
Pose Locality Constrained Representation

for 3D Human Pose Reconstruction

Xiaochuan Fan, Kang Zheng, Youjie Zhou, and Song Wang

Department of Computer Science & Engineering, University of South Carolina, USA
{fan23,zheng37,zhou42}@email.sc.edu, songwang@cec.sc.edu

Abstract. Reconstructing 3D human poses from a single 2D image is an
ill-posed problem without considering the human body model. Explicitly
enforcing physiological constraints is known to be non-convex and usually
leads to difficulty in finding an optimal solution. An attractive alterna-
tive is to learn a prior model of the human body from a set of human pose
data. In this paper, we develop a new approach, namely pose locality con-
strained representation (PLCR), to model the 3D human body and use
it to improve 3D human pose reconstruction. In this approach, the hu-
man pose space is first hierarchically divided into lower-dimensional pose
subspaces by subspace clustering. After that, a block-structural pose dic-
tionary is constructed by concatenating the basis poses from all the pose
subspaces. Finally, PLCR utilizes the block-structural pose dictionary to
explicitly encourage pose locality in human-body modeling – nonzero co-
efficients are only assigned to the basis poses from a small number of pose
subspaces that are close to each other in the pose-subspace hierarchy. We
combine PLCR into the matching-pursuit based 3D human-pose recon-
struction algorithm and show that the proposed PLCR-based algorithm
outperforms the state-of-the-art algorithm that uses the standard sparse
representation and physiological regularity in reconstructing a variety of
human poses from both synthetic data and real images.

Keywords: 3D human pose reconstruction, subspace clustering, hierar-
chical pose tree.

1 Introduction

3D human pose reconstruction plays an important role in many vision applica-
tions, such as image retrieval, video surveillance and human-computer interac-
tion. In this paper, we focus on the problem of reconstructing 3D human poses
from the 2D locations of human joints that are annotated in a monocular image.
Without considering any prior knowledge on human body, this is obviously an
ill-posed problem. Previous works have explicitly utilized physiological knowl-
edge of the human body, such as the body-segment length [6,11], the joint-angle
limits [1] and the skeletal size [9], to regularize the 3D pose reconstruction. How-
ever, due to the large diversity of human poses, it is usually intractable to find
an optimal solution under non-convex physiological constraints [13].
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Fig. 1. An illustration of the proposed method. (a) The standard sparse representation
allows the non-zero coefficients to be assigned to blocks (nodes) that are distant from
each other. (b) The proposed PLCR-based algorithm assigns the non-zero coefficients
only to a small set of blocks (nodes) that are close to each other. Basis poses are shown
in different-shape elements (e.g., triangles, squares). The selected basis poses for 3D
pose reconstruction are linked to the final reconstruction with arrows.

Recently, many efforts have been made in inferring the semantic concepts of
the pose or action presented in the 2D image and then using these semantic
concepts to help the 3D pose reconstruction. Ramakrishna et al [11] categorize
human poses by the human actions, like walking and jumping, and construct
sparse representations of human poses. Recently, supervised action classification
[23,22,10] was also introduced to automate the action categorization for 3D pose
reconstruction. While human actions are semantically well defined, one action
may still consist of a variety of human poses and the action-based categorization
may not provide sufficiently specific knowledge for 3D pose reconstruction. To
address this problem, in this paper we propose a pose locality constrained rep-
resentation (PLCR) approach for improving the 3D pose reconstruction. In this
approach, we construct a hierarchical pose tree, as shown in Figure 1 to model
the human poses by subspace clustering [8], where each tree node represents a
lower-dimensional pose subspace and nodes with a larger depth in the tree rep-
resents more specific pose subspaces. In addition, nodes that are closer to each
other in this tree indicate pose subspaces with higher similarity and/or overlap.

In using PLCR for 3D pose reconstruction, we build a block-structural dic-
tionary by concatenating the basis poses from all the nodes of the tree and
basis poses from each node constitute a block. With the dictionary, we apply
the projected matching pursuit (PMP) algorithm to estimate the most likely 3D
human pose. The proposed method explicitly encourages pose locality – nonzero
coefficients are only assigned to the basis poses from a small number of blocks
(tree nodes) that are close to each other. A comparison between the proposed
PLCR representation and the standard sparse representation is shown in Fig-
ure 1, where the standard sparse representation may assign nonzero coefficients
to distant blocks. Wang et al [19] have shown that locality is more important
than sparsity in the image classification. In this paper, we show that, this obser-
vation also holds true for the ill-posed problem of 3D human pose reconstruction
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– the proposed method can achieve better performance than the state-of-the-art
method that uses the standard sparse representation.

