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Abstract. Clinical applications of computational cardiac models re-
quire precise personalization, i.e. fitting model parameters to capture pa-
tient’s physiology. However, due to parameter non-identifiability, limited
data, uncertainty in the clinical measurements, and modeling assump-
tions, various combinations of parameter values may exist that yield the
same quality of fit. Hence, there is a need for quantifying the uncer-
tainty in estimated parameters and to ascertain the uniqueness of the
found solution. This paper presents a stochastic method to estimate the
parameters of an image-based electromechanical model of the heart and
their uncertainty due to noise in measurements. First, Bayesian inference
is applied to fully estimate the posterior probability density function
(PDF) of the model. To that end, Markov Chain Monte Carlo sampling
is used, which is made computationally tractable by employing a fast
surrogate model based on Polynomial Chaos Expansion, instead of the
true forward model. Then, we use the mean-shift algorithm to automat-
ically find the modes of the PDF and select the most likely one while
being robust to noise. The approach is used to estimate global active
stress and passive stiffness from invasive pressure and image-based vol-
ume quantification. Experiments on eight patients showed that not only
our approach yielded goodness of fits equivalent to a well-established de-
terministic method, but we could also demonstrate the non-uniqueness
of the problem and report uncertainty estimates, crucial information for
subsequent clinical assessments of the personalized models.

1 Introduction

Cardiomyopathy is one of the most common types of cardiovascular disease with
significant mortality and morbidity rates [1]. However, clinical management of
these patients is challenged by the wide variety of disease causes and therapies.
Computational models of heart function are being explored to improve patient
stratification, risk prediction and therapy planning [2]. Yet, the high model com-
plexity and the limited availability and often noisy measurements still hinder the
necessary personalization of these models from being clinically useful.
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Intense research is being carried out to solve the inverse problem of cardiac
modeling, i.e. the estimation of model parameters from clinical data for patient-
specific computations. Solutions based on nonlinear least squares (NLS) mini-
mization of a specialized cost function [3] are very popular, among other reasons
due to the high availability of easy-to-use general purpose frameworks. On the
other hand, more sophisticated methods to better deal with the high complexity
of the problem are emerging [4,5].

Uncertainty in data and model assumptions are known to increase the non-
identifiability of parameters. In particular, solution uniqueness is not guaranteed
and multiple solutions or entire manifolds of solutions with equal level of con-
fidence may exist. As a result, the clinical value of one single estimate can be
questioned. Yet, to the best of our knowledge, only little work exists in the
cardiac modeling community which addresses these challenges. Parameter un-
certainty quantification (UQ) due to noise in the data has been investigated
in [6,7] for the cardiac electrophysiology problem. However, the authors do not
take into account this knowledge to estimate a robust optimum for the model
parameters under consideration as their main focus was on UQ. In [7], the mean
of the posterior density was selected as parameter value, which can become in-
accurate for skewed or multimodal distributions. In [6], the maximum posterior
was used and evaluated on synthetic data only. It is not clear though whether
that choice would be robust under uncertain data noise level.

This paper presents a stochastic method for the robust estimation of biome-
chanical parameters of the myocardium and their uncertainty due to noisy data.
First, we estimate a surrogate model of an image-based electromechanical model
of the heart by using Polynomial Chaos Expansion, which is then used in a
Bayesian inference framework to estimate posterior probabilities of model pa-
rameters. Then, we apply mean-shift on the posteriors to find the optimal param-
eter value by integrating the space of measurement uncertainties. Experiments on
eight dilated cardiomyopathy patients showed that our approach yielded good-
ness of fit equivalent to a well-established deterministic method while being as
computationally efficient and providing confidence intervals. More importantly,
we demonstrate that the manifold of possible solutions is much larger includ-
ing multimodal posteriors, which are automatically identified, therefore enabling
quantitative assessment of the clinical utility of estimated parameters.

2 Method

2.1 Cardiac Electromechanical Model

The model proposed in [8] is employed in this work. Cardiac geometry at
end-diastasis is efficiently segmented under expert guidance from volumetric
magnetic resonance images (Fig. 1). Endocardium and epicardium surfaces are
detected using machine learning algorithms [9]. A rule-based myocardial fiber
architecture model is created, with fibers varying between −80◦ and 80◦ from
the epicardium to the endocardium. Cardiac electrophysiology (EP) is cal-
culated using LBM-EP, a fast model based on the Lattice-Boltzmann method.
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Fig. 1. Proposed robust estimation framework. From imaging and clinical data,
the electromechanical forward model is personalized using an efficient surrogate model
and inverse UQ-based parameter estimation. See text for details.

