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Abstract. The nonlinear version of the well known PCA called the Principal
Geodesic Analysis (PGA) was introduced in the past decade for statistical anal-
ysis of shapes as well as diffusion tensors. PGA of diffusion tensor fields or any
other manifold-valued fields can be a computationally demanding task due to the
dimensionality of the problem and thus establishing motivation for an incremen-
tal PGA (iPGA) algorithm. In this paper, we present a novel iPGA algorithm that
incrementally updates the current Karcher mean and the principal sub-manifolds
with any newly introduced data into the pool without having to recompute the
PGA from scratch. We demonstrate substantial computational and memory sav-
ings of iPGA over the batch mode PGA for diffusion tensor fields via synthetic
and real data examples. Further, we use the iPGA derived representation in an
NN classifier to automatically discriminate between controls, Parkinson’s Dis-
ease and Essential Tremor patients, given their HARDI brain scans.

1 Introduction

The nonlinear generalization of PCA called Principal Geodesic Analysis (PGA) pio-
neered by Fletcher et al. [4] was applied to achieve statistical analysis of manifold-
valued data namely, neuro-anatomical structures which are represented as points on
shape manifolds. PGA captures variability in the data by using the concept of principal
geodesic subspaces which in this case are sub-manifolds of the Riemannian manifold on
which the given data lie. In order to achieve this goal, it is required to know the Rieman-
nian structure of the manifold, specifically, the geodesic distance, the Riemannian log
and exp maps and the Karcher mean (see section 2 for definitions). PGA relies on use
of the linear vector space structure of the tangent space at the Karcher mean by project-
ing all of the data points to this tangent space and then performing standard PCA in this
tangent space followed by projection of the principal vectors back to the manifold using
the Riemannian exp map yielding the principal geodesic subspaces. The representation
of each manifold-valued data point in the principal geodesic subspace is achieved by
finding the closest (in the sense of geodesic distance) point in the subspace to the given
data point. A generalization of the PGA reported in [8,3] to symmetric positive definite
(SPD) diffusion tensor fields was presented in [11]. Authors in [11] demonstrated that
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the Karcher mean of several given (registered) tensor fields computed using a voxel-
wise Karcher mean over the field is equivalent to the Karcher mean computed using the
Karcher mean in a product space representation of the tensor fields. However, for higher
order statistics, such as variance, such an equivalence does not hold. This observation
however holds for any manifold-valued fields, not just for the diffusion tensor fields.

PGA has been applied to many problems in the past decade, including statistical
shape analysis [4] and tensor field classification [11] in medical image analysis. When
dealing with large amounts of manifold-valued fields e.g., diffusion tensor fields, de-
formation tensor fields, ODF fields etc., performing PGA can be computationally quite
expensive. That said, if we are provided the data incrementally, one tensor field at a time,
rather than performing batch mode PGA it would be computationally more efficient to
simply update the already computed PGA as new data are made available. To this end,
we propose a novel incremental PGA or iPGA algorithm in which we incrementally
update the Karcher mean and the principal sub-manifolds rather than performing PGA
in a batch mode. This will lead to significant savings in computation time as well as
space/memory.

In the past few decades, the problem of incrementally updating the PCA has been
well studied in literature e.g., [12]. However, these methods require the data samples to
live in a Euclidean space, and hence are not directly applicable to the PGA problem. On
the other hand, Cheng et al. [1] and Ho et al. [6] have reported incremental algorithms
for computing the Karcher expectation of a given set of SPD matrices. Our iPGA algo-
rithm is a novel combination of the incremental PCA idea and the incremental Karcher
expectation algorithm in [1,6]. This is derived for SPD tensor fields. To this end, we
reformulate the SPD tensor-field PGA algorithm introduced in [11] to achieve iPGA.
Then, we apply our iPGA to a group of SPD tensor fields derived from high angular
resolution diffusion magnetic resonance images (HARDI), for classification of patients
with movement disorders. We present synthetic experiments depicting the effectiveness
and accuracy of iPGA, compared to the batch-mode PGA. Further, in the real data ex-
periments, given 67 human brain HARDI data, our iPGA based NN classifier aims to
distinguish between controls, Parkinson’s Disease (PD) and Essential Tremor (ET) pa-
tients. Our results demonstrate the effectiveness of iPGA, compared to the batch mode
scheme.