2 Related Work

Low-dimensional action priors for pose reconstruction. Many human
motion analysis systems used low-dimensional action priors to handle their prob-
lems such as human motion optimization [12], human action classification [21],
and 3D human body pose tracking [5]. Recently, action priors were also used to
assist 3D human pose reconstruction. Yao et al [22] used 2D action recognition
as a prior for 3D pose reconstruction, where action specific regression models
were trained separately based on low-level appearance features. More recently,
Yu et al [23] used action detection on video snippets to derive strong spatiotem-
poral action priors, which was combined with part-based 2D pose estimation for
3D pose reconstruction. While providing a prior for reconstructing the 3D pose,
action labels are still not sufficiently specific since poses from one action class
may still show a large diversity.

3D pose reconstruction with physiological regularity. An example of early
works on reconstructing 3D poses using physiological regularity is [4] in which
physical and motion constraints were applied to prune a binary interpretation
tree that records all possible body configurations. Liebowitz and Carlsson [6]
assumed known body segment lengths and reconstructed 3D poses from uncal-
ibrated multiple views by using articulated structural constraints. Taylor et al
[16] recovered the poses from a single view by assuming known skeletal sizes
and resolving the depth ambiguity manually. In [1], the maximum a posterior
3D trajectory was estimated based on a 3D kinematic model including joint an-
gle limits, dynamic smoothing, and 3D key frames. [9] assumed known skeletal
size and dealt with a perspective uncalibrated camera. Wei and Chai [20] re-
constructed 3D human poses using the bone symmetric constraint from biome-
chanical data. Valmadre and Lucey [17] extended Wei and Chai [20]’s work by
using a deterministic structure-from-motion method. As discussed above, due to
the large diversity of human poses, it is usually intractable to find an optimal
solution under non-convex physiological constraints [13].

Sparse representation for 3D pose reconstruction. Recently, Ramakrishna
et al [11] presented an activity-independent pose-reconstruction method in which
the 3D pose is sparsely represented by an overcomplete dictionary learned from
a large motion capture dataset. A projected matching pursuit (PMP) algorithm
was proposed to infer the underlying 3D poses and the camera settings by min-
imizing the reprojection error greedily. In this paper, we further introduce pose
locality into 3D pose reconstruction – the sparse set of basis poses selected for
reconstruction are always from a small number of specific subspaces with high
similarity. Through experiments, we will show that the introduction of pose lo-
cality can further improve the accuracy of 3D pose reconstruction.
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3 Proposed Method

In this section, we first give a formal definition of 3D human pose reconstruction
from a 2D projection in Section 3.1. Then, in Section 3.2, we describe an unsu-
pervised pose subspace clustering method for constructing hierarchical pose tree.
Based on this tree, we detail the idea of the PLCR and the algorithm that use
PLCR for 3D human pose reconstruction in Section 3.3. Finally, we summarize
the entire PLCR-based algorithm for 3D pose reconstruction in Section 3.4.

3.1 Problem Description

A 3D human pose can be represented by a set of human joints J = {ji}Li=1 ∈
R

3L×1, where ji denotes the 3D coordinates of joint i and L is the number of
human joints. In this paper, we are interested in estimating 3D joint locations J
from their 2D projections p ∈ R

2L×1, with unknown camera parameters.
Under the weak perspective camera projection model, the projected 2D coor-

dinates can be represented as

p = (IL ⊗M)J+ 1L×1 ⊗T (1)

where ⊗ is the Kronecker product, T ∈ R
2×1 is the translation vector, and

M ∈ R
2×3 contains both rotation and scaling parameters. Assuming that the

camera intrinsic parameters are known, the degree of freedom of the camera
parameters is 7. Therefore, in total there are 3L + 7 unknowns while only 2L
equations are available. Obviously, this is an under-determined problem, and we
need to apply dimensionality reduction to make it determined.

