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Abstract. We propose a novel framework for exploring patterns of
respiratory pathophysiology from paired breath-hold CT scans. This is de-
signed to enable analysis of large datasets with the view of determining re-
lationships between functional measures, disease state and the likelihood
of disease progression. The framework is based on the local distribution of
image features at various anatomical scales. Principal Component Analy-
sis is used to visualise and quantify the multi-scale anatomical variation of
features, whilst the distribution subspace can be exploited within a classi-
fication setting. This framework enables hypothesis testing related to the
different phenotypes implicated in Chronic Obstructive Pulmonary Dis-
ease (COPD). We illustrate the potential of our method on initial results
from a subset of patients from the COPDGene study, who are exacerba-
tion susceptible and non-susceptible.

1 Introduction

Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) are defined
as a sudden worsening of symptoms, which accelerate the decline in lung function
leading to an increased risk of mortality. Understanding their pathophysiology
is critical for predicting the patients at greatest risk of hospitalisation. Recent
work suggests that the frequency of exacerbations is a distinct phenotype [1].
This is described as an exacerbation susceptible phenotype, where a patient may
exhibit distinct physiological patterns resulting in an intrinsic susceptibility.

Recent studies have suggested a potential link between changes in lung
structure, function and exacerbations. A correlation between the progression
of emphysema and the presence of exacerbations has been observed [2] whilst
pulmonary arterial enlargement has been seen to be a related factor [3]. Further,
regional ventilation defects have been observed prior to acute exacerbations [4].
These suggest a dependence between abnormalities in lung structure, the distri-
bution of disease and exacerbations, which motivates our algorithm.

There is a growing interest in employing machine learning for the study and
diagnosis of COPD. Classifiers are frequently trained with scalar values rep-
resenting the whole lung [5] or individual lobes [6]. This ignores the spatial
distribution of disease; which may be a signature of various COPD phenotypes.
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We propose a novel framework for the analysis of lung pathophysiology. We
hypothesise that the spatial distribution of disease is a discriminating factor in
the presence of pathology. Our method is based on the measurement of image
features representing the biomechanics and density of tissue, using a sliding box
window at various anatomical scales. This is to deal with the bifurcating nature
of the respiratory system. We apply it to the study of exacerbation susceptible
and non-susceptible patients. The distributions measured at multiple scales are
exploited to investigate differences between subtypes whilst classifying for the
first time, those at greatest risk of further exacerbations.

2 Method

2.1 Non-rigid Registration

The NiftyReg registration platform® [7] is employed to find the spatial map-
ping between the lung at full inhalation (£2*) and end exhalation (£2). This
is performed using a stationary velocity field, parameterised through a cubic B-
spline interpolation. The Local Normalised Cross Correlation (LNCC) drives the
registration whilst the bending energy of the velocity field is used as the regular-
isation. The registration is performed by considering only the lungs, delineated
by segmented masks. The background volume is set to 0 Hounsfield Units upon
which the masks are diluted to include a 0 HU border within the lung volume.

2.2 Feature Extraction

The transformation ¢ : 2 — 2% resulting from the registration serves to map
each coordinate z € (2 to x* € 2*, such that the position of voxels at expiration
(x € £2) is known within the inspiratory phase (z* € £2*). Biomechanical and
density-based feature sets are derived using the information embed within ¢.

Biomechanical Feature Set. To quantify the transformation ¢, we consider
the deformation gradient tensor F, which is defined as V -¢(x). We derive 3
features from F to capture the respiratory process; the Jacobian determinant
(det(F)) and the first 2 moments of the distribution of the eigenvalues of the
Lagrangian strain tensor (E). The Jacobian determinant is defined as

det(F) = det(V=p(z)) (1)

and measures the fractional volume change of voxels. The Lagrangian Strain
Tensor E is derived from F, by considering the Right Cauchy-Green Strain (C)

C=F'F, F=RU, FF=U' R'TRU=U'U.