The Mitchell-Schaeffer cellular model is employed as a tradeoff between model
fidelity and complexity. Cardiac hemodynamics (HD) is calculated using a
lumped model of the intra-ventricular pressure varying according to models of
arterial compliance (3-element Windkessel (WK) model) and atrial contraction.
Cardiac biomechanics is computed using the finite element method to solve
the dynamics equation Mü+Cu̇+Ku = fa+fp+fb. ü, u̇ and u denote nodal ac-
celerations, velocities and displacements, respectively. M,K and C are the mass,
stiffness and Rayleigh damping matrices. Pressure force fp is calculated from
the HD model. The active stress fa generated by the EP activated myocytes is
computed using a phenomenological model of myocyte contraction [10], which
is mainly governed by the maximum active stress parameter σ0. Boundary con-
ditions f b capture heart attachment at the valve plane through springs. The
orthotropic Holzapfel-Ogden (HO) constitutive law is used. The stress-strain
energy is written as Ξ = βΨ(I1, I4f , I4s, I8fs) where β is a dimensionless factor
to isotropically scale tissue stiffness, I1, I4{f,s} and I8fs are invariants of the
deformation tensor (see [8] and references herein for HO parameter values).

The focus of this work is on biomechanics. Hence, patient’s geometry, EP
and HD parameters are assumed to be known for each patient. The geometry is
obtained from the images. The WK parameters are estimated using the simplex
method based on available invasive pressure measurements and flow derived
from MRI-calculated volume variations. The EP model is personalized using
a gradient-free NLS optimizer based on 12-lead ECG data [11]. It should be
stressed that the proposed approach is not limited to a particular model.

2.2 Inverse Uncertainty Quantification

The above model is reformulated as a statistical problem f(θ) = dc where θ and
dc are random input (model parameters) and output (model responses) variables.
Bayesian Calibration is used to infer the values of θ and to quantify their
uncertainty due to noisy measurements dm. The goal is to compute the posterior
p(θ|dm) by forward propagation of uncertainty [12]. Following Bayes’ rule,

p(θ|dm) ∝ p(dm|θ)p(θ) = exp

(
−1

2
ε(dc,dm)�S−1ε(dc,dm)

)
p(θ) . (1)
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p(dm|θ) is the likelihood. It describes how well each set of parameters is supported
by the data. p(θ) is the prior. It represents the knowledge on the parameters
independently from the measurements, and is modeled in this work using a
uniform distribution. As in [6], we estimate the likelihood p(dm|θ) by expressing
it in terms of the error between responses and measurements, ε(dc,dm) = dc −
dm, modeled as a normal distribution N (0, S). In this work, all sources of error
are aggregated under ε. The posterior p(θ|dm) is then sampled using the Markov
Chain Monte Carlo (MCMC) delayed rejection adaptive Metropolis [13] method.

To make the MCMC sampling computationally tractable, we use Polyno-
mial Chaos Expansion (PCE) to estimate a surrogate model f̃(θ) ≈ f(θ).
An analogy of PCE is Fourier transform. Through multidimensional orthogonal
polynomial approximations of f , f̃ provides an efficient functional mapping from
model input to individual responses [14]. For each response r ∈ dc, the finite
PCE approximation f̃r(θ) corresponds to expressing that model response fr(θ)

in terms of linear combinations of polynomials, fr(θ) ≈ f̃r(θ) =
∑P

p=0 αpΨp(θ)

where the total number of coefficients P + 1 = (q + 1)dimθ is defined by a
user-specified maximum polynomial order q (the higher, the more fidel the ap-
proximation). The coefficients αp are obtained using spectral projection, which
requires P + 1 forward model runs. The multivariate polynomial basis Ψp(θ) is
defined as combination of univariate 1D basis Legendre polynomials. The reader
is referred to [12,14] for theoretical details. The PCE surrogate is used to effi-
ciently generate MCMC samples of p(θ|dm), instead of the full forward model.

2.3 Posterior Analysis under Uncertainty

From the surrogate model and the Bayesian calibration described above, we now
have a PDF of the model parameters knowing the noise in the data, p(θ|dm).
Coming back to our original objective, i.e. model personalization, we now need
to derive, from that PDF, an estimate of the model parameters θ∗ and their
confidence interval (Fig. 1). Additionally, we want to estimate the parameters
that are most robust to varying level of noise in the data, since that level is
often difficult to precisely estimate. To that end, we propose to aggregate the
posteriors p(θ|dm) calculated for different level of noise into one PDF, from
which we will estimate the most likely value of the model parameters.