The rest of the paper is organized as follows. Section 2 contains background material
on differential geometry of the space of SPD tensor fields. Next, in section 3 the pro-
posed iPGA technique is described in detail. Sections 4 and 5 contain synthetic and real
data experiments respectively, comparing PGA and iPGA with respect to computation
time and accuracy. We draw conclusions in Section 6.

2 Riemannian Geometry of SPD Tensor Fields

We now briefly introduce the basic relevant concepts of Riemannian geometry of the
space of SPD tensor fields denoted by P (n)m following the notation from [11]. For de-
tails on the Riemannian geometry of P (n) we refer the reader to [3]. P (n) is the space
of n × n symmetric positive definite (SPD) matrices, which is a Riemannian manifold
with GL(n), the general linear group as the symmetry group. This can be easily gener-
alized toP (n)m, the product space of P (n) using the product Riemannian structure. In
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particular, expressions for the Riemannian geodesic distance, log and exponential maps
can be easily derived. Specifically, the group GL(n)m acts transitively on P (n)m with
the group action specified by φG(X) = (G1X1G

T
1 , . . . , GmXmGT

m), where each Gi ∈
GL(n) is a n×n invertible matrix and Xi is an n×n positive-definite matrix. The tan-
gent space of P (n)m at any point can be identified with Sym(n)m because the tangent
space of a product manifold is the product of tangent spaces. Let Y,Z ∈ TMP (n)m

be two tangent vectors at M ∈ P (n)m. The inner product between two vectors using
the product Riemannian metric is given by, 〈Y,Z〉M =

∑m
i=1 tr(YiM

−1
i ZiM

−1
i ). The

Riemannian exponential map at M maps Y the tangent vector, to a point in P (n)m and
is given by, ExpM(Y) =

(
G1 exp(G

−1
1 Y1G

−T
1 )GT

1 , . . . , Gm exp(G−1
m YmG−T

m )GT
m

)
,

where Gi ∈ GL(n) such that M =
(
G1G

T
1 , . . . , GmGT

m

)
.

Given X ∈ P (n)m, and the log map at M is given by,
LogM(X) =

(
G1 log(G

−1
1 X1G

−T
1 )GT

1 , . . . , Gm log(G−1
m XmG−T

m )GT
m

)
.

Using this definition of the log map in P (n)m, the geodesic distance between M and

X is computed as d(M,X) = ‖LogM(X)‖ =
√∑m

i=1 tr
(
log2(G−1

i XiG
−T
i )

)
.

Using the expression for the geodesic distance given above, we can define the (intrin-
sic) mean of N tensor fields as that tensor field which minimizes the following sum of
squared geodesic distances expression: M = argminM∈P (n)m

1
N

∑N
i=1 d(M,Xi)

2.
The sum of squares on the RHS above can be re-written as a sum over all points in
Ω. This means that the value of M(p) of M at a point p ∈ Ω is the usual Karcher
mean in P (n) of X1(p), · · · ,XN (p). In particular, since the Karcher mean is unique
on P (n) [3], this shows that M will be unique as well, and it can be computed using
an iterative algorithm similar to the one in [3]. After obtaining the intrinsic mean M of
the input tensor fields X1, . . . ,XN , we compute the modes of variation using the PGA
algorithm for tensor fields described in [11].

3 iPGA: Incremental Principal Geodesic Analysis

In order to develop the incremental Principal Geodesic Analysis on the space of SPD
tensor fields, we will break down the problem into two key components involving the
development of, (i) an incremental Karcher mean update technique applicable to ten-
sor fields and (ii) an incremental updating method for principal submanifolds. We will
address these two sub-problems in the following paragraphs.

