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Abstract. There is growing body of research devoted to designing
imaging-based biomarkers that identify Alzheimer’s disease (AD) in its
prodromal stage using statistical machine learning methods. Recently
several authors investigated how clinical trials for AD can be made more
efficient (i.e., smaller sample size) using predictive measures from such
classification methods. In this paper, we explain why predictive measures
given by such SVM type objectives may be less than ideal for use in the
setting described above. We give a solution based on a novel deep learn-
ing model, randomized denoising autoencoders (rDA), which regresses
on training labels y while also accounting for the variance, a property
which is very useful for clinical trial design. Our results give strong im-
provements in sample size estimates over strategies based on multi-kernel
learning. Also, rDA predictions appear to more accurately correlate to
stages of disease. Separately, our formulation empirically shows how deep
architectures can be applied in the large d, small n regime — the default
situation in medical imaging. This result is of independent interest.

1 Introduction

Alzheimer’s disease (AD) affects over 20 million people worldwide, and in the last
decade, efforts to identify biomarkers for AD have intensified. There is now broad
consensus that the disease pathology manifests in the brain images years before
the onset of AD. Various groups have adapted sophisticated machine learning
methods, to learn patterns of pathology by classifying healthy controls from AD
subjects. The success of these methods (which obtain over 90% accuracy [16])
has led to attempts at more fine grained classification tasks, such as separating
controls from Mild Cognitively impaired (MCI) subjects and even identifying
which MCI subjects will go on to develop AD [14,7]. Even in this difficult set-
ting, multiple current methods have reported over 75% accuracy. While accurate
classifiers are certainly desirable, one may ask if they address a real practical
need — if no treatments for AD are currently available, is AD diagnosis meaning-
ful? To this end, [9,6] showed the utility of statistical learning methods beyond
diagnosis/prognosis; they can in fact be leveraged for designing efficient clinical
trials for AD. The basic strategy here uses imaging data from two time points
(i.e., TBM data or hippocampus volume change), and derives a machine learn-
ing based biomarker. Based on this measure, the top one–third quantile subjects

P. Golland et al. (Eds.): MICCAI 2014, Part II, LNCS 8674, pp. 470–478, 2014.
c© Springer International Publishing Switzerland 2014

http://pages.cs.wisc.edu/~vamsi/rda


Randomized Denoising Autoencoders 471

may be selected to be included in the trial. Using this “enriched” cohort, the
drug effect can then be detected with higher statistical power with far fewer
subjects, making the trial more cost effective and far easier to setup/conduct.

In this work, we ask if machine learning models can play a more fundamental
role. Consider a trial where participants are randomly assigned to treatment
(intervened) and placebo (non-intervened) groups, and the goal is to quantify
any drug effect. Traditionally, this effect is quantified based on a “primary”
outcome, like cognitive measure or brain atrophy. If the distributions of this
outcome for the two groups are statistically different, we conclude that the drug
is effective. When the effects are subtle, the number of subjects required to
see statistically meaningful differences can be huge, making the trial infeasible.
Instead, one may derive a “customized outcome” (i.e., a continuous predictor)
from a statistical machine learning model. Here, the system assigns predictions
based on probabilities of class membership (no enrichment is used). If these
customized predictions are statistically separated (classification is a special case),
it directly implies that potential improvements in power and the efficiency of
the trial are possible. This paper is focused on designing specialized learning
architectures towards this final objective. In principle, any machine learning
method should be appropriate for the above task. But it turns out that high
statistical power in these experiments is not merely a function of the classification
accuracy of the model, rather the conditional entropy of the outputs (prediction
variables) from the classifier at test time. An increase in classifier accuracy does
not directly reduce the variance in the predictor (from the learnt estimator).
Therefore, SVM type methods are applicable, but significant improvements are
possible by deriving a learning model with the concurrent goals of classifying the
stages of dementia as well as ensuring small conditional entropy of the outcomes.

