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Abstract. Learning short binary codes is challenged by the inherent
discrete nature of the problem. The graph cuts algorithm is a well-
studied discrete label assignment solution in computer vision, but has not
yet been applied to solve the binary coding problems. This is partially
because it was unclear how to use it to learn the encoding (hashing) func-
tions for out-of-sample generalization. In this paper, we formulate super-
vised binary coding as a single optimization problem that involves both
the encoding functions and the binary label assignment. Then we apply
the graph cuts algorithm to address the discrete optimization problem
involved, with no continuous relaxation. This method, named as Graph
Cuts Coding (GCC), shows competitive results in various datasets.

1 Introduction

Learning binary compact codes [32] has been attracting growing attention in
computer vision. In the application aspect, binary encoding makes it feasible
to store and search large-scale data [32]; in the theory aspect, the studies on
binary encoding have been advancing the investigation on the nontrivial discrete-
valued problems, e.g., [14,36,19,18,35,10,25,23,21,28,13]. Binary coding solutions
(e.g., [10]) can also facilitate the research on non-binary coding problems (e.g.,
[8,9,24]).

Recent studies [36,18,35,10,25,23,21,28,13] mostly formulate binary encoding
as optimization problems with several concerns. The Hamming distance [14] be-
tween the codes should preserve the similarity among the data, whereas the bits of
the codes should be informative for better data compression. Besides, the encod-
ing functions (also known as hashing functions) are expected to be simple, e.g., to
be linear functions or simple kernel maps [19,21]. If available, supervised/semi-
supervised information [18,35,25,21,28] should also be respected. The formula-
tions of these concerns lead to nontrivial optimization problems.

A main challenge in the optimization comes from the binarization of the en-
coding functions f , e.g., given by sign(f) or its equivalence. Various optimization
techniques have been adopted, including spectral relaxation [36,35], coordinate
descent [18], procrustean quantization [10], concave-convex optimization [25],
sigmoid approximation [21], and stochastic gradient descent [28]. Despite the
different strategies, these methods mainly focus on the optimization w.r.t. the
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continuous parameters of the encoding function f . However, the discrete nature
of the problem is often overlooked.

Nevertheless, discrete label assignment problems [5,4] are widely involved in
computer vision, e.g., in image segmentation [5], stereo matching [29], and many
other applications [20,4,1,31,27,12]. The assignment problems are often formu-
lated as energy minimization on a graph structure. The Graph Cuts algorithm
[5,4] is a well investigated solution to this problem.

Though the graph cuts algorithm is an effective solution to discrete label as-
signment problems, it has not been applied to binary encoding. This is partially
because the graph cuts algorithm can only give solutions to a finite set of sam-
ples, but make no prediction for the unseen ones (known as “out-of-sample”
generalization). To take advantage of graph cuts, we also need to include the
encoding functions in the optimization.

In this paper, we propose a binary coding method driven by graph cuts. We
mainly focus on the supervised scenario as in [18,35,25,21]. We formulate super-
vised binary coding as an optimization problem. Unlike most existing methods
that only involves the parameterized encoding functions f , we further incorpo-
rate the binary codes as auxiliary variables in the optimization. Our objective
function fits the binary codes to the supervision, and also controls the loss be-
tween the binary codes and sign(f). Then we can separate the binary label
assignment as a sub-problem in the optimization and solve it via the graph cuts
algorithm [5,4]. In experiments, this Graph Cuts Coding (GCC) method gives
competitive results in various datasets.

Our method provides a novel way of addressing the inherent issue of dis-
creteness in binary encoding. While most existing methods (e.g., [36,35,25,21])
address this issue by kinds of continuous relaxation or gradient descent, our
graph cuts solution focuses more closely on the binary nature. We are not the
first to consider binary coding via a “graph” structure, but to the best of our
knowledge, ours is the first method that uses the classical “graph cuts” algo-
rithm [5,4] to solve this problem. In the work of Spectral Hashing (SH) [36], it
has been pointed out that the SH problem is equivalent to “graph partitioning”.
However, the presented solution to SH in [36] is based on continuous spectral
relaxation. The work of Anchor Graph Hashing (AGH) [23] has also considered
a graph structure, but has pointed out that the usage of a graph is challenged
by the “out-of-sample” generalization. AGH addresses this issue via continuous
relaxation, rather than the discrete graph cuts.