More precisely, first we estimate the number of modes ki in the posterior
p(θ|dm) using the mean-shift algorithm for a given level of noise S (Eq. 1), on
which we fit a Gaussian mixture model (GMM) Gi with ki components. This step
is repeated nS times with distinct levels of measurement noise uncertainty by
varying the error variances of the individual responses in S = Si of the likelihood.
At the end of this process, nS mixture models G = G1 . . .GnS are generated.

In a second step, the Gi are aggregated to get the final estimate. Consider
one particular mixture model Gi ∈ G. For each of the j = 1 . . . ki means μij

of the components of Gi, we compute its support ωij =
∑

t�=i logGt(μij) by
summation of the log-probabilities of μij in each of the other Gt. We normalize
the ωij such that all values are mapped between 0 and 1, the latter representing
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the highest support. Next, the μij are separated into k∗ clusters K = K1 . . .Kk∗

using ωij-weighted k-means clustering. k∗ is determined by voting among all ki
in G. Finally, the centroid μ̂l of the μij in the cluster with the highest combined
support ω̂l =

∑
ij∈Kl

ωij is selected as the final estimate θ∗ = μ̂l. This way, we
increase the robustness in the estimate even without explicitly knowing the level
of noise in the measurements, and are still able to capture multi-modal PDFs.

Uncertainty in estimated parameters is described by confidence regions. Let Υij

be the covariance matrix of the jth mixture component in the ith mixture model
Gi. We assume that in each cluster Kl, all contained μij with corresponding Υij

are distorted (through noise) manifestations of the same normal PDF, which is
centered at the centroid μ̂l with unknown covariance Υ̂∗

l . We approximate Υ̂∗
l by

linear combination of the covariance matrices Υ̂l = ω̂−1
l

∑
ij∈Kl

ωijΥij , which is
more robust to noise compared to using a single Υij . Finally, all information from

the k∗ clusters is merged into one robust GMM Ĝ =
∑k∗

l=1 ω̂lN (μ̂l, Υ̂l), thus form-
ing an explicit representation of uncertainty.

3 Experiments and Results

Experimental Protocol.Our method was evaluated on eight dilated cardiomy-
opathy patients showing large variety of disease severity (left ventricular (LV)
ejection fraction (EF) from 19% to 47%). Invasive catheterization was performed
to measure LV pressure. Short-axis cine MRI stacks were used to estimate model
anatomy and LV volume variation over time [9]. The main objective was to in-
vestigate uniqueness and confidence levels of biomechanical parameter estimates
given the measured data affected by unknown noise.

Cardiac electrophysiology and arterial parameters were estimated from 12-
lead ECG and the pressure/volume data (Sec. 2.1). The proposed approach was
then applied to estimate LV maximum active force and passive biomechanical tis-
sue properties θ = (σ0, β). The responses chosen in that study were the minima,
maxima and means of pressure/volume curves. PCE surrogates for the patient-
specific electromechanical models were computed with maximum order q = 4.
Therefore, 25 true model evaluations on a 5×5 isotropic grid were performed,
where σ0 and β varied within physiological ranges: [150, 330 ]kPa and [0.2, 1.5].

The mean-shift based posterior analysis was carried out using nS = 15 random
noise levels. Intermediate GMMs (Sec. 2.3) were estimated based on 5 · 104
MCMC samples each. The response-specific level of noise was modeled as the
standard deviation SD of the assumed measurement error, individually drawn
from a uniform distribution SDr ∼ U(rl, ru). Lower and upper bounds rl =
1 units and ru = 3 units, units denoting mL or kPa for volume and pressure
responses, respectively, were chosen heuristically to model plausible levels of data
noise. The error covariance matrix S in Eq. 1 is defined as diag(SD2

r1 , SD
2
r2 , . . . ).