Our contributions. We achieve these goals by proposing a novel learning model
based on deep learning. Deep architectures are non-parametric learning models
[1,3] that have received much interest in machine learning and computer vi-
sion recently. Although powerful, it is well known that they require very large
amounts of unsupervised data, which is infeasible in neuroimaging, where the
dimensionality d of the data is always much larger than the number of instances
(n). A näıve use of off-the-shelf deep learning models on neuroimaging data ex-
pectedly yields poor performance. In the last few months, however, independent
of our work, deep learning methods have been used successfully in structural
and functional neuroimaging [12,5,10]. To get around the difficulty highlighted
above, [12] uses a region of interest approach whereas [5,10] sub-samples each
data instance to increase n. Our work provides a mechanism where no such
adjustments are necessary. The key contributions of this paper include (a) Scal-
able deep architecture(s) for learning problems in neuroimaging where number
of data instances is much smaller than the data dimensionality (i.e., our models
permit whole–brain analysis) and (b) An imaging derived continuous measure
with smaller variance that leads to efficient AD clinical trials with moderate
sample sizes (and based only on one time–point data).
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2 Model

2.1 Stacked Denoising Autoencoders (SDA)

We motivate our formulation by highlighting the difficulty in using stacked de-
noising autoencoders (SDA) [1,3] directly in the n � d regime. An autoencoder
is a single layer neural network that learns robust distributed representations of
the input data. A denoising autoencoder (DA) constructs these representations
by stochastically corrupting the inputs. Denoting the d dimensional inputs by
{xi}n1 , a DA outputs hi = σ(Wxi+p) (σ is a point–wise sigmoid) by minimizing
the loss L(.) between the input and its reconstruction x̂i = σ(WThi + q) as,

Zda({xi}n1 , θ) := arg min
W,p,q

n∑

i=1

Ex̃∼γ(x̃|x)L(xi, σ(W
Tσ(Wxi + p) + q)) (1)

where γ(.) is the point–wise stochastic corruption [1]. A stacked denoising au-
toencoder (SDA) greedily concatenates L(> 1) DAs, i.e., lth layer outputs are
the un–corrupted inputs for (l + 1)th layer,

Zsda({xi}n1 , L, θ) :=
L−1∑

l=0

Zda({hl
i}n1 , θ) ; hl

i = σ(Wlhl−1
i + pl) ; h0

i = xi (2)

where θ denotes the full set of stochastic gradient (SG) learning parame-
ters (corruption rate, learning rate, hidden layer length). The transformations
{Wl, pl, ql}L1 serve as a warm–start for supervised tuning where one compares
the output of the Lth layer to {yi}n1 . This greedy layer–wise unsupervised train-
ing followed by supervised fitting is central to most deep architectures [3,1].

Recall that SG learning is expected to converge to a local minimum only in
the asymptotic setting (of large n). Hence, the warm–start described above is
only reliable when large amounts of unsupervised data are available, which is
the case in computer vision but not in neuroimaging. Otherwise, the network
overfits whenever d is much larger than n. In neuroimaging, d is generally on
the order of millions (number of voxels) and n < 1000. Hence, traditional SDAs
cannot be directly used (they will generalize poorly). Recent work uses deep
architectures in neuroimaging either by reducing d (using anatomical ROIs or
feature selective) or increased n (splitting a data instance using sets of 2D slices)
[12,5,10]. Nonetheless, frameworks to perform whole–brain analysis (the de-facto
input when SVMs are used for brain image classification) will yield improvements
by exploiting 3D local neighborhood dependencies directly.

2.2 Randomized Denoising Autoencoders (rDA)

In Section 1, we motivated the task of concurrently optimizing two goals. Our
system should be able to capture differences across different dementia stages
(i.e., controls, MCI, AD) while at the same time keeping intra-stage prediction
variance as small as possible. In other words, we seek to decrease the prediction
variance at no cost of approximation bias. Although, these seem like competing
requirements, it turns out that this behavior is exactly what is offered by en-
semble learning [2]. Recall that Ensembles are bootstrap randomizations around
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sets of weak learners which reduce the prediction variance in expectation. So,
properly incorporating an ensemble approach within a deep architecture should
yield the behavior we expect. We can generate the ensembles for a given learner
in multiple ways [2] — a randomization over the number of features and/or data
instances. Here, we already have n � d, so randomization over n is infeasible.
Instead, we distribute/randomize over the dimensions d where each weak learner
will correspond to a SDA. This randomization allows a single SDA weak learner
to process pathologically correlated voxels across 3D local neighborhoods while
still operating on the whole-brain image. Unlike the SVM objective which has a
global optimum, SDAs can only converge to a local optimum via SG [1]. We com-
pensate for this by including a second level of randomization that samples sets
of hyperparameters from a given hyper–parameter space. This basic structure
drives the performance of our randomized denoising autoencoder (rDA).