2 Related Work

Our work is related to two seemingly unrelated areas in computer vision: binary
coding and graph cuts.

Learning Binary Codes. Earlier methods for binary encoding are random-
ized solutions such as Locality-Sensitive Hashing (LSH) [14,19]. Recent studies
on binary encoding resort to optimization. In several supervised methods like
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Binary Reconstructive Embedding (BRE) [18], Semi-Supervised Hashing (SSH)
[35], Minimal Loss Hashing [25], and Kernel-based Supervised Hashing [21], the
energy function minimizes the discrepancy between the data similarities and
the Hamming distances of sign(f). These methods optimize the energy func-
tion w.r.t. the continuous parameters of the encoding function f . This is often
addressed by gradient descent and/or continuous relaxation.

Graph Cuts. In computer vision, the graph cuts algorithm [5,4] is a fast and
effective solution to binary/multi-label assignment problems. We refer to [3] for a
comprehensive introduction. The graph cuts algorithm has been applied in image
segmentation [5], image restoration [5], stereo matching [29], texture synthesis
[20], image stitching [1], image enhancement [31], image retargeting [27], image
inpainting [12], and so on. The graph cuts algorithm is usually used to minimize
an energy in a form as [5]:

E(I) =
∑

i

Eu(Ii) +
∑

(i,j)

Ep(Ii, Ij). (1)

Here I are the labeling of the image pixels, e.g., 0/1 in binary segmentation.
Eu is a unary term (also called the data term) that depends on a single pixel,
and Ep is a pairwise term (also called binary/smoothness term) that depends
on two pixels. The graph cuts solver is based on the max-flow/min-cut [4], in
which no continuous relaxation is needed. Graph cuts can also be used to solve
higher-order energies [3].

3 Graph Cuts for Supervised Binary Coding

3.1 Formulations

We denote the data sets as X = {x1, ...,xn} that contains n training samples in
R

d. We first discuss the case of the linear encoding function f(x) = wTx − b,
where w is a d-by-1 vector and b is a scalar. We will discuss the kernelized cases
later.

Existing binary coding methods [14,36,19,18,35,10,25,23,21,28,30] mostly com-
pute a single bit y ∈ {−1, 1} by taking the sign of f(x). However, in our training
procedure, we allow y to be different from sign(f(x)). We treat the binary code y
as an auxiliary variable, and control its deviation from sign(f(x)) by a loss func-
tion. This makes the energy function more flexible. As an overview, we minimize
an energy function in the form of:

min
W,b,Y

E0(W,b,Y) + λE1(Y) (2)

s.t. y = 1 or − 1.

Here W = [w1, ...,wB]
T and b = [b1, ..., bB]

T are the parameters of the encoding
functions {f1, ..., fB} if B bits are given. Y is an n-by-B matrix with each row
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being the B bits of a sample vector x ∈ X. The values of Y are in either -1 or
1. λ is a weight.

In our optimization, y need not be the same as sign(f(x)), and the term
E0(W,b,Y) is used to measure the loss between each y and f(x). The term
E1(Y) is used to fit the codes to the supervision. Note the auxiliary variable Y
is only used in the training procedure. After training, all the data and queries
are still encoded using sign(f(x)) with the optimized {W,b}.

We design the energy based on the following concerns: (i) each encoding func-
tion should maximize the margin of each bit; (ii) the encoded bits should respect
the supervision; and (iii) the bits should be as independent as possible. We in-
corporate all concerns in a single energy function.

Encoding Functions with Maximal Margins

We regard each encoding function fk (k = 1, ..., B) as a classifier trained for the
n samples in X and their n labels yk. Here the n-dimensional vector yk is the
k-th column of Y (the k-th bits of all samples). In this paper, we expect each
classifier to maximize the margin between the positive/negative samples as in
SVM [6]1. A binary SVM classifier can be formulated as minimizing this energy
function [11]:

1

2c
‖wk‖2 + L(yk, fk(X)), (3)

where L(yk, fk(X)) =
∑

imax(0, 1− yk,ifk(xi)) represents the hinge loss, and c
is a parameter in SVM controlling the soft margin.