3.1 Incremental Karcher Expectation Estimator

As described earlier, the Karcher mean of the SPD tensor fields is defined as the mini-
mizer of the sum of squared geodesic distances. Unfortunately, this minimization prob-
lem does not have a closed form solution for a population of size greater than two. In [6],
authors presented a recursive Karcher expectation estimator, RKEE, for SPD matrices
(not SPD tensor fields). Given the estimated Karcher mean of the first k SPD tensors,
denoted by Mk,and the new sample Xk+1, RKEE locates the new mean, Mk+1, on
the geodesic curve between Mk and Xk+1 using the Euclidean weight. More formally,
Mk+1 = ExpMk

(tLogMk
(Xk+1)), where t = 1

k+1 .
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We now generalize the above incremental Karcher mean formula to the case where
the data samples are SPD tensor fields (not just SPD matrices), using exp and log maps
defined earlier on the product manifold of SPD tensor fields. Let Mk = (Mk,1, ...,
Mk,m) denote the estimated Karcher mean of the first k samples, andXk+1 = (Xk+1,1,
..., Xk+1,m) be the new given tensor field. Based on the RKEE algorithm and the prod-
uct space representation chosen here, it is straightforward to generalize the RKEE to the
product space of tensor fields P (n)m. Thus, the new mean then is obtained by:

Mk+1 = (ExpMk,1(
1

k + 1
LogMk,1(Xk+1,1)), ..., ExpMk,m(

1

k + 1
LogMk,m(Xk+1,m)))

(1)

3.2 iPCA: Incremental Principal Component Analysis

Table 1. Incremental SVD Algorithm

1: Input Ur , Sr, Vr, and k new observations X ∈ R
d,k

2: Compute QR decomp. of matrix (I − UrU
T
r )X = QR

3: Compute the rank-r SVD of matrix
(
Sr UT

r X
0 R

)
= Û ŜV̂

4: Output (A,X) = ([Ur, Q]Û)Ŝ(
(
Vr 0
o I

)
V̂ )T

Principal component anal-
ysis of an input data ma-
trix is tightly related to its
Singular Value Decomposi-
tion (SVD) [5]. Let A ∈
R

d,n be the data matrix,
where its n columns corre-
spond to d dimensional ob-
servations. The SVD of A
is given by USV T , where
S ∈ R

d,n, and U ∈ R
d,d

and V ∈ R
n,n are or-

thonormal matrices. Given that the diagonal elements of S are sorted in descending
order, the first r principal components of data matrix A correspond to the first r columns
of matrix U , denoted by Ur ∈ R

d,r. Therefore, incremental update of the PCA of a set
of observations, can be reduced to the incremental update of SVD of the corresponding
data matrix.

In our implementation, we applied the incremental SVD algorithm in [12] which is
summarized in Table 1. In this algorithm, Ar ∈ R

d,n is the best rank-r approximation
of data matrix A for n given observations. Ar is defined by: Ar = UrSrV

T
r , where

Ur is defined earlier, Sr ∈ R
r,r denotes the first r rows and r columns of S, and

Vr ∈ R
n,r is the first r columns of V . Note that in the case of a single new observation,

i.e., X ∈ R
d, the QR decomposition outputs, Q(1, j) = X/||X || (other rows of Q are

mutually orthogonal), and R(1, 1) = ||X || (other elements of R are zero).

3.3 Proposed Algorithm

In this section we will develop the incremental version of the PGA algorithm in [11].
Very briefly, in [11], the PGA computation problem on the space of SPD tensor fields is
approximated by applying PCA in the tangent plane anchored at the Karcher mean,
in the following manner. First, the Karcher mean, M, of the set of tensor fields is
computed. Next, each tensor field is projected to the tangent space at the mean (i.e.,
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TMP (n)m), using log map, then transformed to the tangent space at the identity. This
tangent space is a standard Euclidean space denoted by TIP (n)m, where I is the ten-
sor field consisting of m identity matrices. Therefore, the ordinary PCA algorithm is
performed at TIP (n)m, and the obtained principal components are transformed back
to TMP (n)m. Note that this operation of transforming to the identity is crucial, since,
the inner product defined for P (n)m corresponds to the inner product in the Euclidean
space only at the identity I.

