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Abstract. This paper focuses on efficient algorithms for single and
multi-view spectral clustering with a convex regularization term for very
large scale image datasets. In computer vision applications, multiple
views denote distinct image-derived feature representations that inform
the clustering. Separately, the regularization encodes high level advice
such as tags or user interaction in identifying similar objects across ex-
amples. Depending on the specific task, schemes to exploit such infor-
mation may lead to a smooth or non-smooth regularization function. We
present stochastic gradient descent methods for optimizing spectral clus-
tering objectives with such convex regularizers for datasets with up to
a hundred million examples. We prove that under mild conditions the
local convergence rate is O(1/

√
T ) where T is the number of iterations;

further, our analysis shows that the convergence improves linearly by in-
creasing the number of threads. We give extensive experimental results
on a range of vision datasets demonstrating the algorithm’s empirical
behavior.

1 Introduction

The need to process and make sense of the large number of images on the in-
ternet — for search, categorization, and ranking, motivates problems that are
fundamental to vision and machine learning research today. To facilitate such
inference tasks, the image is first expressed in terms of its response to a large set
of specialized filters pertaining to texture, distinct object categories and appear-
ance, among others. This information may be further complemented by textual
cues that co-occur with the images, image tags, or hyperlinks to the image. With
these representations in hand, the goal is to leverage all views simultaneously
and derive a solution that best explains the given set of examples in the context
of the inference objective of interest.

Clustering serves as an important exploratory tool for categorizing sets of
images into semantically meaningful concepts. Mixture modeling and k-means
remain traditional workhorses for this task and provide estimates of the param-
eters of an explicit model for the data. Spectral objectives, which are a focus
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of this paper, instead analyze the eigen structure (or spectrum) of a matrix de-
rived from the pairwise similarities of nodes, and are especially useful when the
cluster distributions correspond to more complex shapes [35]. Despite these ad-
vantages, spectral clustering is expensive for larger datasets. The most common
optimization is to sparsify [7] or subsample [13,24] the matrix of similarities be-
tween examples. Even with these optimizations, solving the spectral clustering
problem for very large datasets is expensive — partly due to the need for an
eigen-decomposition of big matrices. These issues clearly intensify when operat-
ing with multiple views of the data, and if we seek to incorporate side advice such
as tags. To address these limitations, there is significant recent interest in making
spectral clustering efficient in the large dataset setting — with user interaction
[8], ‘activization’ schemes [17], random projections [28], Spielman-Teng’s near
linear Laplacian solver [16], and parallelized versions of the Lanczos solver [7].
These solutions are highly effective for the standard spectral clustering objective
and several also come with nice guarantees.

These advantages notwithstanding, the algorithms above can rarely be used
in an off the shelf manner to address and exploit the specific needs and charac-
teristics of the vision application above. First, few of these formulations support
multiple views natively. Second, it is not straightforward to adapt the key op-
timization schemes to run in a distributed manner over tens of cores — this is
essential if the system is expected to work efficiently on massive datasets and
on distributed platforms such as CloudCV [2]. Finally, incorporating weak (or
distant) supervision, user interaction and/or auxiliary domain specific priors be-
yond must-link/cannot-link constraints is challenging. Such side information is
ubiquitous in most real world datasets and seems like a desirable feature for a
system deployed in practice.

Motivated by these core issues, our primary goal is to develop stochastic
methods, with a focus on spectral clustering for both single and multi-view data,
that satisfy three criteria: a) Allow scaling to very large datasets (∼ 100M) in a
distributed manner; b) Show provably good convergence behavior; c) Offer the
ability to incorporate high level priors (e.g., images share ‘tags’, user interac-
tion) as a regularization term. The contribution of this paper is to provide an
optimization scheme that meets these theoretical and practical considerations.