We put all B encoding functions together and aggregate their costs as:

E0(W,b,Y) =

B∑

k

1

2c
‖wk‖2 + L(yk, fk(X))

=
1

2c
‖W‖2F + L(Y, f(X)), (4)

where ‖ · ‖F is the Frobenius norm.
In the viewpoint of classification, this energy maximizes the margin between

the positive/negative samples for each bit. But in the viewpoint of binary encod-
ing, this energy measures the loss L between Y and the encoded values f(X).

Respecting the Supervision

We suppose the supervision is provided as an n-by-n affinity matrix S as in
[18,35,25,21]. For example, in KSH [21] it uses Sij = 1 if the pair (xi,xj) are

1 However, as we will introduce, the graph cuts solution does not require a specific
form in this term. If only this term is an unary term (i.e., it does not involve any
pair-wise relation between samples), the graph cuts solution should apply.
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denoted as similar, Sij = −1 if dissimilar, and Sij = 0 if unknown. To respect
the supervision, we consider to minimize an energy as:

−
B∑

k

n∑

i

n∑

j

Sijyk,iyk,j

=− tr(YTSY). (5)

where tr(·) is the trace. Intuitively, if Sij = 1, then this energy favors yk,i=yk,j
(note y is either -1 or 1); if Sij = −1, then it favors yk,i �=yk,j .

If our optimization problem only has the terms in Eqn.(4) and (5), it will
trivially produce B identical encoding functions, because both Eqn.(4) and (5)
just simply aggregate B energy functions that share the same form. Next we
introduce a term to avoid this trivial case.

Bits Independence

We expect all the encoding functions to be independent to each other so as to
avoid the trivial case. Ideally, we would like to have a constraint as: 1

nY
TY = I

where I is a B-by-B unit matrix. This constraint was first considered in Spectral
Hashing (SH) [36]. But this leads to a challenging constrained discrete optimiza-
tion problem, which was continuous-relaxed in [36]. Here we instead consider a
regularization of minimizing ‖YTY−nI‖2F. We expand it and omit the constant
terms2, and show it is equivalent to minimizing:

‖YTY‖2F, (6)

We put Eqn.(5) and (6) together:

E1(Y) = −tr(YTSY) + γ‖YTY‖2F, (7)

where γ is a weight. E1 is the energy that involves the variable Y only.

The Energy Function

Considering Eqn.(4) and (7), we minimize this problem:

min
W,b,Y

1

2c
‖W‖2F + L(Y, f(X)) − tr(YTSY) + γ‖YTY‖2F, (8)

s.t. yk,i = 1 or − 1, ∀k, i.
where we have empirically set the parameter λ in Eqn.(2) as 1. The variables
to be optimized are W, b, and Y. Here we explicitly treat Y as variables to
be optimized, whereas many previous works (e.g., [18,35,25,21]) only involve W
and b. As such, our energy function allows to directly assign binary values y to
the data during the training procedure.

2 ‖YTY − nI‖2F = ‖YTY‖2F − 2n tr(YTYI) + n2‖I‖2F = ‖YTY‖2F − 2n‖Y‖2F +
n2‖I‖2F = ‖YTY‖2F + const.



Graph Cuts for Supervised Binary Coding 255

3.2 Graph Cuts for One Bit

We optimize the energy (3.1) by iteratively solving two sub-problems: (i) fix
Y, update {W,b}; and (ii) fix {W,b}, update Y. The first sub-problem is
equivalent to solving B independent binary SVM classifiers as in Eqn.(3). The
second sub-problem is a binary assignment problem involvingY. We sequentially
solve each bit with the remaining bits fixed. Formally, at each time we update
the n-by-1 vector yk with the rest {yk′ ; k′ �= k} fixed. Then we update each bit
iteratively.