However, due to the large diversity of human poses, a direct application of
linear dimensionality reduction on the entire pose space is difficult and usually
results in large reconstruction errors. This problem can be solved by restricting
the pose reconstruction on a more specific pose subspace. To achieve this goal,
two problems need to be addressed: 1) effectively dividing the entire pose space
into subspaces, 2) finding the subspace in which the underlying 3D pose belongs
to, based only on its 2D projection. For the first problem, we construct a hi-
erarchical pose tree, where each node represents a pose subspace and the node
with a larger depth in the tree represents a more specific pose subspace. For the
second problem, given a 2D pose projection we find an anchor node in the tree
by minimizing the reprojection error. In practice, the underlying 3D pose may
not exactly belong to the subspace defined by the anchor node because of the
information loss in 2D projection. To address this issue, we additionally include
nodes close to the anchor node in the tree and use all their basis poses for 3D
pose reconstruction.

3.2 Hierarchical Pose Tree

We construct pose subspaces with different levels of specificity by using subspace
clustering. In particular, given a large set of 3D pose training data, we cluster
them into different groups in a hierarchical way, such that each group of pose
data represents a subspace.
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Unsupervised Human Pose Subspace Clustering. Considering the code
efficiency and availability, in this paper we use the low-rank representation al-
gorithm [8,7] for 3D human pose subspace clustering. Other subspace clustering
algorithms, such as the K-subspaces algorithm [18] and the sparse subspace
clustering (SSC) algorithm [2,15], can also be used here.

Specifically, given a set of 3D human poses J = {Ji}Ni=1 ∈ R
3L×N , we first

construct the lowest-rank representation Z ∈ R
N×N that satisfies J = JZ. Let

the skinny SVD of Z be UΣV T . We define the affinity matrix W as

wij =

([
Ũ ŨT

]
ij

)2

,

where Ũ is formed by UΣ
1
2 with normalized rows. Each element wij ∈ W mea-

sures the likelihood that two poses Ji and Jj are located in the same subspace.
Finally, we apply the spectral clustering [14] on the affinity matrix W.

Pose Data Normalization. The goal of subspace clustering is to group similar
poses, even performed by different subjects, into a same subspace. However,
in practice, we found that the physiological difference between subjects may
dominate the pose clustering, e.g., different poses from similar-size subjects may
be clustered together. To address this problem, we propose to normalize all the
3D pose data before applying the above subspace clustering. In this paper, we
normalize the length of each segment between adjacent joints in the human
skeleton.

A segment that connects two joints ja and jb in the human skeleton can be
written as ja − jb. We then convert it to the spherical coordinates as

ja − jb = (θab, φab, rab) ,

where, θab is the zenith angle from the z axis, φab is the azimuth angle from
the x axis in the xy plane, and rab is the radius or the length of the segment.
Obviously, rab is a constant for all the poses performed by a same subject,
but different for the poses performed by different subjects. We normalize rab
to the average length of this segment over all the training pose data. For the
rigid parts of the human body, such as clavicles and hips, we also normalize the
zenith and azimuth angles to be constants, by averaging over all the training
pose data. After normalizing in the spherical coordinates, we convert the pose
data back to the Cartesian coordinates. In this step, to ensure the segments are
connected at the corresponding joints, we take advantage of the tree structure
of the human skeleton – starting from the root (e.g., human head), normalized
segments are assembled layer by layer to determine the coordinates of each joint.
Figure 2 shows the sample subspace clusters with and without the normalization
step. We can see that, with the data normalization, similar poses from different
subjects can be clustered together.

Hierarchical Pose Tree. To construct subspaces with various levels of speci-
ficity, we recursively perform subspace clustering to construct a hierarchical pose
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Fig. 2. Sample subspace clustering results (a) without and (b) with the pose data nor-
malization. With the normalization, the data that describe similar poses from different
subjects are successfully clustered together, e.g., cluster 1 for the pose of moving right
foot ahead and cluster 2 for the pose of moving left foot ahead.

tree – a cluster of pose data may be further clustered into smaller groups, where
each group represents a more specific pose subspace. In this paper, we use two
parameters, the branch factor K and a subspace complexity k, to control the
number of clusters and the height of the resulting pose tree. A branch factor K
indicates that each node in the pose tree, except for the leaves, has K children
– each subspace is partitioned into K more specific subspaces in the recursive
clustering. The subspace complexity k can be estimated using the method pro-
posed in [7] – a subspace will not be further divided if k < K and this subspace
becomes a leaf node in the pose tree. This way, nodes with a larger depth in the
constructed pose tree represent more specific pose subspaces and the pose simi-
larity between different subspaces can be measured by the shortest-path distance
between the corresponding nodes in the pose tree.

