
3D Interest Point Detection

via Discriminative Learning

Leizer Teran1 and Philippos Mordohai2

1 Drexel University, USA
2 Stevens Institute of Technology, USA

Abstract. The task of detecting the interest points in 3D meshes has
typically been handled by geometric methods. These methods, while de-
signed according to human preference, can be ill-equipped for handling
the variety and subjectivity in human responses. Different tasks have dif-
ferent requirements for interest point detection; some tasks may necessi-
tate high precision while other tasks may require high recall. Sometimes
points with high curvature may be desirable, while in other cases high
curvature may be an indication of noise. Geometric methods lack the
required flexibility to adapt to such changes. As a consequence, interest
point detection seems to be well suited for machine learning methods that
can be trained to match the criteria applied on the annotated training
data. In this paper, we formulate interest point detection as a supervised
binary classification problem using a random forest as our classifier. We
validate the accuracy of our method and compare our results to those of
five state of the art methods on a new, standard benchmark.

Keywords: 3D computer vision.

1 Introduction

The identification of important points in images has been a long standing prob-
lem in computer vision. Once detected, these important, or interest, points are
encoded in one of many invariant representations, such as SIFT [19], and are
used within a multitude of applications such as image registration, retrieval, ob-
ject tracking and structure from motion. Note that Lowe [19] presents techniques
for detecting and describing interest points, but one can use a different detector
and then apply the SIFT descriptor. A similar two-stage approach can be ap-
plied to 3D data. However, due to concerns about the reliability of interest point
detectors in 3D, in many cases descriptors are computed at uniformly sampled
locations of the 3D model [15,9,24]. The reliability of 3D interest point detectors
was recently studied by Dutagaci et al. [7] who created a benchmark (Fig. 1)
and evaluated several state of the art methods. In this paper, we go beyond pure
geometry for 3D interest point detection by learning to detect such points from
a corpus of annotated data. Note that descriptor computation is out of scope
here.
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Fig. 1. David and glasses with marked ground truth points

One of the main difficulties in predicting interest points lies in the discrepancy
between quantifiable importance and perceived importance. Many methods as-
sume that quantitatively important points, usually found by optimization of a
function, correspond to perceptually important points. This assumption works
well for vertices that are co-located with sharp changes in the model, e.g. corners.
For smoother regions and perceptually ambiguous points, the previous assump-
tion along with a multi-scale approach have been met with varying success.
Another layer of difficulty arises when semantic ambiguity is considered. This is
due to varying, task-specific requirements and, in the case of our data, due to
subjectivity of the annotators.

A successful algorithm should be invariant to rotation, translation and scaling,
capture points that are appealing to a large consensus of people and have enough
flexibility to deal with ambiguity and subjectivity. One approach to capturing
subjectivity, which has not been fully explored in the 3D shape analysis liter-
ature, is discriminative learning that attempts to identify patterns associated
with the annotators’ preferences.

In this paper, we formulate 3D interest point detection as a binary classifica-
tion problem. We use several geometric detectors to produce attributes which are
the inputs to a learning algorithm that gives competitive performance against
five state of the art methods on the benchmark of Dutagaci et al. [7]. The pecu-
liarity of this benchmark is that the ground truth interest points were selected
by non-expert users who were asked to click on the models. As a result, points
with widely varying geometric properties are selected in each case. For example,
as seen in Fig. 1, the high curvature of David’s hair does not attract the atten-
tion of the annotators. In fact in many cases, such as the teddy bear in Fig. 2,
the interest points lie on smooth hemi-spheres. Subjectivity and semantics play
a large role in feature selection in this data set posing significant challenges to
geometric methods. In some sense, our approach aims at encoding the poten-
tial subjective criteria of the annotators and then transferring them to unseen
meshes in order to detect interest points according to these criteria. The results
in Section 4.5 show that our approach is able to cope with this variability to
a very satisfactory degree. Furthermore, consistent performance across widely
varying 3D models is an indication of our algorithm’s generalizability.
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Fig. 2. Teddy bear and armadillo with marked ground truth points

2 Related Work

In a recent survey, Dutagaci et al [7] introduced a benchmark and an evalua-
tion methodology for algorithms designed to predict interest points in 3D. The
benchmark comprises 43 triangular meshes and the associated paper evaluated
the performance of six algorithms [17,22,2,28,27,12] in interest point detection.
Since we also use this benchmark, we focus our attention to these six methods in
this section. Other methods for interest point detection on meshes include those
based on distinctiveness compared with other local regions [11,10,26], as well as
others based on thresholding geometric features [20] or detection in scale-space
[16]. We refer readers to recent surveys [21,25,7,18,31] for more details.