We show that the problem involving yk can be presented as a graph cuts
problem: it only involves unary terms and pairwise terms. For the ease of pre-
sentation we denote z � yk. With {W,b} and the rest {yk′ | k′ �= k} fixed, we
will show that optimizing (3.1) w.r.t. z is equivalent to minimizing:

E(z) =
∑

i

Eu(zi) +
∑

(i,j)

Ep(zi, zj)

s.t. zi = 1 or − 1, i = 1, ...n, (9)

where “
∑

(i,j)” sums all possible pairs of (i, j) and i �= j. Here Eu represents the

unary term, and Ep represents the pairwise term as in Eqn.(1).
It is easy to show the unary term in Eqn.(9) is:

Eu(zi) =
{
max(0, 1− fk(xi)) if zi is 1

max(0, 1 + fk(xi)) if zi is -1
. (10)

To compute the pairwise term, we need to express the contribution of z to E.
Denote Y′ as the concatenation of {yk′ | k′ �= k}, which is an n×(B-1) matrix.
Note only E1 contributes to the pairwise term3. With some algebraic operations4

we can rewrite Eqn.(7) as:

E1 = zT(2γY′Y′T − S)z+ const, (11)

where the constant is independent of z. Denote Q = 2γY′Y′T − S, then the
contribution of z to E1 is

∑
(i,j) 2Qijzizj . As such, the pairwise term is:

Ep(zi, zj) =
{

2Qij if (zi, zj) = (1,1) or (-1,-1)

−2Qij if (zi, zj) = (1,-1) or (-1,1)
. (12)

Given these definitions, Eqn.(9) is a standard energy minimization problem with
unary/pairwise terms and two labels (+1/-1) as in Eqn.(1).

The problem in (9) can be represented as a graph. There are n vertexes
corresponding to zi, i = 1, ..., n. An edge in the graph linking zi and zj represents

3 E1 should also contain a term in the form of an unary term. But this term is a
constant due to the fact that z2 = 1.

4 tr(YTSY) = tr(SYYT) = tr(S(Y′Y′T + zzT)) = const + zTSz, and ‖YTY‖2F =

tr((YYT)(YYT)T) = tr((Y′Y′T + zzT)(Y′Y′T + zzT)T) = const+ 2zTY′Y′Tz.
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Algorithm 1. Graph Cuts Coding: Training

Input: X and S.
Output: W and b.
1: Initialize Y using PCA hashing on X.
2: repeat
3: for k = 1 to B do
4: Train SVM using yk as labels and update wk, bk.
5: end for
6: for t = 1 to tmax do
7: for k = 1 to B do
8: Update yk by graph cuts as in Eqn.(9).
9: end for
10: end for
11: until convergence or max iterations reached

a pairwise term Ep(zi, zj). There are two extra vertexes representing the two
labels, usually called the source and the sink [4]. These two vertexes are linked
to each zi, representing the unary terms.

Minimizing the energy in (9) is equivalent to finding a “cut” [5] that separates
the graph into two disconnected parts. The cost of this cut is given by the sum of
the costs of the disconnected edges. The graph cuts algorithm [5,4] is a solution
to finding such a cut.

Theoretically, the graph cut algorithm requires the pairwise term to be “sub-
modular” [15], that is, Ep(−1,−1) + Ep(1, 1) ≤ Ep(−1, 1) + Ep(1,−1). Based
on Eqn.(12), the submodular condition is Qij ≤ 0 in our case, which in fact
does not always hold. However, in various applications [20,1,27,3,12] it has been
empirically observed that the deviations from this condition can still produce
practically good results. Furthermore, we also empirically the graph cuts algo-
rithm works well for effectively reducing our objective function. Another choice
is to apply solvers developed for nonsubmodular cases, such as the QPBO [15].
We will investigate this alternative in the future.

3.3 Algorithm Summary and Discussions

Our solution to (3.1) is described in Algorithm 1. In lines 3-5 we update {W,b},
and lines 6-10 we update Y. We set the iteration number tmax for updating Y
as 2 (more iterations could still decrease the energy but training is slower). The
update of Y is analogous to the α-expansion in multi-label graph cuts [4]. The
SVM in line 4 uses the LIBLINEAR package [7], and the SVM parameter c is
tuned by cross validation. From the definition of Q we empirically set γ = 1

2B ,

such that Sij and 1
γ (Y

′Y′T)ij have similar magnitudes. We adopt the GCO5 as

the graph cuts solver to Eqn.(9). Some discussions are as follows.

