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Abstract. Simultaneously detecting an object and determining its pose
has become a popular research topic in recent years. Due to the large
variances of the object appearance in images, it is critical to capture
the discriminative object parts that can provide key information about
the object pose. Recent part-based models have obtained state-of-the-
art results for this task. However, such models either require manually
defined object parts with heavy supervision or a complicated algorithm
to find discriminative object parts. In this study, we have designed a
novel deep architecture, called Auto-masking Neural Network (ANN), for
object detection and viewpoint estimation. ANN can automatically learn
to select the most discriminative object parts across different viewpoints
from training images. We also propose a method of accurate continuous
viewpoint estimation based on the output of ANN. Experimental results
on related datasets show that ANN outperforms previous methods.

1 Introduction and Related Work

Category-level object detection has attracted a great deal of attentions in com-
puter vision research. Aside from locating the object in an image, determining
the pose of the object is also essential for practical tasks such as autonomous
driving and robotic operation. Due to the large variance of the appearance of
the object category, pose estimation remains a challenging task and a popular
research topic in recent years.

Part-based models have attracted a great deal of attention in object detec-
tion and viewpoint estimation. Recently proposed models include the star shape
model [29], [24], [1], constellation model [7], [23], graphical model [25], and de-
formable part model (DPM) [6], [15], [19], [18]. The DPM in [6] initializes and
learns object parts in a data-driven way without intensive human operations.
Later, the DPM is extended to 3D DPM that can infer 3D positions of object
parts [19], [18]. The integration of rendered images from CAD models provides
viewpoint ground truth and more information about object appearance in train-
ing [14], [23].

To obtain viewpoint estimation, Pepik et al. [19] quantized the viewing circle
into discrete bins and formulated the estimation as a multi-class classification
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problem. Later, they used an interpolation scheme from the predefined viewpoint
bins to approximate the continuous viewpoint [18]. Other works to have targeted
continuous viewpoint estimation are [28] and [30]. Teney et al. [28] fit a Gaussian
distribution to the main peaks of voted scores to obtain an estimation of the
continuous viewpoint, while Torki et al. [30] designed a regression function based
on local features and their spatial arrangement.

The part-based approaches have greatly improved the performance of object
detection and viewpoint estimation. However, they require manually defined
object parts with extensive human operation and intervention, or need to design
a complicated algorithm to find object parts.

Deep models have been successfully used recently in computer vision tasks
such as pedestrian detection [21], face verification [9], face parsing [16], and
classification [13], [22]. The research works of deep models focus on designing
network structures [10], [2], [26] and feature learning algorithms [11], [27].

The convolutional neural network (CNN) [10] is one of the most popular deep
models currently used to deal with computer vision problems [13], [21], [9], [26].
However, it still faces difficulties when applied to fine-grained tasks such as view-
point estimation. The main reason is that although CNN is good at extracting
global features, it does not emphasize local discriminative features which are
critical for fine-grained tasks. Besides, the capability of CNN for continuous out-
put tasks such as viewpoint estimation has rarely been explored, despite the fact
that it succeeds in multi-class classification [9], [13].

In this paper, based on CNN, we propose a novel network structure, called
Auto-masking Neural Network (ANN) for object detection and viewpoint esti-
mation. ANN contains multiple CNNs and a mask layer that can select the most
discriminative features from the input and pass them to the next level. It can
also deal with multiple tasks such as object detection and viewpoint estimation
simultaneously. Besides, a new method is presented to estimate the continuous
viewpoint, which makes the estimation more accurate. Our experimental results
show ANN outperforms the state-of-the-art algorithms.

2 Auto-masking Neural Network (ANN)

We have designed a deep neural network for the combined task of object detec-
tion and viewpoint estimation. Specifically, we have focused on a long-lasting
and challenging task: car detection and viewpoint estimation. Our method is
based on sliding windows, similar to the related works. At evaluation, it makes a
prediction for each image patch. The structure of ANN is shown in Fig. 1, which
has the following three parts: (i) the mask generator takes an image (patch)
as input, and generates a mask; (ii) the mask operator does a mask operation
between the input image and the mask, resulting in a masked image; and (iii)
the target predictor outputs a detection label and a viewpoint from the masked
image.