Mesh Saliency. Lee et al. [17] address interest point detection through the use
of local curvature estimates coupled with a center surround scheme at multiple
scales. The total saliency of a vertex is defined as the sum of Difference of
Gaussian (DoG) operators over all scales. Interest points are selected after non-
max suppression on total saliency.

Scale Dependent Corners. Novatnack and Nishino [22] measure the geometric
scale variability of a 3D mesh on a 2D representation of the surface geometry
given by its normal and distortion maps, which can be obtained by unwrapping
the surface of the model onto a 2D plane. A geometric scale-space which en-
codes the evolution of the surface normals on the 3D model while it is gradually
smoothed is constructed and interest points are extracted as points with high
curvature at multiple scales. The appropriate scale is automatically selected for
each point.

Salient Points. Castellani et al. [2] also adopt a multi-scale approach. DoG filters
are applied to vertex coordinates to compute a displacement vector of each vertex
at every scale. The displacement vectors are then projected onto the normals of
the vertices producing a “scale map” for each scale. Interest points are extracted
among the local maxima of the scale maps after an inhibition process.
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Heat Kernel Signature. Sun et al. [28] apply the Laplace-Beltrami operator over
the mesh to obtain its Heat Kernel Signature (HKS). The HKS captures neigh-
borhood structure properties which are manifested during the heat diffusion
process on the surface model and which are invariant to isometric transforma-
tions. The time required for heat to diffuse from one part of the model to another
can be used to form a signature which is invariant to isometric transformations.
The local maxima of the HKS are selected as the interest points of the model.

3D Harris. Sipiran and Bustos [27] generalize the Harris and Stephens corner
detector [13] to 3D. The computation is now performed on the rings of a vertex,
which play the role of neighboring pixels. A quadratic surface is fitted to the
points around each vertex. This enables the use of a filter similar to the Harris
operator, the maximal responses of which are selected as interest points.

3D SIFT. Godil and Wagan [12] initially convert the mesh model into a voxel
representation. Then, 3D Gaussian filters are applied to the voxel model at
various scales as in the standard SIFT algorithm. DoG filters are used to compute
the difference between the original model and the model at a particular scale
and their extrema are taken as candidate interest points. The final set of interest
points are those that also lie on the surface of the 3D object.

Related to our work is the approach of Holzer et al. [14] that detects interest
points in range images using a regression forest. The key differences with our
approach are that it operates on sequences of RGB-D images instead of meshes,
it is designed for real-time processing and thus uses a simpler set of features,
and it considers only objective, geometric criteria. Donner et al. [6] propose
an approach for detecting class-specific landmarks, such as the finger tips of a
human hand, in volumetric data. A similar problem of detecting facial features
in meshes is addressed by Creusot et al. [4]. The two latter approaches [6,4] differ
from ours in that they aim at detecting different instances of the same feature,
while we aim at transferring the knowledge gained from human annotation from
a set of meshes to a completely different mesh.

3 Attributes and Learning

In this section, we focus on the geometric attributes that are used as inputs to
our classifier. The attributes capture characteristics that intuitively should help
discriminate between interest and regular points, such as curvature, saliency
compared to neighboring vertices, etc. Since interest points may become salient
at different scales, we capture information at multiple scales by applying Dif-
ference of Gaussian (DoG) filters on the attributes [17,2]. The DoG filters are
an implementation of the center-surround principle for detecting salient regions
based on their differences with the surrounding context. All attributes are in-
variant to rotation, translation and scale. The latter is achieved by normalizing
the lengths in each mesh by its diameter.
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First, we present the attributes that serve as the basic building blocks for
all the others. The motivation behind this basic set is to create descriptors that
capture the local geometric properties and context of a given vertex. We attempt
to quantify the basic properties of every vertex, v, through the following 10
attributes, the first 7 of which use the 100 nearest Euclidean neighbors, denoted
as ν(v).

3.1 Basic Attributes

The first 5 attributes involve the scatter matrix about a vertex v:

S(v) =
∑

x∈ν(v)

exp
− ||x−v||2

τ2/2
(x− v)(x − v)T

||x− v||2 , (1)

with x being the coordinates of vertex x and v being the coordinates of vertex
v. The parameter τ , was taken to be the radius of ν(v). The contribution of each
neighbor is weighted according to its proximity with v to limit the influence of
neighboring points that may be located across discontinuities.