3.3 Pose Locality for Reconstruction

In this section, we first build a block-structural pose dictionary based on all the
subspaces (nodes) in the constructed pose tree, taking the basis poses at each
node as a block. We then describe a new pose locality constrained representation
(PLCR) for reconstructing the 3D pose.

Block-Structural Pose Dictionary. As described in Section 3.2, each node
in the constructed pose tree represents a pose subspace, which is described by a
cluster of training pose data. At each node i, we can draw all pose data in the
corresponding cluster and apply PCA to construct Di basis poses, denoted as
a block Bi. The pose dictionary B = {Bi}Mi=1 is constructed by concatenating
the basis poses over all the M nodes. The total number of basis poses in the
dictionary is D =

∑M
i=1 Di. Thus, the pose dictionary can also be written as

B = {bj}Dj=1, where each bj denotes one basis pose.



180 X. Fan et al.

Given a pose dictionary B, each 3D human pose J can be represented by a
linear combination of basis poses in B, i.e.,

J = m+ BΩ = m+

⎡
⎢⎣
B1

...
BM

⎤
⎥⎦
T ⎡
⎢⎣
Ω1

...
ΩM

⎤
⎥⎦ = m+

⎡
⎢⎣
b1

...
bD

⎤
⎥⎦
T ⎡
⎢⎣
ω1

...
ωD

⎤
⎥⎦ (2)

where m ∈ R
3L×1 is the mean pose calculated over all the pose data and Ω ∈

R
D×1 are the coefficients. We also denote E = ‖Ω‖0 to be the sparsity of Ω,

with which the number of unknowns in Eq. (1) can be reduced to E + 7.

Pose Reconstruction with PLCR. For reconstructing the 3D pose from a
2D projection, we need to select E basis poses from the dictionary. Previous
method [11] uses sparse representation to sequentially select E basis poses that
minimize the reprojection error

R(B,Ω,M,T) = p− (IL ⊗M)

(
m+

M∑
i=1

BiΩi

)
− 1L×1 ⊗T,

where the weak-projective camera parametersM andT can be refined iteratively
with an initialization.

However, standard sparse representation does not enforce pose locality – the
selected basis poses can be drawn from subspaces (nodes) that are far from each
other in the pose tree. In this section, our main goal is to ensure that the E
selected basis poses are drawn from a small number of subspaces (nodes) that
are close to each other. To achieve this goal, we calculate the initial reprojection
error ri for each block Bi based on the initial camera parameters, i.e.

ri = R (Bi,Ω
∗
i ,M,T) ,

where the coefficients Ω∗
i can be calculated by

Ω∗
i = argmin

Ωi

‖R (Bi,Ωi,M,T) ‖2. (3)

Given the 2D projection p of the pose and initial camera parameters, we
define the anchor node A (p) to be the node in the pose tree that leads to the
smallest reprojection error, by using the basis poses at this node (subspace), i.e.,

A (p) = argmin
i

‖ri‖2. (4)

To make the search process of anchor node more efficient, we use the following
top-down search algorithm.

1. Examine the root of the tree and calculate the reprojection error.
2. Examine all the K child nodes of the root and pick the one with the smallest

reprojection error.
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3. For the picked node, we further examine its K children and pick the one
with the smallest reprojection error and repeat this process until we reach a
leaf node.

4. All the picked nodes constitute a path from the root to a leaf and each node
along this path has an associated reprojection error. We then pick the node
along this path with the smallest reprojection error as the anchor node.

Given the information loss in the 2D projection, the anchor node may not provide
a subspace that well describes the underlying 3D pose. We select E basis poses
not only from the subspace described by the anchor node, but also from the nodes
nearby. Specifically, we use the projected matching pursuit (PMP) to select the
basis poses and in each iteration, a new pose basis bj∗ is chosen from B by

j∗ = argmin
j

(|θj |+ λdj) , (5)

where θj is the angle between (I⊗M)bj and the reprojection error r in the
current iteration, λ is the locality weight. The locality adaptor