ANN utilizes a mask layer and three CNNs to extract discriminative features
from images. The three CNNs have different purposes. C' N N, finds the positions
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Fig. 1. Structure of ANN

of discriminative features from an input patch, while CN Np detects the object
and C'N Ny estimates the viewpoint. The components of ANN are described in
more detail in the following subsections.

2.1 Convolutional Neural Network (CNN)

CNNs have demonstrated their powerful capability in pedestrian detection [21],
face verification [9], face alignment [26], and classification [13]. As an effective
tool for learning global features, CNN’s capability to select discriminative fea-
tures for fine-grained tasks such as continuous viewpoint estimation has rarely
been explored in the literature.

Fig. 2(a) shows the structure of C N Njs, which contains one convolution layer
followed by max pooling [10], and one locally connected layer followed by an-
other max pooling. The purpose of the convolution layer is to discover position-
insensitive features in the image, while the purpose of the locally connected layer
is to detect the position-sensitive patterns on top of the position-insensitive fea-
tures. Fig. 2(b) shows the structure of CNNp (or CN Ny). The first four layers
of CNNp (or CNNy) have the same layer type as those of CN Ny, but one
more fully connected layer is appended in CNNp (or CN Ny ). This fully con-
nected layer is used to obtain the detection (or viewpoint estimation) result ¢”
(or g¥).

In our work, each image is rescaled to eight scales and image patches of size
200 x 200 are cropped using a sliding window. The input to ANN is a HOG
image [3] with 23 x 23 blocks extracted from an image patch. The intensities
of the HOG image are normalized to [0,1]. The parameters (layer sizes) of the
networks can be seen in Fig. 2.

2.2 Mask Layer

The mask layer is the key component of ANN. The whole network is trained
automatically with the input HOG images and the target ground truth infor-
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Fig. 2. (a) The structure of CNNys, (b) The structure of CNNp (or CNNy). The
sizes of the input, convolution, max pooling, and locally connected layers are illustrated
by the cuboids with the numbers on their three dimensions. The local receptive fields
of the neurons in the layers are illustrated by the small squares on the cuboids.

mation (detection labels and viewpoints) through back-propagation. For each
HOG image, ANN generates a specific mask, automatically finding important
parts from the input and allowing only these parts to pass to the target predic-
tor. The mask layer is fully-connected to the output of C NNy, with bounded
rectified linear neurons, the outputs of which are

m; = min{l,maX{O,Zwijxj}}, 1=1,2,..., N, (1)
J

where m; € [0, 1] is the response of a node in the mask layer, x; is the response of
a node in the output of CNNys, w;; is the weight between nodes ¢ and j of the
two layers, and N is the size of the mask, which is 529 (23 x 23) in our setting
(see Figs. 1 and 2). The mask operation is an element-wise minimum operation
between the HOG image and the mask, resulting in the masked image with its
intensities being

I = min{m;, ;}, i=1,2,...,N, (2)

where the mask and the HOG image are of the same size and I; € [0, 1] is the ith
intensity of the HOG image. It is easy to see the masking effect: when m; = 0,
the corresponding pixel 7 from the input is blocked by the mask; when m; > I,
it is passed completely (I/* = I;).

Usually, only several key parts of an object in an image provide significant
information for detection and viewpoint estimation. For example, the existence
of a round wheel provides a strong indication that this image has a car that
is viewed from the side. Therefore, we should enforce sparseness on the mask
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(i.e., m; close to 1 are sparse and most m; should be close to 0). Furthermore,
considering that the features on the object should be more discriminative than
those from the background, the positions with m; close to 1 should concentrate
on the object. When a region larger than the object is cropped as the input (see
Section 3 for the detail), the positions with m; close to 1 should form clusters
on the object in the mask. Thus, considering m; as mass points on a plane, we
minimize the following moment of inertia of m; in order to satisfy the sparseness
and clustering requirements,

E = Zmir?, (3)

where r; is the distance from pixel ¢ to the center of the mass of m;.