Attributes 1 to 3 are ratios of eigenvalues of S(v):

F1(v) =λ1,v/λ2,v (2)

F2(v) =λ1,v/λ3,v (3)

F3(v) =λ2,v/λ3,v, (4)

where λi,v is the i-th largest eigenvalue of S(v). These capture properties of the
surface, such as planarity in which case S(v) is almost rank deficient, or corners
that have three eigenvalues of similar magnitude.

We look at the differences between the eigenvalues for the next two attributes,
as follows:

F4(v) =λ2,v − λ1,v (5)

F5(v) =λ3,v − λ2,v. (6)

Attribute 6 is the vertex density about the point, whereas attribute 7 is the
average inner product of vertex v’s normal with the normals of its 100 nearest
neighbors:

F6(v) =
100

Vol(ν(v))
(7)

F7(v) =

∑
x∈ν(v) n(v) · n(x)

100
(8)

Where n(x) is the vertex normal of vertex x.
Attributes 8 and 9 are the principal curvatures at vertex v and the 10th

attribute is its Gaussian curvature.

F8(v) = κ1(v) (9)

F9(v) = κ2(v) (10)

F10(v) = κ1(v)κ2(v) (11)
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To compute the principal curvatures, we look at the one-ring of the current
vertex. Then, directional curvatures along the edges are approximated and used
to compute the tensor of curvature [30].

3.2 DoG Attributes

The basic attributes described above are generally not sufficient to detect all
interest points, since they may become salient at different scales. Inspired by
the success of the multi-scale approach adopted by other algorithms [17,2], we
compute a set of DoG attributes that are functions of the basic attributes.

The DoG attribute computations were performed within Euclidean neighbor-
hoods of radius r centered at vertex v, which will be referred to as N(v, r). We
compute the Gaussian weighted average within the δ, 2δ, 4δ and 6δ neighbor-
hoods of vertex v, for each basic attribute. We use 0.3% of the model diameter
as δ. In addition, we compute the Gaussian weighted neighborhood averages
of the mean curvature for vertex v, which was not included in the set of basic
attributes because it is a linear combination of the principal curvatures.

Attributes 11 through 20 are the DoGs between the δ and 2δ neighborhoods
at each vertex for each basic attribute.

Gδ,j(v) =

∑
x∈N(v,δ) Fj(x) exp

−||x−v||2/(2δ2)
∑

x∈N(v,δ) exp
−||x−v||2/(2δ2) (12)

Fj+10(v) = |G2δ,j(v)−Gδ,j(v)| , j ∈ {1...10}. (13)

Attribute 21 is the DoG of the mean curvature for the δ and 2δ neighborhoods:

μδ(v) =

∑
x∈N(v,δ)C(x) exp

−||x−v||2/(2δ2)
∑

x∈N(v,δ) exp
−||x−v||2/(2δ2) (14)

F21(v) = |μ2δ − μδ| (15)

with C(x) being the mean curvature at vertex x.
Attributes 22 through 31 are DoGs for the basic attributes but use the 2δ

and 4δ neighborhoods instead. The 32nd attribute is the mean curvature DoG
for the 2δ and 4δ neighborhoods. Finally, we look at the DoGs for the 4δ and 6δ
neighborhoods to define the 33rd through 43rd attributes in the same way.

To summarize, each vertex has a total of 43 attributes, denoted by Fi(v) with
i ∈ 1, ..., 43. The attribute set for each vertex can be broken down into a set of
basic attributes {F1(v)...F10(v)} and a set of DoG attributes {F11(v)...F43(v)}
that are functions of the basic attributes at varying scales. Having defined the
inputs to our classifier, we now shift our attention to the random forest.

3.3 Random Forest

Random forest classifiers are ensembles of classification and regression trees that
have gained popularity due to their high accuracy and ability to generalize [1,5].
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The key idea during training is to generate decisions trees that partition the at-
tribute space in a way that separates the training data according to their labels,
interest and non-interest points in our case. In the training stage, a new train-
ing set is created for each tree by sampling with replacement (bootstrapping)
from the original training set. Each node performs randomly generated tests on
random subsets of the full attribute set. The attribute and threshold value that
optimize a function of the input samples is selected and the data are divided
to the node’s children. The Gini gain and the information gain are standard
functions used for the selection. We use the former in our analysis.