5 http://vision.csd.uwo.ca/code/

http://vision.csd.uwo.ca/code/
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Fig. 1. The impact of initialization. The y-axis is the mean Average Precision (mAP)
in the CIFAR10 dataset. See Sec. 4.1 for the experiment settings on CIFAR10. The bit
number is B=32.

Table 1. The mAP of GCC using four kernels on CIFAR10

kernel linear inters. χ2 κ in Eqn.(13)

B=16 26.6 26.2 26.8 30.3

B=32 28.6 29.6 28.8 33.3

Initialization

To initialize Y, we take the sign of the PCA projections of X (known as PCA
hashing (PCAH) [35]). This works well in our experiments. But we also em-
pirically observe that the final accuracy of our algorithm is insensitive to the
initialization, and the initialization mainly impacts the convergence speed. To
show this, we have tried to initialize each entries in Y fully in random. Fig. 1
shows the accuracy of using PCAH/random initializations in CIFAR10 (see the
details in Sec. 4.1). We see that in both cases the final accuracy is very com-
parable. The random initialization also demonstrates the effectiveness of our
optimization - though extremely incorrect labels are given at the beginning, our
algorithm is able to correct them in the remaining iterations.

Kernelization

Our algorithm can be easily kernelized. This is achieved by a mapping function
on x : Rd �→ R

D where D can be different from d. The mapped set is used in
place of X. We have tried the Explicit Feature Mapping [34] to approximate the
intersection kernel and the Chi-squared kernel.6. We have also tried the kernel
map used in [19,21]:

κ(x) = [g(x,x′
1), ..., g(x,x

′
D)]T (13)

6 This can be computed via vl homkermap in the VLFeat library [33].
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Table 2. The training time and mAP on CIFAR10 with/without removal. The bit
number is 32. The iteration number is 10.

training time (s) mAP

no removal 2540 33.5

with removal 605 33.3

where g is a Gaussian function, and {x′
1, ...,x

′
D} are random samples from the

data (known as anchors [23,21]). This can be considered as an approximate
Explicit Feature Mapping of RBF kernels [34]. In this paper, we use 1,000 anchors
(D = 1, 000). In Table. 1 we compare the performance of our algorithm using
four kernels. It shows the kernel κ in (13) performs the best. In the rest of this
paper we use this kernel.

Reduced Graph Cuts

Even though the graph cuts solver is very efficient, it can still be time-consuming
because during the training stage it is run repeatedly. We propose a simplification
to reduce the training time. In each time applying graph cuts to optimize one
bit, we randomly set a portion of the pairwise terms in Eqn.(9) as zero. This can
effectively reduce the running time because the number of edges in the graph are
reduced. The removed terms are different for each bit and for each iteration, so
although less information is exposed to each bit at each time, the entire optimizer
is little degraded. We randomly remove 90% of pairwise terms (each sample is
still connected to 10% of all the training samples). The accuracy and training
speed with/without removal is in Table 2. We see that it trains faster and
performs comparably. The remaining results are given with the reduced version.

4 Experiments

We compare our Graph Cuts Coding (GCC) with several state-of-the-art su-
pervised binary coding (hashing) methods: Binary Reconstructive Embedding
(BRE) [18], Semi-Supervised Hashing (SSH) [35], Minimal Loss Hashing (MLH)
[25], Iterative Quantization with CCA projection (CCA+ITQ) [10], Kernel-based
Supervised Hashing (KSH) [21], and Discriminative Binary Codes (DBC) [28].
We also evaluate several unsupervised binary coding methods: Locality-Sensitive
Hashing (LSH) [14,2], Spectral Hashing (SH) [36], ITQ [10], Anchor Graph Hash-
ing (AGH) [23], and Inductive Manifold Hashing (IMH) [30]. All these methods
have publicly available code. Our method is implemented in Matlab with the
graph cuts solver in mex. All experiments are run on a server using an Intel
Xeon 2.67GHz CPU and 96 GB memory. We evaluate on three popular datasets:
CIFAR10 [16], MNIST7, and LabelMe [25].