Figs. 5 and 6 in the section of experimental results provide some examples
of the masks superimposed on the corresponding images. We can see that the
masks are sparse and the positions (bright) with m; close to 1 form clusters on
the object.

2.3 Target Prediction

In the target predictor, two CNNs, CNNp and CN Ny, are used for object de-
tection and viewpoint estimation simultaneously. Since the two tasks are quite
different and require different filters that aim at different features, we allow them
to have separate CNNs but to share the same masked image as the input. Their
outputs are both probability distributions, where C N Np produces two outputs
(object or non-object) and C'N Ny has N, outputs. For discrete viewpoint es-
timation, the N,, outputs of C /NNy represent N,, probabilities of viewpoints
within /V,;, bins uniformly located on the viewing circle. The centers of the bins
are §; = J’{fgz’, i=0,1,..., Ny — 1.

In training, the cost for one input patch is the sum of the cross-entropy errors
of the two CNNs and the sparseness and clustering cost,

1 Nyp—1
E==Y pllogg’ —p?’ > p{logq + B, (4)
=0 =0

where pP = (pf, pP) is the ground truth probability distribution for detection
(pP = (1,0) for a negative sample and p” = (0, 1) for a positive sample), p¥ =
(py,pY, ...,p%w_l) is the ground truth probability distribution for viewpoint
(only one component of p¥ is 1 and the others are 0), g” and q" are the
corresponding estimates for detection and viewpoint, respectively, and A is a
weighting factor. Here, the cost for viewpoint estimation is meaningful only when
the input is a positive sample, which is why the second term on the right-hand
side of (4) is multiplied by pP.

2.4 Discrete and Continuous Viewpoint Estimation

The most straightforward way of ANN training for viewpoint estimation is to
set one of the p¥’s components (say, py) to 1 and the other components to 0,
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where 9;/ is the center of the jth bin within which the viewpoint of the training
object is located. We refer to this training scheme as discrete viewpoint training.
In testing, for a predicted positive sample, the estimated viewpoint is set to 6;
if the largest component of q"" is ¢} .

However, from our experiments, we find that ANN trained this way does not
generate sufficiently precise viewpoint estimation because a lot of the informa-
tion is lost when each of the continuous viewpoints of the training objects is
abruptly quantized to only one component of p¥'. Next, we present an interpo-
lation method to handle this problem.

Let the ground truth viewpoint be 8, which is located between two neighboring
viewpoint bin centers 6; and ;1. Then

01 —6 0—0; .
=" 0 =" =0 k¢ +1) )
360

where L = ¥ is the size of a bin, and p;-/, p;-/_H, and p,Z are the components
op

of p¥. In this method, although there are only two non-zero components p}/
and p}/H in p¥ when 0 € (0,0;11), p}/ and p}/H implicitly encode all pos-
sible continuous viewpoint angles in [0;,6;4+1], because from (5) we can have
0 = py0; +pYi 1041 € [0,0;41]. We call the training with p¥ defined by (5)
continuous viewpoint training. Since Z;i”gil p}/ =1, p" can still be considered
as a probability distribution.

Objects of the same kind usually have similar appearances when they are in

close viewpoints. The similarity between two objects in viewpoints 6, and 6, can
be defined as

0, —0
$(0q,0p) = max{0,1 — | 2 1 (6)
Or

where 07 is a threshold, which makes the similarity to be 0 when |0, — ;| > 0.

If 67 is set to the size of a bin 1%[60 , then
vp

py (0) =5(0,6;), j=0,1,..., Ny — 1. (7)

This relation indicates that p;-/ (0) can also be regarded as the similarity between
two objects in viewpoints § and 6;, respectively.