Related Work. The preceding section covered several relevant results on scaling
spectral clustering to large datasets. Therefore, here we review related work on
multi-view models. To our knowledge, among the earliest methods for multi-
view clustering is a paper by Bickel & Scheffer [4] where the authors emulate
co-training for clustering with two views (e.g., the webpage and in-coming hyper-
links). More recently, [5] studied multi-view clustering for images. Using a kernel
CCA over two views, they showed that the clustering of images is facilitated by
the textual description that comes with the image data. Subsequently, [6] de-
scribed a nice theoretical analysis of the scenario where we infer an underlying
mixture model (i.e., mixing weights), given independently drawn samples from
the mixture. The authors showed that the low-dimensional subspace spanned
by the means of the component distributions can be identified when the views
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are conditionally uncorrelated. Strategies based on Non-negative Matrix Fac-
torization [25], Co-training [19], Linked Matrix Factorization [30] and Random
Walks [36] have also been proposed. The multi-view problem was investigated
for a spectral clustering objective by [20]. This paper, which is the most closely
related to ours, uses alternating maximization to co-regularize the clustering
across views by requiring that the hypotheses learned from different views of
the set of examples agree with each other. Like [20], our proposed approach will
also operate with multiple views of the data. However, for scalability reasons, we
will not impose inter-view consistency or differentially weight the given views,
though our model easily permits this extension. We will instead adopt a simpler
objective that considers all views to be equally informative, but still remains
competitive with the more sophisticated strategies above in experiments.

2 Multi-View Spectral Clustering Model

Assume we are given l views of a dataset, X = {x1, · · · ,xn}, consisting of
examples to be grouped into p clusters. Classically, for a single view, spectral
clustering achieves this task by finding the p minimum eigenvectors of a Lapla-
cian matrix L ∈ R

n×n, which encodes an appropriate graph over the examples.
Typically, the eigenvectors are found via iterative methods such as Lanczos and
its variations [22] that allow for implementations that can exploit the underlying
sparsity of L. Spectral clustering may be viewed as a minimization of the trace
of V TLV over the set Sn,p ⊆ R

n×p of orthonormal n × p matrices V . Sn,p is
known as the Stiefel manifold. At the optimum, the columns of V must span
the same subspace as the eigenvectors of the p least eigenvalues of L. To extend
this to the multiview case, where we have a Laplacian denoted as L(u) for the
uth view of the data, one possibility is to penalize the Frobenius norm of vari-
ations between the V -representations of each view-pair [20]. Here, the number
of additional terms grows quadratically with the number of views. Instead, the
‘centroid’ based formalization in [20] enforces the view-specific eigenvectors to
be similar by requiring that they lie close to a common centroid. Similar to this
intuition, we look for a common V that balances the solution over all the views.
This translates into the following model,

min
V ∈Rn×p

h(V ) :=
∑

u

tr(V TL(u)V ) s.t. V TV = I (1)

The simple formulation above offers important scalability benefits. However, it
has the limitation of uniformly weighting the views — which is mathemati-
cally equivalent to summing up the view-wise Laplacians. This raises two issues:
(a) Experimentally, is the unweighted sum of features much worse than multi-
view methods that impose consistency across V ’s for each pair of views? (b) If
not, is it attractive to pre-compute the combined Laplacian and then run a sin-
gle view spectral clustering on it? We will present results in Section 5 to show
that the objective in (1) is empirically competitive with multi-view approaches
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in [20] (note that analogously, feature concatenation remains a powerful base-
line for MKL methods [14]). Regarding the second issue, rather than sum up
the Laplacians beforehand, we will work with the views separately. Besides be-
ing a natural point at which to decompose the objective for stochastic gradient
descent (as described later), dividing the Laplacians between separate computa-
tional nodes has useful performance advantages. For instance, in a distributed
optimization setting, one does not need to copy these matrices (that exceed 50GB
for large datasets) across each participating core. The entries of these matrices
can also be lazily computed, with nearest neighbor lookups performed lazily to
save unneeded work.

Incorporating Group Priors. Separate from Laplacians, there is typically a great
deal of side information available suggesting (with varying degrees of confidence)
that certain subsets of examples are likely to belong to the same class. Must-link
constraints are tedious to deploy via user supervision for a large set of examples
— instead, one may impose this prior indirectly. For example, if a set of images
share five or more tags and the data source is somewhat reputable, it yields
valuable group level advice to regularize (1) and complements the information
extracted from the image.

