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Abstract. Analysis of vessel structures in 2D X-ray angiograms is im-
portant for pre-operative evaluation and image-guided intervention. How-
ever, automated vessel segmentation in angiograms, especially extraction
of the topology such as bifurcations and vessel crossings, remains challeng-
ing mainly due to the projective nature of angiography and background
clutter. In this paper, a novel framework for model-guided coronary ves-
sel extraction in 2D angiograms is presented. In this framework, a graph
is constructed using a sparse set of pixels in the angiogram. With a single
user-supplied click as the starting point, the vessel tree structure in the
angiogram is automatically extracted from the graph. Ambiguities in this
tree structure caused by 3D-to-2D projection are then resolved using topo-
logical information from the 3D vessel model of the same patient. By incor-
porating this prior shape information, the proposed method is effective in
extraction of vessel topology, and is robust to background clutter and un-
even illumination. Through quantitative evaluation on 20 angiograms, it
is shown that this model-guided approach significantly improves detection
of vessel structures and bifurcations.

1 Introduction

Vessel analysis in 2D X-ray angiograms is important for pre-operative evaluation
and image-guided intervention. Automation of this process, however, remains
challenging. One reason is the 3D-to-2D projective nature of X-ray angiography,
which results in loss of structural information in 3D geometry and thus makes it
difficult to tell vessel bifurcations from vessel crossings, for instance, purely from
2D imagery. The existence of background clutter, such as organs, bones, and
interventional instrument, further complicates the situation and makes accurate
vessel analysis even more challenging. Some of the challenges are shown in Fig. 1.

Most work on vessel analysis in 2D imagery is focused on pixel-wise detection
of vessels, usually aided by enhancement filtering. In [7], feature vectors are con-
structed for vessel detection, which could potentially give a discontinuous mask.
On the other hand, exploratory graph-based approaches give a continuous mask
marking occurrence of vessels [1,5,9]. Furthermore, [4] and [8] make assumptions
on vessel shape continuity, and incorporate the scale and orientation information
given by enhancement filtering for better graph-based vessel extraction. See [3]
for an extensive review of the related literature as well as vessel analysis on 3D
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Fig. 1. Challenges for vessel extraction in angiograms: (a) uneven illumination (bottom
and top right), (b) catheter and vessel crossings, and (c) spine and catheter

imagery. The methods described above are effective in giving a mask indicat-
ing occurrence of vessels or a single curve connecting two user-supplied points
that approximates the centerline of a vessel segment. Nevertheless, none of these
methods extract topology of the vessel structures, and therefore vessel cross-
ings could be incorrectly identified as bifurcations, for instance. Moreover, these
methods tend to be sensitive to background clutter and uneven illumination,
which routinely occur in 2D X-ray angiography.

To address the above issues, a graph-based framework is presented in this
paper for model-guided extraction of vessel structures in 2D X-ray angiograms.
In this framework, the vessel tree structure is automatically extracted with a
single user-supplied click on the angiogram indicating the root. This structure
is then refined by following the topology of a 3D vessel model extracted from
the Computed Tomography Angiography (CTA) of the same patient. Overall,
the major contributions of this work are: (1) A novel framework is presented for
semi-automatic extraction of the topological vessel structure in 2D angiograms,
and not just vessel occurrences. (2) A novel use of prior shape information from
3D vessel models is presented, which enhances efficacy of the proposed method
in telling vessel bifurcations from crossings and its robustness to background
clutter as well as uneven illumination.

2 Graph-Based Vessel Tree Extraction in 2D Angiograms

To extract vessel structures, a graph is constructed using a sparse set of image
pixels as nodes. Nodes in the neighborhood of each other are connected by graph
edges, whose cost functions incorporate the output of a vessel enhancement filter,
edge length and edge orientation. Vessel tree extraction is then initialized by a
single user-supplied point around the root in the angiogram. The paths with the
lowest accumulated edge costs from this starting point to all the other nodes in
the graph are found by the Dijkstra’s algorithm. These paths are guaranteed to
form a tree structure, which is consistent with vessel topology. Finally, branches
in the tree structure are pruned based on quality of the constituent edges.
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2.1 Graph Construction and Exploratory Shortest Paths

Graph nodes are defined at a sparse set of pixels sampled from an initial segmen-
tation mask, which marks highly likely vessel occurrences. This mask is obtained
by thresholding the pixel-wise “vesselness” values given by a multiscale enhance-
ment filter [2]. This mask is skeletonized and sparsified by iteratively sampling
local maxima of vesselness values within a pre-defined kernel. The user-supplied
point is added as the starting node for vessel tree construction.