In testing, with the output ¥ = (¢, ¢}, .., q]‘\/,w_l) of ANN, on the manifold
p" (0) defined by (5), we find a point p¥ (6*) closest to g¢" with the pseudo-
distance Kullback-Leibler divergence [12], and use 6* to be the estimated view-
point; i.e.,

Nyp—1

6" = argmin {Drc.(p" (9)llg")} = avgmin { > p)(6)log oo®)
=0

py (0)
14
J

To solve the problem (8), we can start by finding all the local optimal solutions
0F € [0i,0i+1),7=0,1,..., Ny, — 1, and then obtain the global optimal solution

0* = argmin  {Dgr(p¥(6])|lg")}. 9)
07 0<i<Nyp—1
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Fig. 3. Four examples of the non-photorealistic images of size 200 x 200 rendered from
different 3D models in different views

Foreground Box

Background

Fig. 4. The foreground box and the background on an image patch of size 200 x 200.
The center of the foreground box is also at the center of the image patch.

For 6 € [0;,0;+1), the problem (8) becomes

kel py (9)
07 = argmin { Z py (B)log ™7 7} (10)
0€[0:,0i41)  j=p 4q;
v v
. p; (0 Pi+1(0)
= argmin {pY(Q) log ‘(/ ) + px_l (0)log H"} }
] q; i1
01 —0, O —0 00, 0-0;
= argmin log log .
0 { L LqZV L qu‘il }
By 59(9”2_9 log 91';:;‘79 + 7% log g;‘&) =0, we have
V. L
0r =0;+ (11)
4 + 9

Since ¢, ¢},1 € [0, 1], it is easy to verify that 6 € [6;,0;11].

3 ANN Training and Testing

Previous approaches [19], [18], [14], [23] have used not only real images but also
non-photorealistic images rendered from 3D CAD models for training. These
rendered objects are with known viewpoints (ground truth) and provide more
information about object appearances. In our work, we also use the rendering
of 3D CAD models for ANN training. Note that, like previous studies, we have
only considered the estimation of viewpoint in horizontal directions without
considering object tilt angles.
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We collected 93 3D car models from the internet and render the non-
photorealistic images according to [4]. These models cover a wide variety of
cars, including limousines, pickups, SUVs, and vans. Four examples are shown
in Fig. 3. We choose a fixed camera-to-car distance to generate all the non-
photorealistic images from the 3D models. Each 3D model results in 180 pro-
jections (images) with a viewpoint difference of 2° between two neighboring
projections. Each projected car is located approximately at the center of the
image whose size is 200 x 200.

In order to cover more car appearances in training, each projected 2D car C'
is used to generate four more car images, as follows. (i) C' is rotated by an angle
that is a sample from the Gaussian distribution with zero mean and standard
variance of 2°. (ii) The rotated C' is resized with these four scales 0.9, 0.95, 1.05,
and 1.1. All these rendered (synthetic) images are used as positive samples for
training.

The previous template-based object detection methods work with a set of
sliding windows with different scales and aspect ratios [8]. The sliding windows
of different aspect ratios are used to cover the large shape variations of the objects
in images. For example, Gu et al. [8] used 4-16 aspect ratios in their experiments.
To obtain training samples from real images, when moving a sliding window on
an image, an image patch under the sliding window is regarded as a positive
sample if a ratio 77 is larger than a threshold (say, 60%). 17 is defined by ﬁ;,
where A; is the area of the overlapping part between the sliding window and
the bounding box of the object, and As is the sum of the sliding window area
and the bounding box area minus Aj.