Assume that we have a group prior information about examples where a group
is defined as C = {v1, v2, · · · , v|C|} where each vj is a row of V corresponding
to an example. To encode similarity in how their respective representations in
V behave, we have a group concentration term, which measures the distance of
each example (in the group) to the group’s center v̄:

gC(V ) =

√
√
√
√ 1

|C|
|C|
∑

t=1

d(vt, v̄)2, (2)

where v̄ = 1
|C|

∑|C|
t=1 vt and d(·, ·) is a suitable distance function. This regular-

ization essentially measures intra-group distances, and we obtain a multi-view
spectral clustering problem with a group prior:

min
V ∈Rn×p

f(V ) := h(V ) + g(V ) s.t. V TV = I, (3)

where g(V ) = λ
∑

∀C gC(V ) is a convex real-valued function that is the sum of
the concentration terms for all groups (e.g. tags) in the dataset, with hyperpa-
rameter weight λ. We should point out that (2) is merely a simple example to
make the following presentation concrete. Our subsequent analysis of this prob-
lem allows for non-smooth g, and group norms such as �2,1 and others may be
used based on specific needs. Some priors can be subsumed into the Laplacians
whereas others can not, we make no assumptions on this. We denote the overall
objective by f(V ).

3 Stochastic Gradient Descent Procedure

Our optimization scheme seeks to distribute the problem in such a way that at
any given step, one only needs to consider a subset of the examples. This is done
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using the method of stochastic gradient descent [9]. It is easy to see that the
objective for h(V ) can be expressed as

∑

u

∑

ij

L
(u)
ij 〈Vi·, Vj·〉 =

∑

u

∑

i∼j

w
(u)
ij ‖Vi· − Vj·‖22

where the inner sum is over non-zero entries of the Laplacian matrix for the
uth view in the first instance and edges of the corresponding graph with weights

w
(u)
ij in the second expression. Each term of the sum can be considered a sub-

function of the objective, and so we can descend along the gradient of a randomly
selected subset of the terms. Depending on the sampling strategy (discussed
shortly), we want the resulting descent direction, in expectation, to be equivalent
to an ordinary gradient descent on the full objective. Later, this will provide
convergence guarantees.

At iteration t, one only obtains L̂t that is a sample of L satisfying E(L̂t) = L.
To keep the notations and the presentation simple, we write our results and
sampling strategy in the context of a single Laplacian L. For the following, we
assume a simple procedure that uniformly selects edges from the graph, though
our analysis also applies to additional sampling strategies discussed in Section
3.2, including the multi-view case. The stochastic gradient descent algorithm can
then be applied to the entire objective of (3), resulting in the following update:

Vt+1 = PΩ(Vt − γt(2L̂tVt + ∂g(Vt))), (4)

where Ω := Sn,p, γt the stepsize, and PΩ is a projection onto the feasible set.
Note that stochastic optimization on the Grassmannian and Stiefel manifolds

has been considered in the context of GROUSE [1] and related work [34], and is
not novel to this work specifically. In particular, [1] considers rank-one updates
of the orthogonal solution matrix V on incomplete portions of the data.

3.1 Convergence of Stochastic Gradient

Generally, it is difficult to assess the convergence rate for non-convex optimiza-
tion, but in our case the convergence can be obtained easily by properly choosing
the stochastic gradient such that the objective decreases monotonically, for ex-
ample, full gradient and (block) coordinate gradient. Therefore, based on the
convergence “assumption,” the following result shows that under some mild
conditions, the local convergence rate is O(1/

√
T ), where T is the number of

iterations. We provide a brief outline of the proof in this section. Note that
the convergence rate analysis is not only useful as a performance measure but
helps provide the optimal sampling strategy for our optimization method and
also shows how the framework will behave with parallelization across additional
cores. To our knowledge, this is the first result of this kind for spectral clustering
with regularization. Let Δt = L̂t − L where L̂t is the sampled Laplacian at the
tth iteration and L :=

∑
u L

(u). We first define:

σ2 := max
V TV=I,t

E(‖ΔtV ‖2F ); M := max
V TV=I

‖LV ‖F ; N := max
V TV=I

‖∂g(V )‖F .