Table 2. Incremental PGA Algorithm

1: Input the SVD of Ak for k samples: Uk, Sk, Vk

the new tensor field Xk+1, and the old mean Mk

2: Compute Mk+1 from Xk+1 and Mk, using Eq. 1
3: Yk+1 = LogMk+1(Xk+1)

4: Zk+1 = ΦG−1(Yk+1), defined in Eq. 2
5: Given Zk+1, update (Uk, Sk, Vk) to

(Uk+1, Sk+1, Vk+1) using algorithm in Table 1.
6: Translate jth principal component, Pj,

back to TMk+1P (n)m, via Qj = ΦG(Pj)

Equipped with the two algo-
rithmic tools presented thus far
(RKEE and iPCA), we are ready
to reformulate this algorithm in
an incremental form. In a similar
fashion, each SPD tensor field is
projected using the log map and
transformed (by applying the group
action) to TIP (n)m. More for-
mally, let Xi denote the ith tensor
field, andMk be the Karcher mean
of the k given samples. Define
Yi = LogMk

(Xi) ∈ TMk
P (n)m.

Each Yi is then transformed to
TMP (n)m, to obtain Zi. Accord-
ingly, the data matrix at TIP (n)m, denoted by Ak, can be constructed where its ith

column corresponds to Zi in a vectorized form.
In the our algorithm, we keep track of the best rank-r SVD decomposition of the

data matrix, Ak, at TIP (n)m. Formally, Ak = UkSkV
T
k . Note that, the columns of

Uk correspond to the principal components in the tangent space. Let Xk+1 and Mk

denote the new SPD tensor field, and the Karcher mean over all previous k tensor fields,
respectively. Then, to update the principal components we need to augment the data
matrix with an appropriate vector which represents Xk+1, in TIP (n)m .

In order to find this vector, we first locate the new Karcher mean Mk+1, using Eq.
1 , then project Xk+1 to the tangent space at Mk+1, i.e., Yk+1 = LogMk+1

(Xk+1).
This tangent vector is moved to TIP (n)m using the group action on P (n)m as shown
below, where, G = (G1, ..., Gm), and G is such that ∀i,Mk+1,i = GiG

T
i .

Zk+1 = ΦG−1(Yk+1) = (G−1
1 Yk+1,1G

−T
1 , ..., G−1

m Yk+1,mG−T
m ) (2)

Now, the best rank-r SVD decomposition of Ak and the vector Zk+1 are both in
TIP (n)m which is the standard Euclidean space. Hence, we can readily apply the in-
cremental SVD in section 3.2, and update the rank-r SVD to estimate Uk+1, Vk+1 and
Sk+1, accordingly. At the end, the new principal components which correspond to the
columns of Uk+1 are transformed back to TMk+1

P (n)m, using the transformation ΦG,
where Φ and G are the same as in Eq. 2. This method is summarized in Table 2.
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4 Synthetic Experiments

Data Description. We generated a group of 25, 16×16 SPD tensor fields, synthetically.
The 3 × 3 SPD matrices in all tensor fields are ellipsoidal. There are two types of
SPD matrices in each tensor field, whose principal eigenvectors differ by 90 degree. In
generated tensor fields, the angles of principal eigenvectors of the first and the second
matrices are uniformly chosen in [0, π] and [π2 ,

3π
2 ], respectively.

Computation Time/Space Consumption. Given a pool of tensor fields, they are in-
crementally input (in random order) to both iPGA and PGA algorithms and the CPU
time and the memory consumed (on an Intel-7 2.76GHz CPU with 8GB RAM) by
each method to compute the principal components is recorded. We repeat this experi-
ment 10 times on the data pool of 25 tensor fields and plot the average time/accuracy
for each method. The plot in the middle of Fig. 1 demonstrates that CPU time con-
sumption for iPGA is significantly less compared to that of PGA, especially for a large
number of input data samples. Besides, the plot on the left in Fig. 1 depicts that iPGA
requires roughly a constant space for any number of input tensor fields, while PGA’s
space consumption grows linearly, as expected.

Error Measurement. In order to measure the accuracy of each method, we computed
the residual sum defined in [9] for estimated principal components. For N input ten-
sor fields, the residual sum is defined by 1

N

∑N
j=1 d

2(Xj, π̂SU (Xj)), where d is the
geodesic distance on P (n)m, and π̂S(Xj) is the estimated projection of Xj to the
geodesic subspace spanned by the principal components, denoted by SU . The projec-
tion, πSU , is estimated in the tangent space (see Eq.6 in [9] for details). The bar chart
on the right in Fig. 1 depicts the error comparison between PGA and iPGA at each it-
eration. It can be seen that iPGA’s residual error is very close to PGA’s. Thus, from an
accuracy viewpoint, iPGA is on an equal footing with PGA but from a computational
efficiency viewpoint, it is significantly better.

