirm that weakly labeled data can
improve image-sentence embeddings in principle – and, as our extensive baseline
comparisons show, getting any kind of improvement is not trivial. Future research
should result in methods that can give bigger improvements.

Finally, it is interesting to compare the absolute accuracy of our image-to-
sentence retrieval to other results reported in the literature. In fact, Hodosh et
al. [7] have intended their dataset and protocol to constitute a standard bench-
mark that can be used to automatically compare different methods as “black

A man, wearing a yellow shirt and yellow hard hat, is 
working with a tree mulcher. 
 
Riding on the road beside a forest, a person hauls fallen tree 
branches in a cart that is attached to his bicycle.  
 
A man is kneeling on a metal roof and is looking over a 
structure on the roof.  
 
A man in an orange shirt and gray pants with white paint on 
them looks at the camera while standing near an orange 
ladder and a gray and white brick wall.  
 
A tall gray pole behind which a person wearing an orange 
shirt is perched on the wall and hiding his or her face with 
one hand.  
 

A shirtless man wearing a white turban is climbing a tree 
trunk.  
 
A man on a utility lift is standing in the tree branches.  
 
A little boy is walking through a forest right by a stump of a 
tree that was recently chopped down. 
 
Riding on the road beside a forest , a person hauls fallen tree 
branches in a cart that is attached to his bicycle. 
 
A person is standing on a tree in a ground.  
 

A group of woman sell their homemade wares from under 
umbrellas at an outdoor market.  
 
There is a woman, several men, and several children on a 
sidewalk where produce is being sold.  
 
A group of people underneath a blue tarp at an outdoor 
market.  
 
A person wearing a white shirt pushes shopping carts in 
front of a market selling fruit.  
 
Poor family in hut holding children in their arms with one 
child sitting in blue chair.  
 

A group of woman sell their homemade wares from under 
umbrellas at an outdoor market. 
 
On a deck, a group of people gather around a glass table. 
 
A group of people underneath a blue tarp at an outdoor 
market.  
 
A group of people sit in front of a restaurant on a sunny day.  
 
A person wearing a white shirt pushes shopping carts in 
front of a market selling fruit. 
 

A young boy raises his head out of the pool water and takes 
a huge gulp of air during swimming lessons. 
 
A boy is diving through the air into a swimming pool. 
 
A young boy wearing blue shorts is splashing is a blue kiddie 
pool.  
 
Surfers in swimming trunks riding waves on their surfboards 
in the blue ocean. 
 
People wearing red shirts are standing in a large pool of 
water as it splashes over and around them.  
 

A surfer paddles with his arms to take his surfboard out into 
the water.  
 
A young boy raises his head out of the pool water and takes 
a huge gulp of air during swimming lessons.  
 
There is a person in a swimming cap, and swimming goggles 
that is swimming in the water with their head partially 
submerged.  
 
a person swimming in a pretty lake with a waterfall in the 
background. 
 
A fit man in swim briefs performs a difficult dive. 
 

 (a) Fully Supervised Only                               (b) SAE 

Fig. 4. Image-to-sentence retrieval examples for our fully supervised model vs. SAE.
Sentences in red are the ground truth. In the other sentences, words relevant to the
query image are manually highlighted in blue for visualization purposes.
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boxes” to gauge the absolute state of the art. For their own KCCA approach,
they report a Recall@10 of 30.3% on a 6K/1K training/test split of their orig-
inal Flickr8K dataset. For the visual features, they use spatial pyramid kernels
on color, texture, and SIFT features. While this representation is not exactly
equivalent to our “standard” visual features (Table 1, top line), we expect it to
have a similar expressive power. For the text features, they use a sophisticated
trigram kernel with distributional and alignment-based similarities – a repre-
sentation we could not easily accommodate in our linear CCA framework. For
comparison, our fully supervised normalized CCA model trained and tested on
the same 6K/1K split with the “standard” visual features has a Recall@10 of
30.1% – a remarkably similar number despite our system being totally unrelated
to that of [7]. For the SAE approach with additional Flickr1M training data
we get 38.2% – a significant improvement. With the CNN visual features, the
numbers for our CCA and SAE models go up to 43.8% and 48.8%, respectively.
In the future, we would like to experiment with encoding more complex linguis-
tic features in our linear CCA framework to see what additional benefit we can
obtain from improving that part of the representation (Hodosh et al. [7] have
observed a big advantage for their trigram feature over a simple BoW).

5 Discussion

Our paper is the first to show that Internet images annotated with noisy titles,
tags, and descriptions can provide useful information for improving joint em-
beddings of images and sentences for the application of retrieval-based image
description, despite the fact that these sources of textual information have very
different distributions and are collected in completely different ways. We have
introduced a novel method named Stacked Auxiliary Embedding that convinc-
ingly outperforms a number of alternatives, and is, in fact, the only method
we have considered that is able to obtain a non-trivial improvement over the
baseline that uses fully supervised image-sentence data only.

Apart from this main contribution, we have obtained several other interesting
findings along the way. In particular, we have shown that CNN features work
much better than traditional visual features for our task, with very affordable
dimensionality. This adds to the growing list of recent results in the vision com-
munity showing the effectiveness of pre-trained CNN activations as a generic
representation for recognition. We have also found that Flickr image titles seem
to be more discriminative than the more commonly used tags, despite being
much shorter. Next, we have confirmed the somewhat surprising findings of [13]
that a simple modification of the similarity function used for retrieval with CCA
dramatically improves its accuracy, to the point of outperforming sophisticated
state-of-the-art ranking models such as Wsabie. While we were able to improve
Wsabie in turn with the addition of AdaGrad, normalized CCA still emerged as
the more accurate and scalable method.
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In the future, we would like to gain more insight into what makes SAE effec-
tive. While our baseline comparisons have empirically confirmed the necessity of
every implementation choice (i.e., stacking, nonlinearly transforming the inter-
mediate embedded features, and concatenating them with the original features),
the resulting technique is frustratingly opaque.
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