Spectral Clustering with a Convex Regularizer on Millions of Images 287

Notice that M and N are constants decided by L and g respectively, while σ2

directly depends on the sampling strategy. For convenience, we define a function
Υ as Υ (M,N, σ2, T ) :=

√
((M +N)2 + σ2)/T . Our convergence result states:

Theorem 1. Let V ∗ be a convergent point of the sequence {Vt} generated from
(4). Suppose {Vt} is contained in a small ball with radius δ > 0. Denote f(V ∗)
as f∗, and let φ be a positive value. If PΩ

(
Vt − γt(L̂tVt + ∂g(Vt))

)
is a nonex-

pansive projection on this ball, we have:
i) If the stepsize is chosen as γt =

φδ√
((M+N)2+σ2)T

and

V̄T = (
∑T

t=1 γt)
−1

∑T
t=1 γtVt, then E

(
f(V̄T )

)− f∗ ≤ (φ+ φ−1) δ2Υ .

ii) If the step size is chosen as γt = θt
f(Vt)−f∗

(M+N)2+σ2 , then E(f(ṼT ))−f∗ ≤ δ√
θmin

Υ

where ṼT = 1
T

∑T
t=1 Vt, θt ∈ (0, 2) and θmin = mint 1− (θt − 1)2.

From Theorem 1, it is clear that independent of how the stepsize is chosen, the
local convergence rate is essentially bounded by Υ ∈ O(1/

√
T ). Theorem 1 is

proved in the extended version of this paper. Next, we further investigate the
behavior of σ2, and introduce sampling strategies based on nodes and edges.

Similar convergence can also be achieved by the partial stochastic gradient
projection method, that is,

Vt+1 = PΩ(Vt − γt∂[t]f(Vt)) (5)

where ∂f(Vt) := LVt + ∂g(Vt) is the subgradient of f(V ) at Vt and ∂[t]f(V ) is
a vector with the same size as ∂f(V ) taking the same values on the set [t] and
setting the rest as 0. More details are provided in the supplemental material.

3.2 Sampling

To meet the requirement of stochastic gradient, the randomly generated L̂t

should satisfy E(L̂t) = L. The following discusses a sampling strategy that only
uniformly samples the nonzero elements in L. Note that nonzero elements in L
correspond to edges in the graph. Define L̄ij ∈ R

n×n to be an extended matrix
with Lij at the ijth element and zeros at the rest. We generate the stochastic

gradient at the current iteration as L̂t = ‖L‖0

|E|
∑

ij∈E L̄ij where E is the set of

randomly selected edges.
In order to simplify the following discussion, we assume that the sampling

strategy chooses a fixed number of edges at each iteration. These assumptions
imply that every nonzero element (edge) in L has equal probability to be chosen.
Let λi(Δ

T
t Δt) denote the ith largest eigenvalue of ΔT

t Δt. From the definition of
σ2, we have

σ2 = E

(

max
V T V =I

‖ΔtV ‖2F
)

= E

(
p
∑

i=1

λi(Δ
T
t Δt)

)

≤ E(‖Δt‖2F ) =
∑

ij∈E
E((Δt)

2
ij) (6)
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To estimate the upper bound of E((Δt)
2
ij), we consider the sampling strategy

without replacement (the replacement case can be handled similarly).

(Δt)ij =

⎧

⎨

⎩

(
‖L‖0
|E| − 1

)

Lij w. p. |E|
‖L‖0

−Lij w. p. 1− |E|
‖L‖0

(7)

One can easily verify that E((Δt)
2
ij) =

(
‖L‖0

|E| − 1
)
L2
ij . Thus, from (6) we have

σ2 ≤
(

‖L‖0

|E| − 1
)
‖L‖2F . When the cardinality of L is large, ‖L‖0 � |E|. In other

words, σ2 dominates the convergence rate. Further, M2 is bounded by ‖L‖2F ,
which indicates that the convergence rate is bounded by

O

(

T−1/2
√

(‖L‖0/|E| − 1) ‖L‖2F + (M +N)2
)

≤ O
(

T−1/2
(√

‖L‖0/|E|‖L‖F +N +
√

N‖L‖F
))

.

When
√

‖L‖0

|E| is large, the bound is dominated by

O
(√

‖L‖0/(T |E|)‖L‖F
)
= O((T |E|)−1/2)

Note that the size of E is proportional to the number of threads. It means that
the convergence can be speeded up linearly by increasing the number of threads
(on different cores or slave computers) — exactly the behavior one hopes to
achieve in the ideal situation. In addition, this linear speedup property is also
achieved by the partial stochastic gradient projection method.