Let V = {1, · · · , d} denote the indices of dimensions/voxels, and τ(v), a dis-
tribution over v ∈ V . In the simplest case, this can be a uniform distribution.
We generate a bootstrap sample of B “blocks” where each block corresponds to
input data along sb dimensions/voxels (length of the block, fixed a priori). The
mapping between voxels and blocks is given by τ(v). Note that blocks may not
be mutually exclusive (a voxel may belong to multiple blocks). Each block will
be presented to T weak learners. Each of these weak learners correspond to a
unique θt ∈ Θ for t = 1, . . . , T where Θ is the given hyper–parameter space. This
means that each sample from the hyper-parameter space yields a weak learner.
Our weak learner module is a L-layered stacked denoising autoencoder (SDA).
The overall rDA architecture is an ensemble of B×T SDAs. Alg. 2.2 summarizes
the block–wise training of rDA. Given training data as {xi,yi}n1 , we first learn
the transformations (Wl

b,t, p
l
b,t, q

l
b,t) ∀ b, t, l. Denoting the Lth layer outputs by

Hi = [[zb,th
L
b,t]]

B,T
1,1 , the weighted regression pooling gives

U← (HTH+ λI)−1HTY ; H = [[Hi]]
n
1 ; Y = [[yi]]

n
1 (3)

where U are the regression coefficients and λ is the regularization constant. z
is the known weight vector on B × T estimated Lth layer outputs. [[·]] denotes
column–wise concatenation. The prediction for a new test input x is

ŷ = hU ; h = [[zb,th
L
b,t]]

B,T
1,1 ; hl

b,t = σ(Wl
b,th

l−1
b,t + plb,t) ; h0

b,t = x (4)

The simplest choice for the block–wise sampler τ(v) (i.e., at b = 1) assigns uni-
form probability over all dimensions/voxels. However, we can assign large weights
on local neighborhoods which are more sensitive to dementia progression, if de-
sired. Since d is large, we modify τ(v) after each iteration (Reweigh step in Alg.
2.2) to prevent starvation of the previously unsampled dimensions. We can also
setup τ(·) based on entropy or the result of a hypothesis test. Each weak learner
output hL

b,t is an estimate of y. Recall that SG learning is sensitive to the choice
of hyper–parameters θt, particularly, the number of epochs and gradient learning
rate influences the range and variance of these estimates [1,3]. Hence, random-
ization over θt mitigates this dependency by averaging over T such estimates for
each block (i.e., set of dimensions/voxels). We can pool the block estimates via
various means – average, using a ridge regression or other sophisticated schemes.
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Algorithm. rDA Blocks training
Input: θt ∼ Θ,V, B, sB, L, T , D ∼
{xi,yi}n1 , λ

Output: (Wl
b,t, p

l
b,t, q

l
b,t)

for b = 1, . . . , B do
Ib ∼ τ (V)
for t = 1, . . . , T do

(Wl
b,l, p

l
b,l, q

l
b,l)← Zsda(D, L, Ib, θt)

end for
τ (V)← Reweigh(τ (V), Ib)

end for

But since SDAs are already capa-
ble of learning complex concepts [1],
we use a simple linear combina-
tion with �2-loss providing minimum
mean squared error. This addresses
our goal of reducing the stochastic
error of final predictions. Observe
that rDA extends easily to multi–
modal inputs by first constructing
individual blocks for each modality
and pooling across all modalities.

The sigmoid non–linearity ensures that rDA outputs are in ∈ [0, 1]. By labeling
healthy controls as 1 and AD subjects as 0, we can then project the dementia
scale to [0, 1]. The pooled outputs, referred to as rDA measure (rDAm), are
then imaging–derived continuous predictors. We can then compute the sample
sizes using rDAm as a customized outcome [11]. Denoting the mean change of
rDA for placebo and treatment groups by μp and μt respectively, the number
of subjects per arm is given by 2(Zα/2 + Z1−β)

2σ2/(μp − μt)
2 where 1 − β is

the desired power at significance level α. Using a conversion rate of ρ ∈ [0, 1]
from MCI to AD, and inducing a drug effect of η (i.e., the treatment decreases
the mean change by a fraction η), the sample size expression then simplifies to
2c2(Zα/2 + Z1−β)

2/(ηd)2 where c = σ/μ is the coefficient of variation. Since we
only use one time–point data, the proportion ρ is set based on information from
previously reported studies [13] Since rDA is an ensemble designed to reduce
the prediction variance (and hence c), we hope to see much smaller sample sizes
compared to others.