7 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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Table 3. The training time (single-core) on CIFAR10. All methods are using 32 bits.
The GCC runs 10 iterations.

method seconds method seconds

GCC 605 MLH [25] 3920

KSH [21] 483 BRE [18] 1037

DBC [28] 35 SSH [35] 3.0

KDBC [28] 56 CCA+ITQ [10] 5.3

4.1 Experiments on CIFAR10

CIFAR10 [16] contains 60K images in 10 object classes. As in previous studies of
binary coding, we represent these images as 512-D GIST features [26]8. We follow
the experiment setting (and their evaluation implementation) in the KSH paper
[21] and its public code. 1K images (100 per class) are randomly sampled as
queries and the rest as the database. 2K images are randomly sampled from the
database (200 per class) to build the pairwise supervision matrix S: Sij = 1 if the
pair are in the same class and otherwise Sij = −1 (0 for BRE/MLH). Our GCC
and BRE/SSH/MLH/KSH accept pairwise supervision. DBC and CCA+ITQ
needs explicit class labels for training. Table 3 shows the training time of several
supervised methods.

Table 4 shows the results evaluated by two popular metrics: Hamming ranking
and Hamming look-up [32]. The results of Hamming ranking is evaluated via
the mean Average Precision (mAP), i.e., the mean area under the precision-
recall curve. We see that KSH [21] is very competitive and outperforms other
previous methods. The GCC improves substantially upon KSH: it outperforms
KSH by 3.0% in 16 bits, 3.3% in 32 bits, and 2.6% in 64 bits (relative 8%-10%
improvement). Fig. 2 further shows the Hamming ranking results evaluated by
the recall at the top N ranked data.

Table 4 also shows the results using Hamming look-up [32], i.e., the accuracy
when the Hamming distance is ≤ r. Here we show r = 2. We see GCC is also
superior in this evaluation setting. GCC outperforms KSH by 2.3% in 16 bits,
6.1% in 32 bits (and outperforms DBC by 4%).

Comparisons with SVM-Based Encoding Methods. Our method is par-
tially based on SVMs (more precisely, Support Vector Classifiers or SVCs). In
our SVM sub-problem, the labels Y directly come from the discrete graph cuts
sub-problem. Consequently, throughout our optimization, the auxiliary variables
Y are always treated as discrete in both sub-problems. There are previous so-
lutions [22,28] that also partially rely on SVMs. However, the labels Y in those
solutions are continuous-relaxed at some stage.

In Table 5 we compare with a method call SVM Hashing (SVMH), which was
discussed in the thesis [22] of the first author of KSH [21]. If class labels are

8 Actually, it is not necessary to represent them as GIST. Advanced representations
such as CNN (convolutional neural networks) features [17] may significantly improve
the overall accuracy of all encoding methods.
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Table 4. The results on CIFAR10. On the top section are the supervised methods,
and on the bottom section are the unsupervised ones. The middle column shows the
Hamming ranking results evaluated by mAP. The right column shows the Hamming
look-up results when the Hamming radius r=2. (Hamming look-up of B = 64 is ignored
because this is impractical for longer codes [32]).

Hamming ranking precision (%)

(mAP, %) @ r = 2

B 16 32 64 16 32

GCC 30.3 33.3 34.6 38.0 39.6

KSH [21] 27.3 30.0 32.0 35.7 33.5

KDBC [28] 25.1 26.2 27.0 25.5 31.0

DBC [28] 23.8 26.3 28.6 29.3 35.6

CCA+ITQ [10] 21.4 21.7 23.1 23.6 27.6

MLH [25] 21.3 22.3 25.7 26.3 30.0

BRE [18] 18.7 19.5 20.1 24.2 20.7

SSH [35] 16.3 16.7 18.0 14.6 17.3

IMH [30] 18.4 19.4 20.1 21.9 25.3

ITQ [10] 16.9 17.3 17.7 24.2 18.1

AGH [23] 14.6 14.1 13.7 20.2 25.6

LSH [14] 13.4 14.2 14.7 17.6 8.5

SH [36] 13.2 13.0 13.1 19.2 21.8

Table 5. Comparisons on CIFAR10 with SVM Hashing [22] and its kernelized variant.
All methods are using 10 bits. The kernel of KSVMH is the same as KSH.