We are interested in analysing the stretches captured by F. The tensor C results
from a polar decomposition of F, where the rotation component R is discarded

! http://sourceforge.net/projects/niftyreg
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by considering its orthogonal properties. The tensor C is thus rotation free,
solely containing information about the stretches U. The computation of the
Lagrangian Strain Tensor (E) follows

1
E= 5 (cC-1) . (2)
We derive the principal strains (A = {\; | = 1,2, 3}) via an eigen-decomposition
of E. The trace (D>_ A), provides an overall measure of the magnitude of tissue
strain whilst the variance (Var(\)) characterises anisotropy in the strain profile.

Density-Based Feature Set. The transformation ¢ allows us to compute
corresponding measures of voxel density (HU) at inspiration (I;;,4) and expiration
(Iexp). We consider the distribution of HU in L5 and Iexp and 2 scalar values;
the percentage of emphysema (%LAAins —950HU) and gas trapping (LA Aexp —
856HU). The %LAA; . /exp metrics are computed as follows:

Zm*eﬂ* (Iins(x*) < _950)

FLAA ;s — 950HU = )
Doprcar T

(3a)

and

Zw*eﬁ’ ((Texp() 0 @) < —856)
Zz*GQ’ x*
They are expressed as the percentage of voxels below —950 HU and —856 HU

within I; ), and Iexp. Within our framework, all features are calculated within
local neighbourhoods across the lung, which is discussed below in Sect. 2.3.

%LAAexp - 856HU = (3b)

2.3 Multi-scale Analysis of Imaging Features

Feature Distributions. We propose to sample the local variation of features
(fr) to quantify their distribution across the lung. This is performed by consider-
ing histograms (h;(fx;;, ®:)) of the local distributions of fi. Each local feature
distribution is centered at a voxel z; (j = 1---J) within a neighbourhood w
governed by the scale ¢;, where i = 1---n and j is the j** sampled neighbour-
hood. Thus, distributions at increasing scales of analysis (¢;) can be computed
(Fig. 1). The histograms are modelled by the first 4 statistical moments and the
median. The feature fj within w centered at z; is defined by:

H (fi(x5)) = {u(h1) v(h1) o(h1) y(h1) y2(h) -
p(hn) v(hn) o(hy) v1(hn) Y2(hn)}

where i is the mean, v the median, o the variance, y; the skewness and -5 is
the kurtosis. A patient-specific matrix (H,, p=1--- P) is created such that

H* (fizy)) - H (fr(zy)) %LAAilnS/eXp(fj)V¢
H,= : : : . (5)

HY () - I (o)) LML o (2) V0

(4)
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The Jacobian determinant (det(F)), the trace (3 A) and variance (Var (A)) of
the strain eigenvalues and the voxel densities in I;; 4 and Iexp are modelled locally
across the lung (k = 5). We incorporate the % LAA —950HU and %LAA —856HU
for all ¢;, leading to 27n features per x;. The number of sampled regions is
determined by the sampling frequency of x; at the finest scale (¢1).

—hi(fii @5 61)
—ha(fr; @55 02)
—ha(fr; xj; p3)

@/ I
H? (fk = Z)\: 17) = {u(h1) v(h1) o(h1) y1(h1) y2(h1) ---
w(hn) v(ha) o(hn) 1(hn) Y2(hn)}

Fig. 1. Illustration of the framework. 1) A feature fi (e.g. >_ A) at x; is sampled at
n = 3 scales, leading to 3 local histograms h;(fx;x;, ¢:). 2) Statistical moments and
the median of h;(fx;x;, ¢:) are calculated for all ¢;, leading to the set H? (fi(x;)).

Statistical Analysis of Features

Hypothesis testing using H,. Analysis of the distribution of values contained
within each H,, allows hypotheses of changes in the global nature of local features
to be made. For instance, consider the distribution of the variance of det(F)
at all z;. Each value demonstrates the local variation in volume change. The
distribution of this measure across the lung will illustrate how the local variation
is expressed, which may vary across subtypes. This facilitates a direct comparison
of patient-specific distributions across phenotypes.