We design a different sliding window method to obtain positive and negative
training samples from real images, where the sliding window is square with size
200 x 200. An image patch covered by the sliding window is partitioned into
two parts, the foreground and the background. The foreground is a rectangular
region in the image patch called the foreground boz, as shown in Fig. 4. The
center of the foreground box is located at the center of the image patch. For an
image patch containing an object, the size and shape of the foreground box are
determined by the viewpoint of the object,

B(I) = fp(0(1)), (12)

where B(I) denotes the foreground box in the image patch I, 6(I) is the view-
point of the object in I, and fp(0) is a function producing the foreground box
from the viewpoint 6. We derive fp () as follows. After normalizing the bound-
ing boxes of all the objects to the same size (i.e., the same area = length x
height), the bounding boxes of the objects in the same viewpoint have similar
aspect ratios. Then, the average of the bounding boxes of the objects in the
same viewpoint 6 is defined as fp(#). For a training image patch containing an
object in viewpoint 6, if a ratio T» is larger than a threshold, then the patch is
regarded as a positive sample; otherwise a negative sample. T5 is defined by ﬁi,
where As is the area of the overlapping part between the foreground box and
the bounding box of the object, and A4 is the sum of the foreground box area
and the bounding box area minus Ag.
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In testing, if pP > 0.5 for an input image patch, then the patch is predicted
as a positive sample. Suppose that the predicted viewpoint is 6 for a positive
sample; we then use the foreground box defined by fg(#) to be the bounding box
for this positive sample. Although this foreground box may just be an approxi-
mation to the real bounding box of the object, it does show very good detection
performance in our experiments.

Note that the mask generated by ANN cannot be directly used to infer the
bounding box of the object in testing. The positions with m; close to 1 may
exist in the background of the patch, and there are only several clusters with
m; close to 1 on the object, which do not give enough information to cover the
whole object and only the object.

HOG feature [3] is able to bridge the representation gap between real images
and non-photorealistic images [19]. We extract HOG features (also called HOG
images in this paper) from both the real image patches and the synthetic image
patches. All these patches are of size 200 x 200, but the size of the HOG images
is 23 x 23. In order to cover the size variations of the objects in real images, each
real image is rescaled to eight scales in training and testing.

Compared with previous sliding window methods, ours does not need a set
of sliding windows with different aspect ratios to accommodate different object
shapes; instead, our sliding window has only one shape (square), as shown in
Fig. 4, which greatly reduces the number of image patches sampled in training
and testing. In addition, a positive image patch contains not only the object but
also part of the background (see Fig. 4). Incorporating the background around
the object can provides more cues for object detection, because objects and
their backgrounds usually have certain patterns in the scenes. For example, cars
mostly remain still or run on streets, and ships float on water.

4 Experimental Results

In this section, we evaluate our ANN model for car detection and viewpoint es-
timation, and compare it with several state-of-the-art methods in [19], [18], [28],
and [30]. In [19], there are two models, DPM-VOC+VP and DPM-3D-Constraints.
The former includes a distinct mixture component for each viewpoint bin, and the
latter adds 3D constraints across viewpoints in the DPM model. In [18], the au-
thors construct a 3D DPM model called 3D?PM. The methods in [28] and [30] give
continuous viewpoint estimation via regression. Through cross-validation, the pa-
rameter A in (4) is chosen to be 1E-6 for all the experiments. For the evaluation of
the effectiveness of the mask layer, we design a baseline network called CNN-V&D
as follows. From ANN, we remove the mask generator and mask operator, with
the HOG images directly inputted into C N Ny and C'N Np, and obtain detection
label and viewpoint estimation as output. In the following comparisons, all of the
results, except those obtained by our models, come from [19], [18], [28], and [30].
We use the 3D Object Classes car dataset [20] and the EPFL car dataset [17]
in our experiments because they provide ground truth for both detection and
viewpoint estimation. We train the ANN model using not only the real images
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from these datasets, but also the synthetic images generated from the 3D models
(note that [19] and [18] also use real and synthetic images to train their models).
When ANN is trained and tested on one dataset, the training real images are
only from this dataset. ANN takes less than 1 second to obtain the result of
object detection and viewpoint estimation for one input image of size 300 x 400,
on a PC with a NVIDIA GTX 670 GPU.