dj =

{
e

d(N(j),A(p))
σ , if d (N (j) , A (p)) ≤ dM ,

+∞, otherwise,

controls the pose locality – only the nodes (subspaces) that are close to the
anchor node in the pose tree are included for basis-pose selection. N (j) denotes
the node (subspace) that bj belongs to and d (N (j) , A (p)) is the distance or
the length of the shortest path between two nodes N (j) and A (p) in the pose
tree. dM is a pre-set threshold and the nodes with a distance to the anchor
that is larger than this threshold will not be included for basis-pose selection.
Following [19], σ controls the weight decay speed for the locality adaptor. Using
this technique to select basis poses, we can iteratively refine the reconstruction
of the 3D pose and camera parameters using the PMP algorithm [11]. Note that,
the proposed algorithm only selects one more basis pose b∗

j in each iteration and
this is different from the group sparsity technique [3], where all the basis poses
at the node N(j∗) are selected in an iteration.

3.4 Algorithm Summary

The complete PLCR-based algorithm for 3D pose reconstruction is summarized
in Algorithm 1. As described above, we first construct a hierarchical pose tree,
build a block-structural pose dictionary and search for an anchor node. We then
iteratively pick the new basis poses that not only reduce the reprojection error,
but also satisfy the pose locality constraint. In each iteration, we re-estimate the
camera parameters based on the updated pose representations. Specifically, we
use the PMP algorithm in [11] for camera parameter estimation. This iterative
process is terminated when the 2D reprojection error is lower than a tolerance
value, or a pre-set sparsity E has been reached. Using this iterative algorithm,
a 3D human pose can be reconstructed using a linear combination of a small
number of basis poses.



182 X. Fan et al.

Algorithm 1. PLCR-based 3D pose reconstruction

Input: p: 2D projection of a human pose
J : a set of 3D human poses
E: pre-set sparsity
τ : tolerance value for the 2D reprojection error

1 Construct a hierarchical pose tree using method proposed in Sec. 3.2 and
build the pose dictionary B.

2 Estimate initial camera parameters 〈M = M1,T = T1〉[11].
3 Search for an anchor node A (p) using the method proposed in Sec. 3.3
and initialize S = ∅.

4 FOR l from 1 to E
5 j∗ = argmin

j
(|θj |+ λdj)

6 S = S ∪ bj∗

7 Update the coefficients Ω and camera parameters 〈M,T〉 according to
the updated S .

8 Calculate the reprojection error r = R (S ,Ω,M,T).
9 IF ‖r‖2 > τ

10 BREAK
11 Calculate the 3D pose J by Eq.(2) and return.

Output: 3D pose J and camera parameters M and T

4 Experiments

We use the CMU Motion Capture dataset for quantitative evaluations. This
dataset contains more than three million 3D human poses collected on 144 sub-
jects performing 30 different actions, and it has been widely used for evaluating
3D human pose reconstruction [11,17,20]. We also qualitatively evaluate the pro-
posed method on real images collected from the Internet. As in previous works
[11,17,20], we randomly selected a subset of 29, 336 3D human poses from 5 dif-
ferent action categories: ‘walking’, ‘jumping’, ‘running’, ‘boxing’ and ‘climbing’
for quantitative performance evaluation. Details on the selected data is shown in
Table 1. We can see that, for each action category except for ‘climbing’, the col-
lected data are preformed by a number of different subjects. We use the 18-joint
pose representation for our experiments [20].

Table 1. Detailed information on the 29, 336 3D poses that are used for quantitative
performance evaluation

Walking Jumping Running Boxing Climbing

# of Pose 5752 5808 5352 8072 4352

# of Subjects 8 3 8 3 1

To study the generalizability of the proposed method, we use the “leave-one-
subject-out” strategy for performance evaluation – the test data and the training
data are from different subjects. Furthermore, we exclude the data from the
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‘climbing’ action from training and only use them for testing to examine the
generalizability of the proposed 3D pose reconstruction method across different
action categories. As shown in Table 1, we in total conducted 23 rounds of
experiments. Out of them, we have 22 rounds of experiments that use the pose
data from the first four categories, excluding the data from ‘climbing’ category.
In each of these 22 rounds of experiments, we leave out pose data from one
subject in one action category for testing, while using the remaining data for
training. We then conduct one additional round of experiment which uses pose
data from ‘climbing’ category for testing and all the pose data from the other
four categories for training.

