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Abstract. We propose a method to perform automatic detection and
tracking of electrophysiology (EP) catheters in C-arm fluoroscopy se-
quences. Our approach does not require any initialization, is completely
automatic, and can concurrently track an arbitrary number of overlap-
ping catheters. After a pre-processing step, we employ sparse coding to
first detect candidate catheter tips, and subsequently detect and track
the catheters. The proposed technique is validated on 2835 C-arm images,
which include 39,690 manually selected ground-truth catheter electrodes.
Results demonstrated sub-millimeter detection accuracy and real-time
tracking performances.

1 Introduction

Sudden cardiac death (SDC) is linked to severe disorders of the heart rhythm. In
the United States alone, the incidence rate ranges up to 450,000 cases annually
[1]. Patients affected by heart beat related diseases can be definitively treated
with radio-frequency (RF) catheter ablation. The efficacy of catheter ablation is
highly dependent on accurate identification of the site of origin of the arrhythmia.
Once this site has been identified, an ablation catheter is positioned in direct
contact with it and radio-frequency energy is delivered to ablate it.

Catheter ablation is often a long procedure requiring significant fluoroscopy
exposure. It was proved recently [2], that 3D navigation systems contribute to
the reduction of the exposure to patients and operators. The common map-
ping technologies that combine 3D anatomy and electrophysiological data are:
CARTO and CARTOMerge (Biosense Webster), NavX (St.Jude Medical), and
RPM (Cardiac Pathways-Boston Scientific). Other technologies that provide
continuous data of all electrophysiogical events include Ensite 3000 (St. Jude
Medical) and Basket (Cardiac Pathways-EP Technologies) [3]. Whether using
mapping systems or conventional RF ablation techniques, clinicians still rely on
C-arm images to position and guide catheters. Thus, exploiting C-arm image
information is crucial for providing additional information to clinicians during
cardiac ablation procedures. There are several reasons as to why detecting and
tracking the position of ablation catheters relative to the patient anatomy is im-
portant. They are related to interventional guidance aspects: (i) accounting for
heart motion compensation, (ii) easing positioning & navigation during cardiac
ablation, (iii) planning the ablation procedure by (iv) registration to preopera-
tive data such as CT and MRI.
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Literature Review (2004-2013): In recent research practice, the medical
imaging community has refocused its efforts to localize catheters directly in C-
arm images. Fallavollita et al. developed a catheter tip detection algorithm based
on thresholds of the fluoroscopic images; this failed in low contrast images [4].
A technique for tracking and detecting the ablation catheter in X-ray images
was first proposed by Franken et al. but the computational cost was relatively
high making the method not applicable in clinic [5]. Coronary Sinus and abla-
tion catheter detections were first proposed in [6,7]. Multiple user interaction
and parameter fine-tunings were necessary to meet the quality of the X-ray im-
age. Employing respiration and motion compensation methods may succeed in
overcoming some of the above challenges. Recently, Schenderlein et al. proposed
a catheter tracking method using snakes active contour models [8]. Brost et al.
developed a model-based lasso catheter tracking algorithm in biplane X-ray fluo-
roscopy [9]. However, the tracking required re-initialization and user interaction.
Wen et al. successfully tracked one catheter in a cardiac cycle and required user-
initialization in selecting tip electrodes [10,11]. Multiple catheter-tip detections
are presented in [12]. There, authors require user interaction for their detections
using a geodesic framework. Finally, methods including fast blob detections,
clustering, shape-constrained searching and catheter model-based detection have
been proposed [13,14]. A limitation of these is that they assume fixed shape for
the catheter and might not cope with different C-arm positions and catheter
shape changes due to foreshortening.

Contributions: We propose a unique method that considers all of the key chal-
lenges associated with catheter detections. Our method: (i) is fully automatic;
(ii) supports the presence of multiple, touching and overlapping catheters; (iii)
can detect and track catheters appearing foreshortened or deformed; (iv) is ro-
bust to illumination variations and to the sudden motion of the catheters.

2 Methodology

Our catheter tracking and detection pipeline is shown in Figure 1. The pre-
processing step aims to improve the image signal to noise ratio and to reduce the
search space. A further reduction of the search space is obtained in the catheter
tips detection stage, where image locations corresponding to catheter tips are se-
lected. In the final step, we detect and track the catheters by the means offered by
sparse coding. Catheter hypotheses are formed and associated to a cost, the ones
yielding the minimal global cost constitute the output of our algorithm.