This edge sampling strategy can be easily extended to the setting where
multiple separable views live in a distributed environment. The basic change
here is that one needs to sample edges across all views, satisfying the condi-
tion E(L̂t) =

∑
u L

(u). This condition is true for a sampling strategy that first
chooses a single u with probability proportional to the number of edges in L(u)

from which edges are sampled identically to the single-view case. Similar lin-
ear speedup properties can be obtained; the result above carries through with
essentially mechanical changes. Besides sampling edges, one may sample nodes
(nodes correspond to the coordinates of V ) to generate the stochastic gradient.
However, when sampling nodes, the probability of sampling a given node must
be weighted by its degree in order to achieve the same consistency conditions.

Projection vs Manifold Optimization. In order to realize the full benefits of
parallelizing the optimization across multiple threads, we propose the manifold
optimization method of Section 4. This does not satisfy the conditions of a non-
expansive projection PΩ in Theorem 1. Rather, it has the properties of a block
coordinate descent method and does not leave the feasible region. While the
manifold optimization has weaker convergence guarantees, it avoids the projec-
tion step, which requires synchronization between the parallel threads. See Fig.
1 side-by-side pseudocode showing the distinction.
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Require: f : Rn×p → R, V0 ∈ Sn,p

for t = 1, ..., T do
Pick some u
Sample L̂t from L(u)’s (see Section 3.2)

Get subgradient d ∈ 2L̂tVt + ∂g(Vt)
Pick step size γt
Take step in R

n×p: V ′
t+1 ← Vt − γtd

Project onto feasible set:
Vt+1 ← PSn,p(V

′
t+1)

end for

Require: f : Sn,p → R, V0 ∈ Sn,p

for t = 1, ..., T do
Select K ⊆ {1, ... , n}
Take descent curve Y (τ ) in Sn,p s.t.

Y (0) = Vt

d(f◦Y )
dτ

∣
∣
∣
τ=0
≤ 0

(Y (τ ))ij = (Vt)ij ∀τ, i /∈ K
Pick step size τt
Vt+1 ← Y (τt)

end for

Fig. 1. Comparison on projection (discussed in Section 3) and projection-free manifold
(see Section 4) algorithms for solving optimization problems over the Stiefel manifold
Sn,p. When done in parallel, multiple processors may perform independent iterations
on different choices of L̂t and K.

4 Projection-Free Manifold Optimization Procedure

Ideally, we want to be able to split up the problem into subsets of examples,
while also producing iterates that satisfy the constraints V TV = I. Say we
have a subset K of k row indices, corresponding to rows of V (the submatrix
corresponding to these rows is denoted by VK· ∈ R

k×p). We are given a feasible
iterate V , and seek to compute the next iterate W such that it also lies in
the Stiefel manifold Sn,p and is thus feasible for the problem in (3), and W only
differs from V in the rows selected by K. This means that any number of parallel
computational units, asynchronously modifying mutually disjoint subsets of the
rows of V , will still produce feasible iterates.

Taking an optimization problem over only the rows in K, we will show this
produces a subproblem that seeks a rotation of the linearly independent columns
of VK·. W.l.o.g., assume VK· = [VKI , VKIR], where VKI ∈ R

k×|I| is a maximal
subset of linearly independent columns of VK· and R ∈ R

|I|×(p−|I|) is the linear
mapping from VKI to the dependent columns. Let P = VKITVKI ∈ R

|I|×|I| be
the matrix of inner products of these columns. We know by construction that
P 	 0. Taking any orthonormal U ∈ Sk,|I|,

W (U) =

[
UP 1/2 UP 1/2R
VK̄,I VK̄,Ī

]
∈ R

n×p (8)

assuming w.l.o.g. above that K selects the first |K| rows of the matrix. This is
constructed such that those rows of V in the complement of K (denoted by K̄)
are unchanged in W and the constraints are preserved:

WK·TWK· =
[

P 1/2UTUP 1/2 P 1/2UTUP 1/2R

RTP 1/2UTUP 1/2 RTP 1/2UTUP 1/2R

]

=

[
P PR

RTP RTPR

]
= V T

K·VK·
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so that

WTW = WT
K·WK· +WT

K̄·WK̄· = V T
K·VK· + V T

K̄·VK̄· = V TV.