3 Evaluations

3.1 Data and Setup

We used Amyloid, FDG–PET and MRI data at baseline for 447 subjects (210
male, 237 female) from ADNI2 (Alzheimer’s Disease Neuroimaging Initiative).
131 were healthy (CN), 92 were demented (AD), 120 and 104 had early and late
MCI (EMCI and LMCI) respectively. The labeling of EMCI and LMCI (done
by ADNI) is based on the cognitive status of each subject. Of the 224 MCIs, 100
had maternal family history (FH) of AD, 52 had paternal and 23 had both. Pre-
processing included extracting grey matter in normalized space, and correcting
PET for average intensities in ponsvermis (FDG) and cerebellum (Amyloid). We
train rDA on ADs (labeled 0) and CNs (labeled 1) alone, and test on MCIs. We
use a multi-modal (MKL) ε–support vector regression (εMKm) as the baseline
learning model [7]. Firstly, we evaluate if rDAm differentiates EMCI from LMCI.
Additionally, we evaluated parental family history as a contributing risk factor.
Since rDAm is a continuous marker, its correlations with CSF levels – τ , pτ , Aβ,
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τ/Aβ and pτ/Aβ (τ : τ -protein, pτ : phospho τ -protein, Aβ: Amyloid-β, are the
cerebrospinal fluid protein levels, and very sensitive biomarkers of AD) are also
assessed to verify if it is meaningful. We then estimate sample sizes using MCI
to AD conversion rate of 37.7% [13]. rDA hyper-parameters in our experiments
are L = 2, B = 1000 and T = 9, with uniform weighting (i.e., zb,t =

1
BT ∀b, t).

3.2 Results and Discussion

Table 1(a) and (b) show that rDAm is highly sensitive to EMCI vs. LMCI
and the influence of FH. Although the baseline εMKm picks up these group
differences, rDAm has much higher delineation power. In particular, the p–values
for rDAm for FH positive vs. negative case are an order of magnitude smaller
than that of εMKm. These show that rDAm is at least as good as a current
state-of-the-art machine learning derived measures. Table 2 shows that rDAm
has significant correlation (higher than εMKm in all but two cases) to CSF
levels, which are proven biomarkers for MCI to AD progression [15]. Note that
a negative correlation with say τ implies that rDAm decreases and the subject
gets demented as τ increases. Specifically, higher correlations (with p ≤ 0.01)
with pτ and pτ/Aβ suggest that rDAm is a useful continuous predictor. In most
cases, these significance levels increase as more modalities are combined.

Table 3 shows that the coefficient of variation (CV) of rDAm for three different
populations of interest – all MCIs, LMCIs and MCIs with positive FH. Observe
that rDAm’s CV is smaller than that of εMKm for all three
populations, and all possible combinations of modalities – making it a better
candidate to be used as a prediction measure. Also, the CVs for MCIs with

Table 1. Performance of rDAm vs. εMKm in delineating MCI sub–groups. A : Amyloid,
F : FDG and T : T1GM. Each cell shows the ANOVA p–value and corresponding
F–statistic.

Model Amyloid FDG T1GM A+F A+T F+T A+F+T
(a) Early versus Late MCI
MKL < .001, 20.5 < .001, 16.8 < .001, 16.5 < .001, 16.4 < .001, 20.4 � .001, 23.6 � .001, 27.9
rDA � .001, 22.1 .001, 9.7 < .001, 20.0 < .001, 19.5 � .001, 24.1 � .001, 21.2 � .001, 27.6
(b) Family History Positive versus Negative
MKL 0.04, 4.3 0.007, 7.5 0.02, 5.3 0.007, 7.3 0.009, 6.8 0.01, 6.6 0.004, 8.3
rDAm 0.03, 4.7 < .001, 11.8 < .001, 11.2 0.009, 6.8 < .001, 12.4 < .001, 13.2 < .001, 13.3

Table 2. Correlation of CSF levels to rDAm vs. εSm. Note that Amyloid is used as
reference modality here. Each cell represents the Spearman correlation p–value and the
coefficient for the corresponding marker.