When using a pose for testing, we first project it (i.e., the 18 joints) into
2D using a randomly generated camera parameters – both the camera location
and orientation conform to a Gaussian distribution. We then reconstruct the 3D
pose from this 2D projection (assuming camera parameters are unknown) and
measure the reconstruction error at each joint as Euclidean distance between the
ground-truth location of this joint and the reconstructed location of this joint.
We then take the maximum reconstruction error over all the 18 joints and
normalize it over the distance between the chest and waist as the (normalized)
reconstruction error of this pose. Another performance metric used in this paper
is the pose reconstruction rate, defined as the percentage of the tested poses that
result in a low (normalized) reconstruction error, defined by a given threshold,
which we use 0.3 for all the experiments.

The parameters that need to be tuned for our algorithms are: the branch
factor K, the sparsity E, and the locality-adaptor related ones (λ, σ and dM ).
In our experiments, we set K = 2, E = 10, σ = 1 and dM = 2. We vary the
parameter λ in the experiment to examine its effect to the performance. The
choice of the parameters E and dM will be further discussed at the end of this
section.

4.1 Quantitative Results

Table 2 shows the reconstruction error (rec error) and the reconstruction rates
(rec rate), averaged over all the subjects for each action category, with varying
parameter λ. For comparison, we also report in Table 2 the performance of
a state-of-the-art algorithm developed by Ramakrishna et al [11] on the same
training and testing data. This comparison method [11] uses standard sparse
representation and physiological regularity for 3D pose reconstruction. Note that,
to examine the effectiveness of the proposed pose-locality constraints, we do
not include any physiological regularity in the proposed method. We can see
that, the proposed PLCR-based 3D pose reconstruction method outperforms
the Ramakrishna’s algorithm for all the action categories.

The 2D joint locations annotated in monocular images are often noisy. To
examine the performance of 3D pose reconstruction under the 2D annotation
noise, we add Gaussian white noise with different standard deviation std to the
projected 2D joint locations, and then perform the 3D reconstruction, and the
average performance over all the action categories is reported in Table 3, where
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Table 2. The 3D reconstruction errors and reconstruction rates for different action
categories

Action
Category

Performance
Metrics

Proposed method Ramakrishna
et al [11]λ = 0 λ = 0.1 λ = 0.2 λ = 0.3

Walking
rec error 0.360 0.300 0.260 0.272 0.446
rec rate 53.4% 71.2% 73.9% 70.4% 29.6%

Running
rec error 0.417 0.390 0.385 0.432 0.453
rec rate 29.8% 35.1% 38.2% 34.0% 23.0%

Jumping
rec error 0.343 0.322 0.316 0.321 0.374
rec rate 34.12% 39.5% 41.6% 40.2% 31.6%

Boxing
rec error 0.579 0.530 0.535 0.534 0.584
rec rate 13.3% 17.0% 16.4% 16.8% 10.7%

Climbing
rec error 0.560 0.528 0.522 0.526 0.533
rec rate 21.7% 27.9% 27.0% 28.1% 20.1%

Table 3. The average 3D reconstruction errors and reconstruction accuracy rates when
different levels of noise are added to the 2D projections

std 0.0 0.1 0.2 0.3 0.4

Proposed method
rec error 0.414 0.449 0.485 0.561 0.630
rec rate 32.6% 28.7% 24.4% 18.1% 13.1%

Ramakrishna et al [11]
rec error 0.466 0.497 0.558 0.634 0.704
rec rate 23.9% 20.5% 13.8% 9.3% 4.8%

(a) (b)

Fig. 3. (a) Reconstruction errors at each of the 18 joints – a comparison between the
proposed method and the Ramakrishna et al’s algorithm. (b) Average reconstruction
errors for four actions by varying the value of E.
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the performance under std = 0.0 is the one without adding any noise. The val-
ues of the std are normalized by the width of the bounding box around the
2D projected pose. We can see that, the stronger the added noise, the larger
the 3D reconstruction error and the lower the reconstruction rate. However,
with the same level of noise, the proposed method still outperforms the compar-
ison method.

Figure 3(a) shows the reconstruction error at each of the 18 joints, averaged over
all rounds of experiments and all action categories. We can see that the proposed
method achieves lower reconstruction error at all 18 joints than the Ramakrishna
et al’s algorithm. We can also see that, the reconstruction errors at feet, wrists,
and ankles are larger than those at other joints, because of the larger movements
of the hands and feet. Similar phenomena has been reported in [23].