Therefore, if V lies on the Stiefel manifold Sn,p, so must W .
The above construction successfully reduces the problem of finding a feasible

iterate W to modifying a subset of the rows given an appropriately constructed
matrix U ∈ Sk,|I|. The specific choice of U is determined by moving along a curve

in the smaller Stiefel manifold. The starting point is given as U0 = VKIP−1/2,
for which W (U0) = V . To generate a geodesic [12] that serves as a descent curve,
we can project a subgradient of f ◦W onto the tangent space of the manifold
Sk,|I| at U0, and take the manifold exponential map. An analogous procedure
generates curves from the Cayley transformation [33], which can be calculated
more cheaply. This curve on Sk,|I| can be mapped by W to a curve on Stiefel
manifold Sn,p in the original problem. This construction produces a descent
curve meeting the conditions in Fig. 1.

If we perform a line search over this descent curve such that the objective
function is monotonically nonincreasing, the convergence of this algorithm is
apparent. However, there is no guarantee to converge to the global solution
because of the non-convexity of problem (1).

5 Experiments

We have performed a number of experiments to evaluate our methods on several
aspects: (a) performance w.r.t. to a variety of datasets with special emphasis
on scalability as a function of size (b) comparison with state of the art method
[20] when appropriate (c) performance when incorporating high level priors into
the model. Though our focus is to show that the method is applicable for multi-
view spectral clustering (with convex regularization) for larger computer vision
datasets, for which few alternatives are available, we also performed some ex-
periments on machine learning datasets as a sanity check, where we match re-
ported results. Our vision datasets cover Caltech 101, Caltech 256, LabelMe and
TinyImages. For experiments with very large datasets, we also used simulated
datasets with on the order of hundreds of millions of examples. As a performance
comparison measure we report on Normalized Mutual Information (NMI).

5.1 Multi-view ML Datasets

UCI Digits: The first dataset we use is the handwritten digits (0-9) data from
the UCI repository. The dataset consists of 2000 examples, with six sets of fea-
tures for each image from which we construct six views. These results are sum-
marized in Figure 2b. Since our method depends on initialization, we repeat the
experiments 10 times (different initializations) and report on the best NMI value
obtained and standard deviations. The authors of [20] provide an initialization
in their code using eigenvectors of individual views.
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Reuters Multilingual: In addition, we consider multiview spectral clustering
on a natural language dataset. We subsample the dataset in a manner consistent
with [20]. Since the features for this dataset are sparse and high-dimensional, we
first use Latent Semantic Analysis (LSA) [15] to reduce the dimensionality.

5.2 Multi-view Vision Datasets

5 10 15 20 25
0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

# of views

N
M

I 
va

lu
e

Ours
Pairwise
Centroid

Digits Reuters
Ours 0.798(0.03) 0.312(0.01)

[20] Pairwise 0.659 0.305
[20] Centroid 0.669 0.308
Best 1-view 0.641 0.288

(a) (b)

Fig. 2. (a) Caltech101, showing the NMI values for different choices of views for ours
and [20]. (b) Comparison on UCI Digits and Reuters, with mean (and s.d.) NMI.

Caltech101: We evaluated the method on Caltech101, a popular benchmark
for object categorization with 102 categories of images (101 distinct objects
and background), and 30 images per category. To generate the views, we use
the UCSD-MKL dataset — a collection of kernels derived from various visual
features (up to 25) for Caltech101 data. We used only the training class kernels in
an unsupervised setting. Kernels for 5 random splits, with each split containing
information regarding 1515 images (15 images for each of the 101 categories) is
provided. We report also results randomly selecting subsets of the views. In each
case, we report our summaries as well as [20] by averaging across all 5 splits.
The results in Figure 2a suggest that the method compares well to [20].

Caltech256: A similar but bigger dataset is Caltech256, which contains 256 ob-
ject classes and more than 30000 images across all classes, We restrict our evalu-
ations to three main features for each image: V1-like [29], SURF [3] and Region
Covariance (RegCov) [32], for generating views for this data. The Spectral Hash-
ing method in [18] was then adapted to construct the graph for the Laplacians.
Note that here we cannot perform comparisons with [20] since their method
requires a dense kernel construction. Because of the nature of this dataset, the
V1-like view alone yields a NMI of 0.267, SURF gives 0.207, whereas RegCov
performs poorly at 0.088. Contrary to the results from other datasets above,
here, the multi-view performance at 0.181 is close to but worse than the best
view (with two views, SURF and V1-like, multi-view NMI is 0.22). There are
two primary reasons. First, the views do not seem to be uncorrelated and the
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Fig. 3. Example results from LabelMe. The first row corresponds to a certain cluster
from our multi-view method without tag prior. This cluster is best matched with the
‘opencountry’ category in the ground truth, but includes a subset of images that were
false positives (red box) and false negatives (green box) for this particular cluster.
Introducing group prior on a separate set of images (not shown) “propagates” and
helps correctly put both the red and green blocks in the correct class. Second row (left)
shows the new images that were introduced into the ‘opencountry’ category, as a result.