L1 Sparse Coding: In order to make our paper self contained, we introduce
the main concepts of sparse coding [15]. Let us suppose a signal y ∈ R

n and a
dictionary D ∈ R

n×m whose columns, also called words, approximately span y.
The signal y is reconstructed as a linear combination of the words through the
weights α ∈ R

m by solving the optimization problem

min
α

1

2
‖Dα− y‖22 + λ ‖α‖1 . (1)
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Fig. 1. Proposed pipeline

The weight λ controls the sparsity of the solution establishing a tradeoff between
the least squares optimality and the number of words employed for its compu-
tation. When the weights α are constrained to be positive, the signal y can be
reconstructed only as a conical combination of words. This is particularly conve-
nient in the tracking by detection scenario, where the words model appearances
and therefore should never be subtracted to each other. In our approach, the
dictionaries contain the appearance of the catheters and of the electrodes. We
rely on the sparsity assumption to match the candidates’ appearances with a
few, specific ones stored in the dictionaries.

2.1 Pre-processing

In order to cope with the presence of noise and improve the contrast of the
fluoroscopic images, we apply to the images an homomorphic filter followed by
a bilateral filter, reducing noise artifacts while preserving edges. As a further
pre-processing step, we use a determinant of hessian blob detector to obtain
the accurate location of electrode-like structures appearing in the images. As
demonstrated by [13,14], the electrodes can in this way be localized with sub-
millimeter precision, therefore enabling us to effectively limit the search space.

2.2 Training

In our method, we employ two sets of dictionaries to: (i) select image locations
corresponding to the tips of the catheters, (ii) reconstruct and associate a cost to
each candidate catheter. The dictionaries are obtained in a training stage that
makes use of annotated data.

Training Dictionaries for “tips” Detection: In order to detect the catheter
tips, we instantiate the dictionaries DT and DE , respectively built from patches
depicting catheter tips and electrodes at various orientations. The patches are
normalized to have zero mean and unit standard deviation so that illumination
invariance and uniform probability of being selected during reconstruction are
ensured.
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Training Dictionaries for Catheters Detection: In our approach, detection
and tracking are coupled tasks. Supposing we want to track K catheters, we
train:

1. K dictionaries D1...K of positive templates capturing the appearances of each
catheter separately.

2. one dictionary DN of negative templates capturing typical background ap-
pearances.

The words djk of each dictionary Dk are associated with the specific poses
assumed by the k − th catheter during training. Furthermore, they are linked
to meta-data matrices Mj, whose purpose is to store the expected locations
of the catheter’s electrodes at specific poses. The coordinates stored in Mj are
normalized to a common orientation and expressed with respect to the catheter’s
tip position. The negative profiles stored in DN are used during tracking to
penalize candidate catheters whose appearances resemble the background. All
the appearances stored in the dictionaries consist of 1D intensity profiles of
fixed length r, sampled from training images. The intensity profiles, which are
implicitly rotation invariant, are normalized to have zero mean and unit standard
deviation.

2.3 Tracking by Detection

We want to detect and track K catheters through a fluoroscopic sequence. The
output of the pre-processing step of our algorithm is a set of key-points X =
{x1...xp} (Figure 2a). Once small image patches yi are extracted around the xi

(Figure 2b), the ones that correspond to catheter tips can be discriminated by
solving the following two problems:

α̂t = min
at

‖DTαt − yi‖22 + λ1 ‖αt‖1 , s.t. αt ≥ 0 (2)

α̂e = min
ae

‖DEαe − yi‖22 + λ2 ‖αe‖1 , s.t. αe ≥ 0. (3)

Key-points associated to patches that have been reconstructed better with
DT than with DE , are regarded as catheter “tips” according to

T = {t1...tN≥K} =
{
xi : ‖DT α̂t − yi‖22 < ‖DEα̂e − yi‖22

}
. (4)

In the final step of our pipeline, we aim to formulate and score catheter
hypotheses (Figure 2c). Each catheter tip tn yields as many catheter hypotheses
as the number of neighboring key-point xi ∈ X falling within a distance r. The
catheter hypotheses are intensity profiles lni extracted from lines of length r
originated in tn and intersected with each xi in turn. For each k = 1...K we aim
to solve the following problems:

α̂k
ni = min

αk
ni

∥∥Dkα
k
ni − lni

∥∥2
2
+ λ3

∥∥αk
ni

∥∥
1
, s.t. αk

ni ≥ 0 (5)
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Fig. 2. Main steps of our algorithm. The output of each step is fed into the next.

β̂k
ni = min

βN
ni

∥∥[DN ,Dj �=k]β
k
ni − lni

∥∥2
2
+ λ4

∥∥βk
ni

∥∥
1
, s.t. βk

ni ≥ 0. (6)

We aim to assess, through 5, the similarity of each catheter hypothesis with
the k-th catheter and, through 6, its similarity with the background or with
catheters having label different than k.

Furthermore, we identify the biggest element of αj of α̂k
ni, and we retrieve the

associated meta-data Mj = [m1...mQ], containing the expected, approximated
and pose specific (in terms of out-of-plane rotation of the catheter) coordinates
of the electrodes. When a catheter hypothesis corresponds to a true catheter,
mj and xi are spatially close. The minimal distances di = minq (‖xi −mq‖)
between each point xi (after normalization to the orientation of li) and the points
stored in Mj , are obtained.