Principal Component Analysis of X. We are interested in modelling the dis-
tribution of parameters across the studied population. We apply PCA on X =
[HlT e HITD] This seeks a low-dimensional projection (d << 27n) of X, where
the variance of the projected features is maximised. The entries of X are repre-
sentative of the local histogram features measured at multiple scales. PCA of X
allows one to compute the component scores within each neighbourhood defined
by x;. Thus, the computed scores can be projected to the image space to assess
their distribution across the lung. Since the component scores are linear pro-
jections of the features measured at various scales, they will capture potential
fractal properties in line with the nature of the lung anatomy. The distribution
of the principal component scores can be analysed to model patient-specific dis-
tributions by computing their respective mean and variance. Thus, phenotype-
specific distributions can be estimated to produce a clinically meaningful classi-
fier. Importantly, classification in the PCA subspace prevents overfitting as PCA
removes colinearity in the features.
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3 Experiments and Results

3.1 Clinical Data

Inhale and exhale breath-hold CT images from the COPDGene study [8] were
used. CT scans were acquired from multi-detector CT scanners, at full inspira-
tion (200mAs) and at the end of normal expiration (50 mAs) with resolutions
approximately equal to 0.66mm x 0.66mm x 0.73mm [8].

We tested our framework on P = 20 subjects with a GOLD 3 severity stage
exhibiting f = 0 (n = 10) or f > 6 (n = 10) exacerbations per year. GOLD 3
patients were chosen due to their low variation in FEV;. We chose two extreme
sets (f =0 and > 6) to gauge the applicability of our framework in discriminat-
ing these phenotypes. The patient sets had a mean age of 60.2 and 67.5, a mean
FEV;%predicted of 42.1 and 40.5 and a mean FEVi/Fvc ratio of 42.4 and 47.2.

3.2 Algorithm Parameters

Prior to the registration, the masks were dilated with a sphere of 3 voxel ra-
dius. An analysis of the registration parameters was performed; demonstrating
robustness in the registration to small parameter changes. The standard devia-
tion of the LNCC Gaussian kernel was set to 33 voxels, whilst the weighting of
the regularisation was 0.05% of the overall optimised cost function. The finest
control point spacing of the B-spline grid was set to 5 voxels along each axis.
After registration, the inhale lung mask was eroded by a spherical element with
a 7 voxel radius. This was performed to ignore regions prone to discontinuities
and which experience an extreme degree of motion. We performed the sampling
using a cubic box window at scales 10, 20 and 30 mm? (n = 3), which is con-
sistent with the size of the secondary pulmonary lobule. A sampling frequency
of 10mm was used yielding approximately 7,500 regions per lung. We ignored
regions at all scales where 50% of the voxels fell outside the lung mask.

3.3 Multi-scale Analysis of Imaging Features

We investigated feature distributions at the 3 scales using H,. We calculated
the mean and standard deviation of each feature within H, for all 3 scales.
This provided two patient-specific distributions of values for each feature. We
performed a two-sample t-test for each subtype mean and standard deviation
set to determine discriminating factors between both subtypes.