A bi-directional edge e; ; is created between the i-th and j-th nodes if they
are within N pixels of each other (N = 20 here). The probability of e; ; being
part of vessel is denoted by p; ;. From all the possible paths from the starting
node to a given node (denoted by I'), a naive Bayes classifier is employed to find
the optimal path I'*, which is the most likely to correspond to a vessel segment:

I = argmax H Dij = argmln Z —log(pi,;)) (1)
e; ;€I e ;€

This optimization is modeled as a shortest-path problem, where the sum of edge
costs C; ; is minimized over possible paths. C; ; is defined as follows:

Ciy = Cly - (CL))" - (€LY - (€l - €5 - CBaY, @

where the superscripts L, V and I correspond to the edge length, vesselness
value, and image intensity, respectively. The cost terms with superscripts 6, ¢,
and ¢ describe consistency between the edge orientation and the pixel-wise
orientations given by the enhancement filter. The non-negative weights «, 8 and
~ adjust influences of these cost terms and are determined empirically (a zero
weight essentially eliminates the corresponding term.) The respective cost terms
are defined as follows:
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The term d; ; denotes the edge length, Xz‘,j denotes the set of pixels passed by
the edge, and N;; is the number of elements in this set. For the z-th pixel,
v, denotes the vesselness value, I, denotes the image intensity, and 6, denotes
the orientation given by the enhancement filter. The function f(i) gives the pixel
index at which the i-th node is located. Finally, ¢; ; denotes the edge orientation.
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Fig. 2. (a) The vesselness map for Fig. 1(a). (b) All the edges in the graph (green)
and the extracted tree structure using the Dijkstra’s algorithm (blue). The black dot
around the root of the vessel tree (top-left) marks the user-supplied starting point. (c)
Graph edges with a quality score of +1. (d) Graph edges with a quality score of -1.

(a) (b) (c)

Fig. 3. Graph-based 2D segmentation results on the angiograms shown in Fig. 1. Iden-
tified bifurcations are marked by red circles.

The Dijkstra’s shortest path algorithm is performed on this graph, starting
from the user-supplied point to all the other nodes, which gives a directed tree
structure rooted by the starting point. See Fig. 2(a) and (b) for the vesselness
map and the shortest paths, respectively, for Fig. 1(a).

2.2 Branch Pruning

The extracted tree is pruned based on edge quality to eliminate branches that are
less likely to be part of vessel. All edge costs are first clustered into two groups by
the k-means method. The group of edges with lower costs are assigned a quality
score of +1, and the other assigned -1. As shown in Fig. 2(c) and (d), a +1 score
is a strong indicator of vessel occurrence whereas -1 is not. The quality score of
a sub-tree is defined as the sum of scores of all the constituent edges.

Quality of the sub-tree rooted by each node is examined. For a non-bifurcation
node (i.e. a node with one or zero child), its sub-tree is preserved only if its quality
score is positive. For a bifurcation node, the sub-trees rooted by its children with
non-positive scores are removed. Out of the remaining sub-trees, only the one
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with the lowest mean edge cost and those with a total length of over 30 pixels
are preserved (around 8.1 mm). Essentially, this pruning process allows both
shortening and total elimination of branches. A balance is also struck between
maximizing the quality score of the whole tree and preserving long branches. See
Fig. 3 for the final 2D segmentation results on the angiograms shown in Fig. 1.

3 Tree Structure Segmentation Guided by 3D Models

As shown in Fig. 3, the 2D segmentation method suffers from background clutter
and vessel crossings in the angiogram. These challenges are particularly difficult
to address in single 2D angiograms due to the 3D-to-2D projective nature. There-
fore, a model-based approach is presented for refinement of the 2D vessel tree.
In this approach, the 2D tree is refined by using prior shape information from
a 3D vessel model of the same patient, which could be extracted pre-operatively
from CTA, for instance. The 3D-to-2D projection of the 3D model is first non-
rigidly registered with the 2D tree [6], an example of which is shown in Fig. 4(a).
Based on this spatial alignment, correspondences are established between vessel
segments from the 2D tree structure and those from the 3D tree. Finally, the 2D
vessel segments are restructured following topology of the 3D vessel tree, which
gives a 2D tree that accurately describes the vessel structure in the angiogram.

3.1 Correspondences between 2D and 3D Vessel Segments

The 2D vessel tree is first disconnected at bifurcations, giving a set of 2D seg-
ments. A segment is further broken into multiple shorter segments at edges with
a quality score of -1 (Section 2.2), if any. All these 2D segments form a set Sap,
an example of which is shown in Fig. 4(b). The registered projection of the 3D
model is also disconnected at bifurcations, giving another set of segments S3p.
Segment correspondences between Sap and Ssp are established based on spa-
tial closeness. For each segment in Sop, the closest segment in S3p is found
based on mean pixel distances. All the 2D segments corresponding to the i-th
3D segment in S3p forms a set Ség, and {Ség, 82(20), ...... Ség)} are therefore dis-
joint subsets of Sap, where K is the number of segments in S3p. To avoid false
vessel segments in the final tree, a 2D segment is removed if less than 80% of its
pixels are within 30 pixels (around 8.1 mm) from the closest 3D segment.