4.2 Qualitative Evaluation

3D pose reconstruction results on four pose samples drawn from CMU Motion
Capture dataset are shown in Figure 4. For each sample, we show (from left to
right) the ground-truth 3D pose, its 2D projection, the 3D reconstruction us-
ing the proposed method, and the 3D reconstruction using the Ramakrishna’s
algorithm [11], respectively. For all these four cases, we can see that the pro-
posed method generates more accurate and physiologically correct reconstruc-
tions, which are particularly clear at the locations indicated by the thick blue
arrows on the results from the Ramakrishna et al’s algorithm [11].

We also evaluate the proposed method on several images downloaded from
the Internet, by manually annotating the 2D locations of the 18 joints on each
image. The pose reconstruction results are shown in Figure 5. The reconstructed
3D human poses are shown from two different view angles. We can see that,
the proposed method produces reasonable human pose reconstruction results on
these real images.

4.3 The Selection of Parameters dM and E

The parameter dM defines a range around the anchor node that is allowed to
be used for drawing the basis poses for 3D pose reconstruction. Intuitively, this
parameter should be the distance between the real node (subspace) a pose be-
longs to and the anchor node searched by the proposed method. In our case, a
pose belongs to one node (subspace) at each level of the tree and all these real
nodes from all levels constitute a path from the root to a leaf. We can examine
the shortest distance between the anchor node and this path, called node-path
distance, to select an appropriate value for dM . Table 4 shows the distribution
of this node-path distance for all the collected pose data. We can see that most
poses (86%) show such a distance to be no more than 2 (edges). Therefore, in
our experiments, we set dM = 2.

The parameter E indicates the sparsity, i.e., the number of basis poses used
for 3D pose reconstruction. Figure 3(b) shows the average reconstruction error
curves by varying the value of E, one curve for each action category. We can see
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Fig. 4. Qualitative comparison between the proposed method and the Ramakrishna et
al’s algorithm [11] on the CMU Motion Capture dataset. For each pose, from left to
right are the ground-truth 3D pose, its 2D projection, the 3D reconstruction using the
proposed method, and the 3D reconstruction using the Ramakrishna et al’s algorithm
[11], respectively. Indicated by the blue arrows (on the 3D reconstruction produced
by the Ramakrishna et al’s algorithm) are the locations where the proposed method
produces much better 3D reconstruction than the Ramakrishna et al’s algorithm.

Fig. 5. 3D pose reconstruction from six images collected from Internet
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Table 4. Distribution of the distance between the anchor node and the true path in
the pose tree

Node-path distance 0 1 2 3 4 5 6 7

% Poses 60.3 14.0 11.8 7.8 3.4 1.0 1.2 0.0

that, varying the value of E from 1 to 19 does not lead to substantial performance
difference for the 3D pose reconstruction. In our experiments, we simply select
E = 10.

4.4 Distribution of Anchor-Node Depth

The depth of the searched anchor nodes in the pose tree reflects the specificity of
the subspace used for 3D pose reconstruction – the deeper the anchor node, the
more specific the corresponding subspace and the stronger the regularization for
the ill-posed 3D reconstruction. Table 5 shows the distribution of anchor-node
depth for all the tested pose data. We can see that for more than 80% of the
poses, the searched anchor nodes have a depth larger than or equal to 2.

Table 5. Distribution of the anchor-node depth in the pose tree

Depth 0 1 2 3 4 5 6 7

% Poses 4.0 12.1 21.7 12.9 19.3 19.7 7.2 3.1

5 Conclusions

In this paper, we developed a new pose locality constrained representation
(PLCR) of 3D human poses and used it to improve the 3D pose reconstruc-
tion from a single 2D image. We first used subspace clustering to construct
a hierarchical pose tree, where each node represents a pose subspace and the
nodes with larger depth in the tree represent more specific pose subspaces. To
reconstruct a 3D pose, an anchor node is searched from the pose tree based on
the input 2D projection. We then use the projected matching pursuit algorithm
to search for a sparse set of basis poses from the anchor node (subspace) and
its nearby nodes, which enforces the pose locality. We tested on 29, 336 pose
data randomly selected from five action categories of the CMU Motion Cap-
ture dataset and found that the proposed PLCR-based algorithm outperforms
a state-of-the-art algorithm using only sparse representation without consider-
ing pose locality. Reasonable qualitative results were also shown on real images
collected from the Internet.
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