Once the forest has been trained, the test set vertices are fed to each trained
tree in the forest. The current vertex is run down each tree and decisions are
made at every node based on the optimal splits computed during training. This
process continues until the terminal node is reached and a decision is made about
the current vertex’s class label. The class label that is output by the majority
of the trees in the forest is assigned to the vertex. We use Scikit-Learn [23] to
implement the random forests.

The performance of the forest is controlled by its parameters: the depth of
each tree, the number of attributes at each node and the the number of trees in
the forest. Following Breiman’s recommendation [1], we do not prune the trees
and allow them to grow until each leaf contains one example. In general, the full
attribute set is not used while sampling at each node. This is done to keep the
trees in the forest as uncorrelated as possible. Following common practice, we
use

√
p attributes, where p is the total number of attributes, as a guideline to

search for the optimal number of attributes used at each node. As discussed in
Section 4, we use cross-validation to determine the number of trees.

3.4 Imbalanced Classes

Imbalanced classes present a challenge for most classifiers. Poor predictive per-
formance arises because the standard implementation aims to reduce the overall
error rate. As a consequence, the random forest can afford to misclassify almost
all the minority class examples and still achieve a very low error rate. To make
matters worse, the minority class may not even be selected during bootstrapping
and therefore may be missing almost entirely during the training process. For
our problem, the ratio of interest to non interest points can range anywhere from
1:100 to even 1:240 within our training data set.

There are a few strategies to deal with the misrepresentation of classes. We
chose a technique proposed by Chen et al [3] where the dominant class is down-
sampled, while the minority class is over-sampled. For a set of labelled vertices,
we randomly select n interest points, where n is one half of the total interest
points. During training each tree is given a balanced set of vertices that have a
ratio of k non interest vertices to n interest vertices, where k ≥ n. The parameter
k and the bootstrap ratio will be discussed in Section 4.
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4 Ground Truth and Experiments

In this section we describe the data we used, the experimental setup and our
results.

4.1 Ground Truth

Dutagaci et al. [7] used a web-based application to collect user clicks on 43 mesh
models. These models were organized in two overlapping data sets, Data Set A
and Data Set B, consisting of 24 and 43 triangular mesh models respectively.
Through the web-based application, a user was shown the models from a data
set one at a time and was allowed to freely click on them. Data Set A was
annotated by 23 human subjects while Data Set B was annotated by 16 human
subjects. The positions of the individual user clicks showed some variability as
well as some consensus. The variability may be due to imprecise clicking or the
subjective nature of interest points.

In order to determine user consensus and remove outliers, the authors con-
sidered two criteria while constructing each set’s ground truth. The first is the
radius, σdM , of an interest region and the second is the number of users n that
clicked within the region. The radius of the interest region is model-specific with
dM denoting the diameter of the model and σ is a parameter in [0.01, 0.02, 0.03,
... , 0.1]. Individual user clicks are clustered together if their geodesic distances
are less than 2σdM . If the number of clicks in a cluster is less than n that cluster
is ignored. If not, the point that minimizes the sum of geodesic distances to the
other points is chosen as the representative of the cluster and included in the
ground truth. In case the distance between cluster representatives is less than
2σdM , the clusters are merged and the representative with the highest number
of cluster points is chosen as the final representative.

The parameters, σ and n, affect the number of ground truth points. For a
fixed σ, fewer ground truth points are observed as n increases since a higher
consensus among users is needed. With small σ and large n, there tends to be
better localization around the points and typically fewer ground truth points are
observed. As can be seen in Fig. 3, as σ increases, more ground truth points are
observed. This trend continues until the clusters are large and close enough to
be merged with adjacent clusters, consequently decreasing the overall number of
ground truth points for large σ.

4.2 Experiments

We use the human generated ground truth to compare the random forest with
the five following methods: Mesh Saliency [17], Salient Points [2], Heat Kernel
Signature [28], 3D Harris [27] and Scale Dependent Corners [22], across Data Sets
A and B. There are a few models within these data sets that are not watertight
and therefore do not allow volumetric representations. As a consequence, the
output of 3D SIFT for these models was not provided at the benchmark website.
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(a) σ = 0.03, n = 2 (b) σ = 0.03, n = 8 (c) σ = 0.05, n = 2 (d) σ = 0.05, n = 8

Fig. 3. Ground truth points for the teddy bear for four σ/n combinations

This led to its exclusion from our analysis, but partial results can be seen in [7].
(3D SIFT is not among the top performing methods on the benchmark.)