3.2 Restructuring 2D Vessel Segments Following 3D Topology

Given the segment correspondences, segments in Sop are structured following
connectivity of segments in S3p, which describes topology of the 3D tree. This
structuring is first performed within each set 82(% and then between the sets
{SQ(B, SSD), ...... SQ(ID()}. Segments in each set 82(% are first connected locally using
the Dijkstra’s algorithm (Section 2.1), giving a connected group of 2D segments

for each 3D segment. These groups {SZ(B, Sé?, ...... Sz(g)} are then connected
locally by the Dijkstra’s algorithm following connectivity of the 3D segments.
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Fig. 4. (a) Projection of the 3D vessel model from CTA (red) registered with the 2D
segmentation (blue). (b) Segments from the 2D tree structure. (c) Local connections
joining the segments in (b). Connections corresponding to the same segment in Ssp
are shown in red, while those corresponding to different segments are shown in green.
A zoom-in image of the region highlighted in yellow is shown in Fig. 5(b).

(a) (b)

Fig. 5. (a) Node splitting to avoid incorrect node connection. To establish the local
connection marked in green, the nodes along the path are split (in green) to avoid
incorrect vessel connection at the node marked by an asterisk. The original and new
nodes are essentially independent nodes at the same image coordinates. (b) An example
from Fig. 4(c) where creation of a false bifurcation is avoided by node splitting, as can
be seen from the resulting tree structure shown in Fig. 6(b).

To avoid creation of false bifurcations during restructuring, the nodes con-
nected by the newly created local paths are split, except the source and destina-
tion nodes (illustrated in Fig. 5). Multiple local paths are therefore allowed to
cross each other without creating bifurcation nodes. Fig. 4(c) shows an example
of local connections. As can be seen from the results in Fig. 6, this model-guided
approach is effective in telling vessel crossings from bifurcations (Fig. 6(a) and
(b)), as well as in coping with background clutter (Fig. 6(b) and (c)).

4 Experimental Results and Discussion

Vessel structures were extracted from 20 512x512 angiograms with and with-
out guidance from 3D models, which were generated by manual segmentation.
Results were compared with ground truth obtained by manually segmenting the
2D angiograms by an expert, where there were 130 bifurcations and 66581 vessel
points in total. Parameters were selected based on data sets not included in the
test set and remained consistent. The imager pixel spacing is 0.27x0.27 mm.
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Fig. 6. Extracted tree structures from the angiograms shown in Fig. 1 with model-
guided refinement. Identified bifurcations are marked by red circles.
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Fig. 7. Precision-recall curves for (a) vessel points and (b) bifurcation points. Results
from both 2D segmentation and model-guided segmentation (2D+3D) are shown.

The precision-recall curves for detection of vessel and bifurcation points are
shown in Fig. 7, where operating points were changed by varying the cost thresh-
old for assigning edge quality scores in branch pruning (Section 2.2). For a given
threshold, the precision is the fraction of detected points that are correct, and the
recall is the fraction of ground-truth points that are correctly detected. Here a
detected vessel point is considered correct if there is a ground-truth point at the
same pixel location. A detected bifurcation is correct if there is a corresponding
ground-truth bifurcation in its 30-pixel neighborhood (around 8.1 mm).

As shown in Fig. 7, with 3D model guidance, the precision improves signifi-
cantly for both vessel and bifurcation detection (by around 0.15 at a recall of 0.8,
for instance). This improvement is expected since the model provides additional
information about the vessel structure, which makes segmentation more robust
to noise, background clutter, uneven illumination, and vessel crossings. For in-
stance, the false positives due to catheters and spines in Fig. 3(b)-(c) are removed
since these false vessel segments do not correspond to any 3D segments in re-
structuring. Similar improvement can be seen in Fig. 3(a) and Fig. 6(a), where
uneven illumination at the bottom could cause false positives. Additionally, as
can be observed by comparing Fig. 3(b) and Fig. 6(b), false-positive bifurcations
due to vessel crossings are removed thanks to the information on connectivity of
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vessel segments from the 3D model. Reduction of these false positives based on
the 3D model directly contributes to the improvement in precision.

There is a drop in the highest recall rate that can be achieved after restruc-
turing the 2D segmentation results with 3D model guidance, as also can be
observed from the results in Fig. 6. This phenomenon is due to the fact that the
refined structure is essentially a subset of the 2D segmentation that is consistent
with the 3D model, which is created from manual segmentation and includes
only clinically important vessel structures. Therefore, this drop in recall reflects
mainly the omittance of less clinically important vessel branches and could be
easily addressed during the phase of segmentation on CTA.

5 Conclusion

A framework is presented for vessel structure extraction in 2D X-ray angiograms
with a single user-supplied click. Through experiments on 20 angiograms, this
method was quantitatively evaluated and the performance is shown to be signifi-
cantly improved by incorporating prior shape information from 3D vessel models.
Future work includes joint optimization of vessel segmentation and registration,
as well as development of automated 3D model extraction.
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