best view, V1-like, seems to dominate the others. Since there are only a few fea-
ture types, we cannot expect an improvement over the single best view. Despite
these issues, the evaluations suggest that solving multi-view spectral clustering
for these sizes is feasible, if the features are assumed to be provided.

ImageNet: We can construct a dataset with similar properties to the above
following a similar procedure in [24]. We use ILSVRC 2013 [10], an updated
version of the challenge set that is the basis of the dataset in [24]. ImageNet
categories consist of Wordnet noun synsets, which precisely defines the object in
the image. From ILSVRC 2013 [10] we select 100 categories at random, with a
total of 127885 images selected. We use four views derived from Decaf [11], GIST
[27], TinyImage [31], and SIFT [26] features. Each view considered separately
produces NMIs of 0.198, 0.181, 0.181, and 0.184 respectively. The multiview
objective combining all four produces a labeling with an NMI of 0.203.

5.3 Incorporating Group Structure

LabelMe: To evaluate the group prior effect, we used the LabelMe data [27],
which includes eight outdoor scene categories: coast, forest, highways, inside city,
mountain, open country, street and tall buildings. There are 2688 color images
and each category contains at least 260 images. We employ three views of visual
features: Gist [27], Spatial Pyramid Matching (SPM) [21], and Object Bank
(OB) [23]. The group prior information comes from the text tags available in
LabelMe annotations. We ask users to study the text tags and pick 19 ‘major’
tags out of 781. With each tag, we build 19 groups, each of which is a set of
images that share a single tag (like beach, tree trunks, car). We note these
groups are only about 70–90% correct with respect to the ground truth. For
example, ‘insidecity’ images and ‘street’ images both include the “building” tag.
Our prior regularization term g(V ) is the sum of Frobenius norm of 19 groups.
These groups covered only about 1500 of ∼ 2700 images.
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To evaluate how such a prior incrementally improves performance, we add sub-
sampling schemes at levels {0%, 10%, 60%, 100%}, where 100% means we use all
1500 images that have tags and 0% is standard multi-view spectral clustering.

For all of our experiments with the prior, we set λ = 102‖L‖1

‖L‖0
. Representative

examples are shown in Figure 3 and demonstrate how priors on some images
may in fact help correctly classify a subset of images that do not have this
auxiliary data available. The NMI values for GIST [27], SPM [21] and OB [23]
in a single view setting were 0.448, 0.419, and 0.511 respectively. The no-prior
model improves the NMI to 0.561. Tag priors at the 10%, 60%, and 100% (i.e.,
1500 images) incrementally improve NMI from 0.561 to 0.613, 0.633 and finally
0.679, suggesting their utility in this setting.

5.4 Jumbo-Sized Datasets

We summarize our main experiments on very large datasets here. Note that there
are significant implementation issues (e.g., memory management, data struc-
tures, queries) in successfully running a system on tens of millions of examples.

TinyImages: TinyImages [31] is a set of nearly eighty million 32 × 32 color
images collected from internet searches. The dataset is distributed along with
GIST features computed on each image, which were used as the basis of our
clustering. Nearest neighbors were computed using [18], from which a weighted
graph with 320 million edges was constructed. The dataset includes a keyword
associated with each image, for 24690 images the dataset authors evaluated
the accuracy of this keyword out of which 5660 images depicted the associated
keyword. This keyword is the only form of label provided with the TinyImage
dataset, no ground truth is available.

We split the entire TinyImages dataset into two clusters using spectral cluster-
ing with the manifold optimization method. With 34 CPU cores, the optimiza-
tion averaged one iteration every 0.015 seconds. To qualitatively evaluate the
clustering at a local scale, we look at how individual keywords are split between
the clusters. While most keywords are split by this clustering, some keywords
corresponding to more homogeneous sets of images are well separated into one
cluster or the other. In Figure 4, we show a subset of the keywords sampled from
both well-clustered and poorly clustered images.