Precision of PCE-Based Surrogate Model. First, we verified that the se-
lected PCE order q = 4 was enough to model the posterior of the forward model.
We compared the responses computed with the PCE model of order 4, f̃ , with
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Fig. 2. Left: 95% confidence intervals of GMM mode with highest support estimated by
our approach. Red dots/blue circles represent our estimate/NLS solution, all of them
within or near the confidence interval. Right: Plot showing measured versus simulated
(using personalized model) LV volume/pressure curves, and qualitative comparison.

those obtained using a high-fidelity PCE model, f̃�, of order q = 10 for all cases.
1000 parameters were sampled randomly per patient and all model responses
were calculated using both f̃ and f̃�. Averaged over all patients, the errors over
volume and pressure responses were 1.61mL and 0.56kPa respectively, two or-
ders of magnitude less than their absolute values. Furthermore, posterior PDFs
estimated from the two surrogates compared qualitatively well (non-reported).
These results suggested that f̃ was enough to reliably estimate model posterior.

Estimation of Biomechanical Parameters. We then estimated σ0 and β for
all cases using our approach and verified the goodness of fit by comparing EF
and stroke volume (SV) computed by the true model f with the measurements.
The estimated parameters yielded strong goodness of fit, with a mean EF error
of 2.3%± 1.3% and SV error of 8.6mL± 3.6mL. Fig. 2 reports the estimated
parameters and 95% confidence intervals. As one can see, the noise in the data
can have significant impact on the confidence of the estimated values, with in
some cases intervals of up to ± 25kPa (σ0) and 0.5 (β). Such estimates could be
employed as indicators of model fitting quality to suggest the operator to acquire
more/better data to reduce them. Furthermore, our method is robust to varying
noise levels (Fig. 3) and multimodal PDFs are captured correctly. The difference
in EF and SV based on the two modes (Fig. 3) is only 0.2% and 1.6mL.

State-of-the-Art Parameter Estimation. Next, we compared the personal-
ization results of the proposed estimator to those obtained using BOBYQA [15],
a recently developed gradient-free optimizer. The employed objective function
writes ϕ(dc) = ‖dc − dm‖22. The NLS-based EF error is similar to our approach
with 2.0%± 0.9%, and the SV error is measured as 7.6mL± 2.6mL on the same
datasets. On average, BOBYQA took 13.3± 1.9 iterations to converge, each in-
volving a forward model run. Our approach requires 25 forward runs and is
therefore computationally equivalent while providing uncertainty estimates.

Evaluation of Estimated Uncertainty. Finally, we conducted a synthetic ex-
periment to verify the uncertainty estimates. Ground truth responses were gen-
erated using the forward model with fixed input parameters. Noise was added
to the responses and the parameters were estimated from noisy responses using
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Fig. 3. Left: Example posterior for one dataset (80%, 95% and 99% confidence regions)
estimated by our approach. The PDF is multimodal, i.e. the solution is not unique.
Middle: 95% confidence intervals (for σ0) of one patient with increasing measurement
noise level SDr. Although confidence intervals get larger (higher uncertainty), our
estimate (red dot) remains robust. Right: Estimated confidence regions of our approach
based on ground truth data (responses computed using forward model of one patient,
(σ0, β) = (240 kPa, 0.85)), and various NLS solutions (dots) computed from the ground
truth responses with added noise (noise drawn from N (0, 32) kPa or mL for each
response). All but one (very high noise) estimates lie within regions of high confidence.

BOBYQA. Fig. 3 shows that all but one solutions lie within the estimated con-
fidence regions. This promising result is a first step towards a comprehensive
validation of the uncertainty estimates, which will be done in the future.

4 Conclusion and Future Work

In this paper, we explored the impact of data noise on the estimated biome-
chanical parameters. Our framework relies on stochastic parameter estimation
and aggregates the probabilities estimated under different noise levels to de-
rive a robust parameter estimate without explicitly knowing the level of noise
in the data. While PCE requires the responses to possess finite second order
moments, be smooth and with finite variance, the smooth physical nature of
the model under consideration motivated our choice. Further theoretical anal-
ysis will be carried out to confirm the good behavior of the surrogate models.
Yet, results on eight cases showed that not only our approach is as effective as
well-established deterministic inverse method algorithms, but that it is also as
computationally efficient while providing confidence intervals. Furthermore, we
could demonstrate the non-uniqueness of the inverse problem by reporting differ-
ent solution spaces, which can be automatically identified through the estimated
posterior PDFs. Such an approach could therefore provide precious insights when
analyzing the clinical relevance of estimated parameters and personalized model
predictions. In addition to that, it could constitute a criterion to select and refine
data acquisition protocols used for model personalization. Future work includes
the independent modeling of data and model noise, and simultaneous estima-
tion of more parameters, such as regional tissue properties or parameters from
different model components, for instance by including Windkessel and cardiac
electrophysiology parameters.
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