Data Sets A and B are treated as distinct experiments where we measure
the effects of user consensus, n, and ground truth localization, σ, on algorithmic
performance. Adhering to the evaluation protocol [7], we adopt the following σ/n
combinations for Data Set A: 0.03/2, 0.03/11, 0.05/2 and 0.05/11. For Data Set
B we use the following combinations: 0.03/2, 0.03/8, 0.05/2 and 0.05/8. In other
words, for a given mesh model M , we assess how well the algorithms perform
in detecting ground truth points agreed upon by at least two subjects or by at
most one half of the subjects labeling each set.

4.3 Training and Predicting

For all experiments, we apply three-fold cross validation for both Data Sets A
and B. Specifically, Data Set B was partitioned into three disjoint sets consisting
of 14 models each (igea was removed since igea and bust2 are duplicates). Data
Set A was split into three disjoint sets consisting of eight models each. Once
the splits are established for a given set, we train the random forest, using the
attributes from Section 3 as the classifier input, on the first two folds and predict
the interest points of the last fold (test set), then the folds are rotated between
the test and training sets. The test data are never seen by the classifiers and are
not used for parameter selection.

Every vertex of every model in the training set of a given fold has a set of
labels. Because the ground truth points vary by σ and n, we have to make
a compromise between the number of ground truth points available and high
consensus among the annotators. For Data Set B, the representative of clusters
σ/n, n ∈ [11...22], are placed in the positive class for all values of σ provided.
All other vertices are placed in the negative class. Likewise, for Data Set A we
place the representative of clusters σ/n, n ∈ [8...15], in the positive class for
every available value of σ. The remaining vertices are considered members of the
negative class.

Our classifier has three main parameters. The first is the bootstrap ratio of
interest vertices to non-interest vertices that is used to balance the training set.
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The second is the number of attributes sampled during the node splitting process
and the third is the number of trees. We use a 1:1 ratio of interest vertices to
non-interest vertices while sampling and a random sample of 5 attributes at
every node for all 100 unpruned trees in the forest. These parameters are found
via cross validation.

Examining the resulting random forests reveals that the most important fea-
tures on Data Set B are: the DoG of Gaussian curvature at the largest scale
(f42), the average inner product with the 100 neighbors (f7), Gaussian curva-
ture (f10), the DoG of mid-scale Gaussian curvature (f31), maximum principal
curvature (f9) and two of the eigenvalue ratios (f1 and f2). Most feature types,
at some scale, contribute to the classifier.

In general, the random forest returns a large number of interest points, as
nearby vertices that have similar attributes form clusters. To address this, non-
max suppression is performed on the test set vertices that are chosen by the
forest. The suppression is done within the cψ Euclidean neighborhood of the
chosen vertices, where c is found to be 5 for Data Set A and 2 for Data Set B via
cross validation. ψ is the average minimum geodesic distance between ground
truth vertices of the training set.

Note, that the competing methods cannot be trained. Adjusting some thresh-
old is their only means for adaptation. Their outputs were downloaded from the
website provided by the authors of [7] and compared with our method’s output
on each test set. A detailed explanation of the test set scoring is given in the
following section.

4.4 Evaluation Criteria

Dutagaci et al. [7] evaluated the performance of the algorithms based on the
following definitions and criteria. Let AM be the set of vertices selected by the
algorithm for a given mesh model, M, with diameter dM . A ground truth point,
g ∈ G, is correctly identified if there exists a ∈ AM such that the geodesic
distance between them is less than some error tolerance, ε, and that no other
point in G is closer to a. Or in other words, g0 is correctly identified by the
algorithm if: g0 = argming∈G(d(a, g) ≤ ε) for some a ∈ AM . The following error
tolerances are used: ε = rdM with r ∈ [0, 0.1, 0.2...0.12].

This definition allows each correctly detected point in the ground truth set to
be in correspondence with a unique a ∈ A. The number of false positives (FP)
is then NA − NC and the false negatives (FN) are NG − NC where NA, NC

and NG are the number of algorithm selected points, correctly identified points
and number of ground truth points respectively. The geodesic distances were
computed using publicly available software [29].