4.1 Detection and Discrete Viewpoint Estimation

Discrete viewpoint estimation can be regarded as a multi-class classification
problem. 3D Object Classes annotates only eight different viewpoint bins, while
EPFL provides degree-level annotations. We follow the previous protocols and
report results of Mean Precision of Pose Estimation (MPPE) [19], [18], which is
the average classification accuracy of multiple classes. The detection performance
is evaluated by the widely used criterion Average Precision (AP) established in
the Pascal VOC challenge [5].

Table 1 shows the results of AP (for object detection) and MPPE (for view-
point estimation) obtained by five models on the 3D Object Classes car dataset.
3D2PM-D is a version of 3D?PM for discrete viewpoint estimation. ANN-D
and CNN-V&D-D are ANN and CNN-V&D trained with the discrete viewpoint
training scheme (see Section 2.4), respectively. The studies in [28] and [30] only
provide the results of continuous viewpoint estimation and are therefore not
available for comparison here.

From Table 1, we can see that on this dataset, except CNN-V&D-D, all the
models work very well in terms of AP, but ANN-D and DPM-VOC+VP perform
the best in both AP and MPPE.

Unlike the 3D Object Classes car dataset that gives only eight coarse view-
point bins, the EPFL car dataset allows much finer comparison in viewpoint
estimation. Table 2 shows the comparison results between our work and [18] for
18 and 36 bins. Note that 36 bins are the finest viewpoint estimation in [18], and
the work in [19] does not have experiment on this dataset. In Table 2, 3D?PM-
C Lin and 3D?PM-C Exp are two versions of 3D?PM targeting at continuous
viewpoint estimation through linear and exponential combinations of the output
scores in the discrete viewpoint bins, respectively. ANN-C and CNN-V&D-C are
ANN and CNN-V&D trained with the continuous viewpoint training scheme
(see Section 2.4) and evaluated in discrete viewpoints, respectively.

Table 2 shows that the performances of ANN-C and the previous sate-of-
the-art method 3D?PM-D are similar for 18 bins, but ANN-C obtains the best
results for 36 bins in both detection and viewpoint estimation. It has significant
improvement over the models in [18] in fine viewpoint estimation. Our contin-
uous viewpoint estimation model (ANN-C) performs better than the discrete
viewpoint estimation model (ANN-D) both for 18 bins and 36 bins. ANN out-
performs the baseline model CNN-V&D with a large margin both in discrete
viewpoint training scheme and in continuous viewpoint training scheme, which
shows the effectiveness of the mask layer.
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Table 1. AP (for object detection) and MPPE (for viewpoint estimation) obtained by
five models on the 3D Object Classes car dataset

AP / MPPE AP / MPPE

DPM-3D-Constraints [19] 99.7 / 96.3 DPM-VOC+VP [19] 99.9 / 97.9

3D2PM-D [18] 99.6 / 958  CNN-V&D-D  95.8 / 87.7
ANN-D 99.9 / 97.9

Table 2. AP / MPPE obtained by seven models on the EPFL car dataset

AP / MPPE AP / MPPE
18 bins 36 bins 18 bins 36 bins
3D2PM-D [18] 99.2 / 71.8 99.3 / 45.8 CNN-V&D-D 96.6 / 62.5 97.0 / 46.4
3D*PM-C Lin [18] 99.3 / 71.2 99.2 / 52.1 CNN-V&D-C 95.9 / 63.8 95.3 / 46.1
3D?PM-C Exp [18] 99.2 / 70.5 99.5 / 53.5 ANN-D  99.2 / 70.5 99.9 / 53.1
ANN-C 99.6 / 71.499.9 / 58.1

4.2 Continuous Viewpoint Estimation

This section evaluates our model for continuous viewpoint estimation. Since
the EPFL car dataset provides degree-level annotations, it is suitable for this
experiment. Two measures are used for the evaluation: Median Angular Error
(MAE) and Mean Angular Error (MnAE).