ImageNet: We can also test a clustering task on the full ILSVRC2013 dataset.
This full dataset has 1000 categories and 1281165 images. Since our optimization
procedure considers a high-n low-p regime, we find a two-way split as in the
TinyImages. The (non-normalized)MI of the two-way labelling versus the ground
truth is 0.229.

Mixture Model: To assess the scalability of our optimization scheme, indepen-
dent of issues related to generating a diverse set of feature descriptors and side
information on a large vision dataset, we performed experiments to evaluate if we
can reliably process a Gaussian Mixture Model. We ran the model on mixtures



294 M.D. Collins et al.

comprising of 106 and 108 examples distributed concurrently across (up to 36)
heterogeneous CPU cores. For |K| = 1024, this setup computed iterations at a
rate of one iteration every 0.016 seconds and 0.034 seconds respectively. Within
50000 iterations, the 106 case reaches an objective value of 0.054 with an NMI
of 0.769 against the true label of which Gaussian distribution from which each
point is sampled. On the 108 case an NMI of 0.683 was seen with the objective
reduced to 2.685.

5.5 Model Characteristics

Varying |K| and Number of Iterations: The size of K, the number of exam-
ples chosen in sampling in each iteration, is a key parameter in our approach.
To show how this choice impacts the performance of the model, we use 5 ker-
nels chosen from the Caltech101 experiments as our views. The kernels and the
initialization are kept fixed in different runs, whereas |K| and the number of
iterations are varied from 100 to 1000, and the objective is shown in Figure 5.
The objective is progressively lower for increasing values of |K| and the iterations
converge sooner with increasing values, as it approaches the full gradient. The

Fig. 4. Results of our method applied to the TinyImages dataset, looking at how five
selected keywords (top to bottom: antler moth, cassareep, true vocal cord, john,
and machinery) are split by the clustering. To the left of the divide is a sampling of
images for which spectral clustering produces a “dominant” label for this keyword, and
the rightmost columns are given the “wrong” label. Green and red boxes mark these
groups for the three keywords shown for which we achieved a good separation of the
clusters. The keywords in the yellow box do not have an informative cluster.
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Fig. 5. (a) Plot showing the convergence rate of ordinary gradient descent with projec-
tion onto the Stiefel manifold, stochastic gradient descent with projection, and stochas-
tic gradient descent using manifold optimization. (b) Plot showing the variation in
objective with increasing iterations and different values of |K| from 100 to 1000. The
objective value is drawn against iterations, demonstrating that quicker convergence is
achieved with larger samples at the expense of increasing per-iteration cost.

rate of change in the objective as a function of iterations is similar for |K| ≥ 300,
which suggests that a relatively small value should suffice.

Comparison of Projection and Manifold Optimization Techniques: We
compare the manifold optimization of Section 4 and the method using projec-
tion on synthetic data. These use a single normalized Laplacian of a random
graph over n = 105 points in 4 clusters. All three methods are applied to solve
(1). As we can see from Figure 5, ordinary gradient descent converges in the
fewest iterations due to using the entire matrix and O(n2) computations in each
iteration. The manifold optimization method converges faster than projection
in part because of heuristics used in selecting the step size. Further, the con-
vergence rate increases when the sample size is increased. The Lanczos method
(i.e., MATLAB’s eigs) fails due to excessive memory requirements (> 32GB).

6 Conclusion

We describe a scalable stochastic optimization approach for Multi-view spectral
clustering with a convex regularizer. A useful feature of this approach is that at
any given step, the gradient is computed only for a subset of the examples —
the direct consequence is that with an increase in the number of examples, the
optimization can still make progress without having to compute the full gradient
at each step. We provide a detailed analysis of its convergence properties, which
sheds light on how adding a large number of processors in a distributed environ-
ment will affect its performance. Finally, we discuss how high-level priors can
be easily leveraged within this framework. The highly scalable implementation
accompanying this paper is particularly useful in applications where would want
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to effectively leverage such meta knowledge within inference, which remains dif-
ficult in alternatives based on Nyström extension. Our empirical evaluations on
several ML, vision, and synthetic datasets suggest that the model is scalable
and efficient, and matches the performance of other existing multi-view spectral
clustering models.
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