In addition to the evaluation criteria proposed by the authors of the bench-
mark, we also adopt the Intersection Over Union (IOU) criterion, which has
been used to evaluate object detection in images [8]. We choose the IOU as our
main metric because FN and FP rates can be misleading in isolation. For a mesh
model, M , and algorithm, A, we use FP, FN and TP (true positives) as defined
above to compute the IOU of an algorithm over a mesh model as:
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a) Shoe: σ = 0.05, n = 2 b) Table: σ = 0.03, n = 2 c) Girl: σ = 0.03, n = 8

d) Teddy: σ = 0.05, n = 8 e) Hand: σ = 0.03, n = 8 f) Octopus: σ = 0.03, n = 2

Fig. 4. Random Forest predictions for six Set B models. Ground truth points for various
σ/n pairs in red. Random forest predictions in blue. Purple points are ground truth
vertices that are predicted exactly.

IOUA,M =
TP

FP + TP + FN
(16)

The definition for the IOU given above is for a mesh model. To find the IOU
score of an algorithm over a set of models, as is done in the experiments, a
running total of the false positives, false negatives and true positives were kept
over all vertices in the test set and then used to compute a set-wise IOU. We
compute the set-wise IOU score for the σ/n combinations in the experiments
section. For a given σ/n combination the IOU scores are found for values of
r ∈ [0, 0.1, 0.2...0.12].

4.5 Results

In this section, we present the results of the algorithm evaluations for Data Set
A and Data Set B under the IOU metric. Figure 4 contains some visualizations
of the results, while Fig. 5 shows the set-wise IOU scores averaged over the
three folds as the radius r varies. The legends show the Area Under the Curve
(AUC) for the different values of r. In addition, we compare the methods at
σ = 0.03/n = 2 and σ = 0.05/n = 2 using the evaluation criteria proposed by
[7] in the last column of Fig. 5. Here, FNE and FPE are defined as 1−NC/NG

and FP/NA respectively. It is important to note that the points detected by the
methods are constant when σ and n change.

Figure 5 shows that the random forest is either first or second across Data Set
B’s σ/n settings. It performs especially well when the localization is relaxed, as
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a) Data Set A b) Data Set B c) FNE/FPE

Fig. 5. Column 1 shows the IOU curves for Data Set A at various σ/n pairs. Column 2
contains the IOU curves for Data Set B and Column 3 has the FNE and FPE rates for
Data Set B with σ = 0.03, n = 2 and σ = 0.05, n = 2. The parameter r is mentioned
in Section 4.4. The AUC for each method is provided in the legend.
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can be seen when σ = 0.05. One possible cause for this is that new ground truth
points emerge when σ increases for n = 8. This is indicative of an ambiguous
region within the model, as seen in the teddy bear’s neck in Fig. 4. The random
forest captures these regions more effectively than the other methods.

Small values of n result in large numbers of ground truth interest points,
favoring aggressive methods, such as Salient Points. On the other hand, when
n is large, conservative methods are able to identify the truly salient points
without producing too many false positives. In this sense, the HKS algorithm
is an outlier compared to the rest of the algorithms, including ours. HKS can
reliably detect a very small number of very salient points but is unable to detect
even slightly more ambiguous points. The last column of Fig. 5 contains FPE
and FNE curves for Data Set B with n = 2. These curves reveal how aggressive
or conservative the algorithms are. The random forest performs well according
to all criteria over the parameter range.

Data Set A is expected to be more challenging for a learning-based method,
since the training set is smaller. Nevertheless, our algorithm is the top performing
one according to IOU. To reach an overall ranking, we average the IOU AUCs
over all settings. The results are summarized in Table 1.

Table 1. Average IOU AUCs for all methods on both data sets

Method Data Set A Data Set B

Random Forest 0.0279 0.0279
HKS 0.0239 0.0215
Salient Points 0.0230 0.0236
3D Harris 0.0192 0.0180
SD Corners 0.0144 0.0148
Mesh Saliency 0.0139 0.0137

5 Conclusions

In this paper, we have presented a discriminative learning approach to 3D in-
terest point detection that gives competitive performance over state of the art
methods. Experiments on a new, publicly available benchmark demonstrate that
our method handles variability in the ground truth, or the desirable output, more
steadily than other methods. A closer look at Figs. 1, 2 and 4 reveals the diversity
of the data, which combined with the relatively small number of models on which
our classifier is trained, serves as evidence of generalizability. This translates to
an increased ability to cope with human subjectivity in these experiments, and
it is equivalent to the ability to adapt to different task-specific requirements im-
posed on the algorithm. This is they key difference between our work and other
approaches that rely on purely geometric criteria for detecting interest points.
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