Table 3 shows the results obtained by six models that can be used for con-
tinuous viewpoint estimation. The authors of [18] do not provide MnAE results.
The models in [28] and [30] estimate viewpoints without the need of the param-
eter of viewpoint bins, while 3D?PM-C Lin, 3D?PM-C Exp, CNN-V&D-C and
ANN-C are related to this parameter. This table shows that ANN-C outperforms
the other models greatly with the much smaller errors. ANN also outperforms
CNN-V&D in this experiment.

Note that the two datasets are saturated for detection by the state-of-the-art
methods, but they are not for viewpoint estimation, especially the EPFL car
dataset. For example, under 36 bins, the best MPPE and MnAE are only 58.1
and 27.6, respectively, which show that there are still large gaps for improvement.

Table 3. MAE / MnAE obtained by different models on the EPFL car dataset

MAE / MnAE MAE / MnAE
18 bins 36 bins 18 bins 36 bins
(28] 5.8 / 39.0 3D?PM-C Lin [18] 5.6 /- 4.7/ -
[30] 11.3 / 34.0 3D?PM-C Exp [18] 6.9 / - 4.7 / -
CNN-V&D-C 4.8 / 30.8 4.9 / 32.5 ANN-C 3.3/24.13.3/27.6

4.3 Mask Layer

The mask layer plays a significant role for ANN to be the state of the art. It
acts as a feature selector and finds the discriminative features for the object of
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Fig. 5. Some positive sample images of the 11th car in the EPFL car dataset super-
imposed with their corresponding masks

Fig. 6. Six different cars each in two views superimposed with their corresponding
masks

Fig. 7. Some negative samples from the EPFL car dataset superimposed with their
corresponding masks
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interest to pass to the next stage of ANN. In Fig. 5 and Fig. 6, we superimpose
some masks obtained by ANN on their corresponding positive testing samples.
The bright parts on the images indicate the large responses of the masks. From
our experiments, we have made the following observations.

(i) Most large responses on the mask appear on or close to the car, meaning
that the mask layer discriminates the car from the background in the image
and prefers the features extracted from the car. Besides, the large responses in
a mask are sparse and form clusters.

(ii) For cars in similar viewpoints, the mask layer generates similar masks,
which indicates that ANN can find similar patterns across similar viewpoints.
This is true even for the images of cars of different kinds. Fig. 6 shows six different
cars each in two views. The masks in the first row (viewpoint 1) are similar, and
the masks in the second row (viewpoint 2) are also similar.

(iii) Some car parts, such as the wheels, always have large responses on the
mask. Wheels have similar shapes in different cars. Their appearances are also a
strong indicator of the viewpoint of a car. For example, wheels are round in the
side view and oval in the near-front and near-rear view of a car. ANN can capture
the parts with discriminative features for the tasks of detection and viewpoint
estimation.

In Fig. 7, we examine the mask’s responses on negative samples. Note that
a car or part of it can be in a negative sample if the overlapping between the
bounding box of the car and the foreground box of the image patch is not large
enough. The distributions of the large responses of these masks are clearly dif-
ferent from those in Figs. 5 and 6. These different distributions between positive
and negative samples greatly benefit object detection and viewpoint estimation.

All the above experiments and observations indicate that ANN is effective
in dealing with the combined task, object detection and viewpoint estimation.
The mask layer in ANN bridges CN Ny with CNNp and CN Ny, and plays
an important role for feature extraction. We believe that the structure of ANN
can also be successfully applied to the detection and/or viewpoint estimation of
other object categories.

5 Conclusion

We have proposed a deep model, known as ANN, for object detection and view-
point estimation. ANN automatically learns to select the most discriminative
object parts from training images without human interaction. Despite the sim-
ple procedures of ANN training and testing, it achieves the best performance
among the state-of-the-art models. The experiments and observations on the
masks produced by ANN show its effectiveness to capture the discriminative
features from the input for the combined task. We believe that our model can
be applied to many other object categories, especially those with relatively rigid
objects such as bicycles, chairs, motorcycles, and ships, because compared with
cars, they have similar appearance variations in different viewpoints, which is
our future work. We also plan to apply ANN to other vision tasks such as object
segmentation, classification, and detection.
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