method SVMH [22] KSVMH KSH [21] GCC

mAP 21.5 23.3 25.0 28.2

available, SVMH trains 10 one-vs-rest SVM classifiers, and uses the prediction
functions as the encoding functions. SVMH is limited to 10 bits in CIFAR10.
One can train the classifier using linear kernel or the kernel map κ. Table 5
shows the results of linear SVMH, Kernelized SVMH, KSH, and GCC (all using
10 bits for fair comparison). We see that GCC is still superior, even though the
class labels are unknown to GCC. Actually, the one-vs-rest SVMs operate in a
winner-take-all manner; but for binary coding or hashing, it is not sufficient to
make two similar samples to be similar in just one bit. In our objective function,
the term in Eqn.(5) is introduced to address this issue - it encourages as many
as possible bits to be similar if two samples are similar. In our formulation, GCC
is also able to produce >10 bits and shows increased performance.

More closely related to our method, DBC [28] is another method that adopts
SVMs to train a classifier for each bit. However, DBC has a different objective
function and applies a subgradient descent technique to solve for the labels that
will be provided for SVMs. Table 4 shows that our method performs better
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Fig. 2. The recall@N results on CIFAR10 using 32 bits. The x-axis is the number of
top ranked data in Hamming ranking. The y-axis is the recall.

Table 6. The results on MNIST

Hamming ranking precision (%)

(mAP, %) @ r = 2

B 16 32 64 16 32

GCC 86.3 88.1 88.9 87.1 87.5

KSH [21] 78.9 82.4 83.7 84.1 85.8

MLH [25] 69.9 75.2 79.5 78.1 85.3

BRE [18] 52.2 59.9 62.4 65.4 79.2

DBC [28] 53.9 57.1 60.4 64.7 66.9

CCA+ITQ [10] 54.9 56.4 57.9 54.9 63.5

SSH [35] 43.2 48.6 48.7 64.8 74.3

than DBC. The original DBC in [28] uses linear encoding functions, so for fair
comparison, we have also tested its kernelized version using the same kernel map
κ as we use. We term this as kernelized DBC (KDBC) in Table 4. We see that our
method also outperforms KDBC using the same kernel map. These experiments
indicate the performance of GCC is not simply due to the SVMs.

4.2 Experiments on MNIST

The MNIST dataset has 70K images of handwritten digits in 10 classes. We rep-
resent each image as a 784-D vector concatenating all raw pixels. We randomly
sample 1K vectors (100 per class) as queries and use the rest as the database.
2K vectors (200 per class) are sampled from the database as the training data.

We compare with the supervised methods in Table 6 (the unsupervised meth-
ods perform worse, e.g., than KSH, and so are ignored). We find that KSH still
outperforms other previous methods substantially, and GCC improves on KSH
by considerable margins.
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Fig. 3. The results on LabelMe using 16 and 32 bits. The x-axis is the number of top
ranked data in Hamming ranking. The y-axis is the recall among these data.

4.3 Experiments on LabelMe

The LabelMe dataset [25] contains 22K images represented as 512-D GIST,
where each image has 50 semantic neighbors marked as the ground truth. Only
pairwise similarity labels are available in this dataset. We follow the evaluation
protocol as in [25]. The data are ranked by their Hamming distances to the query,
and the recall at the top N ranked data is evaluated (R@N). In this dataset, the
reduced graph cuts step in our algorithm does not remove the pairwise terms with
positive labels (Sij = 1) because they are in a small number. All the methods
are trained using 2K randomly sampled images and their pairwise labels.

Fig. 3 shows the performance of the supervised methods. Because only pair-
wise labels are available, the CCA+ITQ and DBCmethods which need class-wise
labels are not directly applicable. This also indicates an advantage of GCC that
it does not require class-wise labels. We see that GCC is competitive. The mea-
sure R@1000 of GCC outperforms KSH by 2.1% when B=16, and 1.0% when
B=32.

5 Discussion and Conclusion

We have presented a graph cuts algorithm for learning binary encoding functions.
This is a beginning attempt to use discrete label assignment solvers in the binary
encoding problems. In the formulations in this paper, a term has been introduced
to measure the loss L between y and f(x). We note the loss function L need not
be limited to the form (hinge loss) used in this paper. Our graph cuts solution is
applicable for other forms of L, and only the unary term needs to be modified.
The development of a better L can be an open question, and we will study it as
future work.
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