CSF Marker Amyloid A+F A+T A+F+T

τ
εMKm 0.01 −0.24 0.04 −0.20 0.14 −0.15 0.15 −0.15
rDAm 0.002 −0.31 0.01 −0.25 0.09 −0.17 0.11 −0.16

pτ
εMKm < 0.001 −0.40 < 0.001 −0.37 0.01 −0.27 0.008 −0.28
rDAm < 0.001 −0.39 < 0.001 −0.36 0.008 −0.27 0.009 −0.28

Aβ
εMKm 0.01 0.24 0.09 0.17 0.29 0.11 0.38 0.09
rDAm 0.03 0.22 0.03 0.23 0.44 0.08 0.37 0.09

τ/Aβ
εMKm 0.004 −0.29 0.01 −0.27 0.15 −0.15 0.14 −0.15
rDAm < 0.001 −0.35 0.007 −0.28 0.08 −0.18 0.11 −0.16

pτ/Aβ
εMKm 0.001 −0.41 0.001 −0.37 0.01 −0.25 0.01 −0.25
rDAm < 0.001 −0.42 < 0.001 −0.37 0.01 −0.26 0.01 −0.26
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positive FH are smaller than that of late MCIs. This also suggests that a sig-
nificant number of late MCIs currently have only a mild dementia in terms
of rDAm. Fig. 1 shows the estimates on the same three populations of inter-
est as above at 80% power (Refer to the supplement for more plots). Follow-
ing Table 3, it should be straight forward to expect smaller sample estimates
for rDAm compared to εMKm, which is exactly the case as shown in Fig. 1.

Table 3. CV of rDAm vs. εMKm

Modality Marker MCIs LMCIs FHMCIs

Amyloid
εMKm 0.56 0.70 0.42
rDAm 0.49 0.57 0.41

FDG
εMKm 0.49 0.53 0.39
rDAm 0.33 0.36 0.26

T1MRI
εMKm 0.55 0.60 0.48
rDAm 0.36 0.42 0.26

A+F
εMKm 0.52 0.63 0.39
rDAm 0.42 0.49 0.33

A+T
εMKm 0.56 0.67 0.42
rDAm 0.41 0.49 0.29

F+T
εMKm 0.51 0.58 0.41
rDAm 0.34 0.38 0.25

A+F+T
εMKm 0.54 0.65 0.39
rDAm 0.41 0.50 0.28

Particularly, FDG and MRI gave
smaller estimates than that of Amy-
loid following their smaller CV, re-
flecting that ∼ 30% of healthy elderly
have positive Amyloid scans. FH pos-
itive MCIs (last plot in Fig. 1) lead
to much smaller sizes compared to us-
ing all MCIs and late MCIs. To get
a sense of the improvement with re-
spect to non–imaging based markers,
we compared the best estimate (over
all modalities) of εMKm and rDAm
with that of MMSE and CSF levels in
Table 4. At 80% power, the best esti-
mates across CSF markers was 973 and 975 (for τ and τ/Aβ respectively) com-
pared to that of 193 using rDAm – more than 5–fold decrease. It should be noted
that all these estimates use only “single time–point” data combined with known
conversion rates, in contrast to direct longitudinal measurement [8,4]. Hence, the
sizes using MMSE and CSF are as high as 1500, indicating that estimates on the
order of two hundred (that of rDAm) are highly significant. Overall, the results
show that imaging–derived markers lead to much smaller trials than cognitive
scores and/or CSF levels.
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Fig. 1. Sample estimates per arm for rDAm vs. εMKm using all MCIs, LMCIs and FH
positive MCIs respectively, at 80% power and 0.05 significance level. Conversion rate
is 37.7%, and the induced drug effect is 0.25. Refer to supplement for 85% and 90%
plots. εMKm is blue and rDAm is green.
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Table 4. Best rDAm and εMKm sample estimates perm arm (from Fig. 1) vs. MMSE
and CSF levels.

Power MMSE τ pτ Aβ τ/Aβ pτ/Aβ εMKm rDAm
80% > 2500 973 1447 > 2500 975 > 2000 431 193
85% > 2500 1117 > 1500 > 2500 1120 > 2500 495 221
90% > 2500 1303 > 1500 > 2500 1306 > 2500 577 258

4 Conclusions

We propose a novel deep learning architecture, randomized denoising autoen-
coders, that scales to very large dimensions and learns from a small number of
instances. We construct a continuous predictor based on rDA and show that not
only does it have high correspondence with other markers of AD, but also leads
to efficient clinical trials with much smaller sample estimates.
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