A significant difference in the mean of o (det(F)) (.12 £ .01 and .21 £+ .02)
at all scales of analysis was found (p < .03). The feature o (det(F)) illustrates
the variation in local volume change. The lower variation seen by the exacerba-
tion susceptible group suggested that they exhibit a more homogeneous pattern
in their volume change. No significance was seen in the standard deviation of
o (det(F)) (p < .20). We observed a marked difference (p < .05) in the mean
(.154.02 and .274.04) and standard deviation (.12£.01 and .22£.02) of o (3 (X))
at all scales. This insinuated that for the susceptible group, the anisotropy in the
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magnitude of local tissue strain and its variation throughout the lung is more ho-
mogeneous compared to the non-susceptible patients. These suggested a possible
distinction in physiological patterns, which were exploited in the classification.
Results from the PCA of matrix X corroborated the above, displaying evi-
dence of distinct feature distributions across subtypes. (Figs. 2 and 3). Figure 2
illustrates 2 patient-specific principal component distributions for each subtype.
These are characteristic of the phenotype distributions and are mostly consis-
tent across each group. As the component scores are a linear projection of the
features, Figure 2 suggests that there is a consistent physiological pattern per
subtype. This is illustrated by a variation in the heterogeneity of the scores as
observed in the analysis of H,,. This reinforces the notion of phenotype-specific
distributions and the discriminating power of the distribution of disease.
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Fig. 2. An example of the multi-scale principal component distributions for each sam-
pled neighbourhood z; for 4 patients (2 susceptible and 2 non-susceptible patients).
The first 3 principal components explain &~ 55% of the variance of X.

As the principal component scores were computed per sampled region (z;),
we were able to couple them with their respective anatomical location (Fig. 3).
This displays varying patterns in the physiology of the lung, consistently within
and across subtypes. As the principal components aimed to fully explain the lung
macrostructure and the deformation captured within H,,, these maps display a
novel way of viewing how lung physiology differs with the COPD phenotype and
the frequency of exacerbations.

3.4 Classification of COPD exacerbation-susceptible patients

We aimed to classify exacerbation susceptible and non-susceptible patients based
on the hypothesis that global and local patterns of disease differed across sub-
types. This was shown in Fig. 2 and 3, where a rise in feature homogeneity
coincided with exacerbation susceptibility. We performed the classification on
the feature projections using the mean and the variance of the principal com-
ponent scores as features. The set explaining 90% (17/81) of the variance of X
was chosen.



Analysis and Classification of COPD Exacerbation Susceptible Phenotypes 423

™

b P

A '

ke

|

ol

o

L4

Fig. 3. Projection of the first 3 principal components of the multi-scale PCA into the
image space. Coronal slice is at the mid-section. Top row: exacerbation susceptible
phenotype. Bottom row: exacerbation non-susceptible phenotype.

A leave-one-out cross validation (LOOCV) was employed to test the classi-
fier. LOOCYV iteratively selects one patient (Hynseen) as the testing data whilst
the remaining are used for training. We assumed independence amongst each
training set during the LOOCYV to calculate accuracy and precision rates. For
the classification, we projected H,,scen into the principal component space of
X p_1 and used the mean and variance of the principal component scores as fea-
tures. We used Support Vector Machines (SVM) as a classifier with a Gaussian
radial basis function kernel o = 2.25 and a soft-margin constant C' = 0.5. Our
framework has the unique ability to classify an unseen patient as either exacerba-
tion susceptible (f > 6) or non-susceptible (f = 0) with a total accuracy of 75%
(Table 1). This supports the applicability of our framework towards determining
relationships between the distribution of disease with the clinical outcome.

Table 1. Classification results using Leave One-Out Cross Validation

Susceptible Non-Susceptible Total
Classification accuracy (%) 80 70 75+ 7.5

4 Conclusions

We have presented a novel framework for investigating global and local patterns
of lung pathophysiology. The applicability of our framework in determining re-
lationships between functional measures and the severity of disease has been
shown, through an analysis of the exacerbation susceptible phenotype. Analysis
of the local feature distributions displayed significant differences in the nature of
lung function across subtypes. This translated to subtype-specific distributions
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after dimensionality reduction, suggesting an intrinsic physiological behaviour
attributed to both sets of patients. The main limitation of our work is due to
the lack of patients analysed. We aim to include a larger population of patients to
better demonstrate the clinical applicability of our work. This will allow us to cor-
rectly evaluate the performance of our classifier, and the consistency and utility
of the derived feature distributions. Moreover, we intend to construct anatomi-
cal atlases to perform regional inter-patient statistics to investigate whether the
spatial location of disease provides a further dimension to the analysis.
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