The errors EP =
∥∥Dkα̂

k
ni − lni

∥∥2
2

and EN =
∥∥∥[DN ,Dj �=k]β̂

k
ni − lni

∥∥∥
2

2
, and the

coefficient d =
∑

i di determine the cost of a candidate catheter according to

Ek
ni =

{
dEP if EP ≥ EN

d EP

EN−EP
if EP < EN

. (7)

For each tip ti, the best catheter hypothesis that could be reconstructed using
Dk is retained (Figure 2d) and its cost Êk

ni is stored in a matrix C ∈ R
K×N

modeling associations between labels and catheter hypotheses. The hungarian
method is employed to select K catheter hypotheses yielding the lowest total
cost. Please note that the presence of the mata-data is not only beneficial to score
the catheter hypotesis but can be used to effectively recover missed electrodes
detections in a meaningful way.

Mild temporal consistency can be enforced to favor catheter hypotheses oc-
curring at similar position over time. This is realized by counting how many
consecutive times a catheter k appears in a neighborhood (radius g) of its pre-
vious position and dividing the error Ek

ni by this number. If the k-th catheter
moves abruptly, the counter associated with its previous position is decreased
until it reaches zero.
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3 Results

A total of 2835 C-arm images, belonging to 20 sequences acquired from two
views were analyzed. A reference, a pacing and an 8-French ablation/mapping
catheter are visible in the sequences. The image sizes are 512 × 512 with a pixel
spacing of 0.44 mm. The X-Ray beam energy was varied between 70-92kV to
ensure variability within the data. Ground truth annotation, which included the
position of the 39690 electrodes appearing in the sequences, was provided by
two observers. The model’s parameters were fixed experimentally to be λ1 = 10,
λ2 = 150, λ3 = λ4 = 1 for all the experiments. The scale of the blob detector
was fixed to σ = 4. We enforced temporal consistency fixing the quantity g to
8px during all the experiments. Since our method requires a training phase, we
assessed the performances of our approach when different amount of training
data is used. The training images are selected from a sequence that is never used
for testing.

Catheter Detection and Tracking: We assessed the performances of our
method to detect and track the mapping, pacing and reference catheter respec-
tively. The results are shown in Table 1. We evaluated, in particular, the impact
of the number of annotated examples used during training on the performances.
The pacing and reference catheters that experience little foreshortening and de-
formations are already well detected using a few training examples while the
mapping catheter requires an higher number of training examples due to its
frequent out-of-plane rotations. Incrementing the number of training examples
the performances improve up to values close to 100%. The computation time in-
creases with the dimension of the dictionaries. When 100 images are used during
training, the processing time for one frame is 0.7 seconds using our MATLAB
prototype and circa 0.08 seconds using our more optimized C++ implementa-
tion.

Table 1. Tracking and detection results. A different number of training examples was
used in each test.

A/P View (%) Lateral View (%)
Training set Mapping Pacing Reference Mapping Pacing Reference
3 examples 77.49 98.38 98.17 53.74 96.74 97.52
10 examples 87.13 99.79 98.38 78.86 98.02 99.08
20 examples 88.05 99.79 99.30 89.16 97.95 98.87
50 examples 93.46 99.79 99.36 89.31 98.09 99.01
100 examples 93.95 99.79 99.51 90.02 97.95 99.36

Detection Accuracy: The accuracy of the catheters detections in terms of
distance of the electrodes from the ground truth annotation was assessed. The
achieved results are shown in Table 2.
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Table 2. Detection accuracy in pixels and millimeters

A/P View Lateral View
Pixels Millimeters Pixels Millimeters

mapping 1.17 ± 0.64 0.51 ± 0.28 1.28± 0.35 0.56 ± 0.15

pacing 1.48 ± 0.60 0.65 ± 0.26 1.29± 0.23 0.56 ± 0.10

reference 1.63 ± 0.75 0.71 ± 0.33 1.49± 0.22 0.65 ± 0.09

4 Conclusions and Future Work

We have presented a novel method to detect and track linear EP catheters, that
may appear foreshortened or occluded, in fluoroscopic images. The approach,
that is based on �1-sparse coding is robust to catheter overlap and has great po-
tential in correcting for patient motion when used in conjunction with anatom-
ical overlays. Future work will focus on the development of unique methods to
automatically reconstruct catheters from [17,16] single or multi-view C-arm flu-
oroscopy images . The technique would rely on no user interaction, high clinical
accuracy, and real-time performance. Alternatively, the detection of catheter
electrodes can be coupled with generative probabilistic models that optimizes
correspondence and subsequent 3D reconstructions of the catheters.

We would like to acknowledge Stavroula Timioteraki for the effort spent or-
ganizing the training and testing datasets.
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