Fig. 1. Time & space consumption, and residual error comparison between iPGA and PGA

5 Real Data Experiments: Classification of PD vs. ET vs. Controls

In this section we present an application of iPGA to real data sets. Our real data consists
of HARDI acquisitions from patients with Parkinson’s disease (PD), essential tremor
(ET) and controls. The goal here is to be able to automatically discriminate between
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these groups using features derived from the HARDI data. Earlier work in this context
in the field of movement disorders involved use of DTI based ROI analysis specifi-
cally using scalar valued measures such as fractional anisotropy [10]. They showed that
DTI had high potential of being a non-invasive early trait biomarker. All our HARDI
data were acquired using a 3T Phillips MR scanner with TR = 7748ms, TE = 86ms,
b−values: 1000 s

mm2 , 64 gradient directions and voxel size = 2× 2× 2mm3.
For the features, we use the ensemble average propagator (EAP) at each voxel esti-

mated using the technique in [7]. We extract the Cauchy deformation tensor field which
is computed from a non-rigid registration of the given EAP fields to the control at-
las EAP field (constructed using the approach in [2]). The Cauchy deformation tensor
is defined as

√
JJ t, where J is the Jacobian of the deformation at each voxel. The

Cauchy deformation tensor is an SPD matrix of size (3, 3) in this case. This gives us
an SPD field as a derived feature corresponding to each given EAP field. We use the
iPGA described earlier and use the geodesic distance-based NN to classify the probe
data set. Note that the geodesic distance in this case is the distance between the probe
data set and the geodesic submanifold representation of each class namely, PD, ET and
Controls. The probe is assigned the label of that class with smallest geodesic distance.
Classification is performed on 26 PD, 16 ET and 25 control subjects using the PGA of
the Cauchy deformation tensor fields described above, where 10 subjects from PD and
control, as well as 6 subjects from ET were picked as test group, and the rest of the
subjects we used for training. Table 3 summarizes the accuracy for each method. For
comparison, we also used the standard PCA method, as well as SVM with Radial Basis
Function (RBF) kernel, which are applied to a vectorized version of the tensor fields.
The size of the tensor fields was restricted to the ROIs instead of the whole image. Thus,
the dimensionality was 600 ∗ 6 = 3600 and we used just the first two principal compo-
nents in all competing methods to achieve the classification reported in the table. From
the table, it is evident that iPGA and PGA provide very similar accuracies in all three
classifications, while iPGA’s computation time is significantly less compared to PGA’s.
Further, iPGA is considerably more accurate than PCA and SVM, because in the two
later cases, the non-linearity of P (n)m is not taken into account.

6 Discussion and Conclusion

In this paper we introduced a novel iPGA technique for statistical analysis of SPD ten-
sor fields. From the synthetic experiments it is evident that the time consumption of
iPGA is significantly less than the batch mode PGA. This time gain is achieved via a

Table 3. Classification results of iPGA, PGA, PCA and SVM

Control vs. PD Control vs. ET PD vs. ET
iPGA PGA PCA SVM iPGA PGA PCA SVM iPGA PGA PCA SVM

Accuracy 0.90 0.95 0.70 0.75 0.93 0.93 0.75 0.81 0.87 0.87 0.68 0.81
Sensitivity 1.00 1.00 0.90 0.90 0.83 0.83 0.66 0.83 1.00 0.83 0.83 0.83
Specificity 0.80 0.90 0.50 0.60 1.00 1.00 0.80 0.80 0.80 0.90 0.60 0.80
Time (s) 15.76 59.96 10.60 48.40 10.61 43.69
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novel combination of the incremental update of the mean tensor field as well as the
incremental updates of the SVD of the data matrix. Further, it can be observed from ac-
curacy comparisons that iPGA yields almost the same accuracy as the batch mode PGA.
This makes our method an appealing choice for principal geodesic analysis, especially
when the dimensionality of the data or the population size is a significant issue. Finally,
using a simple geodesic nearest neighbor classifier, we were able to achieve high rate
of classification of movement disorders from HARDI scans.
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