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Abstract. Connectivity analysis of resting state brain has provided a
novel means of investigating brain networks in the study of neurodevel-
opmental disorders. The study of functional networks, often represented
by high dimensional graphs, predicates on the ability of methods in suc-
cinctly extracting meaningful representative connectivity information at
the subject and population level. This need motivates the development of
techniques that can extract underlying network modules that character-
ize the connectivity in a population, while capturing variations of these
modules at the individual level. In this paper, we propose a multi-layer
graph clustering technique that fuses the information from a collection of
connectivity networks of a population to extract the underlying common
network modules that serve as network hubs for the population. These
hubs form a functional network atlas. In addition, our technique pro-
vides subject-specific factors designed to characterize and quantify the
degree of intra- and inter- connectivity between hubs, thereby providing
a representation that is amenable to group level statistical analyses. We
demonstrate the utility of the technique by creating a population network
atlas of connectivity by examining MEG based functional connectivity
in typically developing children, and using this to describe the individu-
alized variation in those diagnosed with autism spectrum disorder.

1 Introduction

Computational techniques applied to neuroimaging data have helped charac-
terize brain connectivity anomalies in autism spectrum disorder (ASD) and
schizophrenia.While structural connectivity is based on tractography using diffu-
sion MRI [1], functional connectivity is investigated by using coherence measures
between regions [2] using fMRI or magnetoencephalography (MEG) [3].

The study of brain connectivity networks has recently gained considerable at-
tention. The high dimensionality of these networks as well as their variation at
the subject level within the population calls for methods that can elucidate the
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underlying network structure while reducing dimensionality. In this paper, we
present a novel approach that extracts the underlying network modules that de-
scribe the hubs of brain connectivity. Such modules are characterized by highly
inter-connected regions within the module, in comparison to their connectivity
to regions outside the module. This collection of network modules can serve as an
atlas of network variation in a population. In addition to extracting these neu-
rophysiological network hubs, our method provides representations of intra- and
inter-connectivity strength of these network hubs for each subject, facilitating
group-based statistical analysis.

The approach we take to extract these network hubs is based on multi-layer
graph clustering. The advent of graph-based clustering techniques has led to re-
cent growing interest in methods for clustering of multi-layer graphs in the area
of mobile phone networks and document clustering [4–6]. However, such meth-
ods are mainly concerned with the approximation of graph Laplacian to feed
the spectral clustering algorithm, and lack interpretability. In our approach, we
present a framework for multi-layer graph clustering for analysis of connectivity
in terms of splitting the brain network into hubs characteristic of a population
and their low-dimensional interaction weights amenable to group-wise statistics.
The connectivity network of each typically developing control (TDC) is repre-
sented as a graph, and all TDC graphs are stacked to form a multi-layer graph,
each layer representing an individualized variation of the underlying network
connectivity. A matrix factorization model is employed to decompose the set
of healthy connectivity graphs into clusters of network modules (hubs) shared
among all graph layers. These network hubs are learned by using a gradient
descent approach minimizing the reconstruction error of decomposition in the
healthy population network set. The network hubs obtained are then used adap-
tively to optimize hubs intra- and inter-connectivity weights for each subject.

While our method is generalizable to non-negative connectivity matrices ob-
tained from DTI or fMRI, we demonstrate its applicability to resting-state MEG
connectivity networks in alpha frequency-band for a population of ASD subjects.

2 Methods

Our framework is based on the premise that there are a few underlying sub-
networks that describe a population with variation demonstrated between each
subject. The method we present here determines the network hubs that charac-
terize the commonality across all subjects within a population (e.g. default mode
network), with the interaction within and between these hubs that captures the
individualized variation in each subject. Therefore, we capture not only the dom-
inant network hubs that describe a population, but also the subtle connectivity
between these hubs that describes the variation in each subject either due to
inherent heterogeneity or induced by pathology. This collection of network hubs
will be referred to as the network atlas.

Given a population, we create this network atlas using the connectivity matri-
ces from all the subjects. The connectivity is quantified by a non-negative simi-
larity measure between n regions leading to a non-negative connectivity matrix of
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subject m, i.e. S(m) ∈ R
n×n, represented by a graph with n vertices. We then use

a matrix factorization model S(m) ≈ UΛ(m)UT where U = [u1,u2, . . . ,uk] ∈
R

n×k is the common factor of the population characterizing the shared under-

lying connectivity modules of the population. Λ(m) =
[
λ
(m)
ij

]
∈ R

k×k is also the

symmetric subject-level factor capturing the weights of each subject’s network
modules. k � n is the number of network hubs (modules) to be identified. Due
to the symmetry of Λ(m), this decomposition model can be re-written as

S(m) ≈ UΛ(m)UT =

k∑
i=1

λ
(m)
ii uiu

T
i +

k∑
i=1

k∑
j=1
j>i

λ
(m)
ij

(
uiu

T
j + uju

T
i

)
. (1)

In this model, each network hub is identified by the first term in (1), i.e.
uiu

T
i , whose subject-level intra-connectivity strength is represented by coeffi-

cients λ
(m)
ii . On the other hand, the subject-level inter-connectivity strength

between hubs i and j is represented by λ
(m)
ij where the inter-connectivity pat-

tern is identified by uiu
T
j + uju

T
i , i.e. the second term of (1). Elements of U

are constrained to remain non-negative Uij ≥ 0, thus retain the interpretation
of its components (i.e. uiu

T
j ) as a connectivity matrix (i.e. hubs and their inter-

connectivity modules). Λ(m) is constrained to be non-negative λ
(m)
ij ≥ 0 and

symmetric λ
(m)
ij = λ

(m)
ji due to the symmetry of connectivity matrices S(m), but

no constraints are imposed on it to be diagonal, because this lets our model cap-
ture the inter- connectivity weights on off-diagonal elements, and not overlook
the interactions between network hubs in the study.

2.1 Objective Function

Since we would like to obtain the underlying network modules shared among all
subjects in the population, we stack the connectivity graph of all subjects to form
a multi-layer graph

{
S(m)

}
. The network hubs shared by the population is then

obtained by minimizing the reconstruction error of the decomposition across
layers. This can be obtained by minimizing the following objective function with
appropriate constraints on U and Λ(m) as explained in equation (1),

J
(
U ,Λ(m)

)
=

M∑
m=1

‖S(m) −UΛ(m)UT ‖2F + β

(
‖U‖2F +

M∑
m=1

‖Λ(m)‖2F
)
,

subject to Uij ≥ 0 , λ
(m)
ij ≥ 0 and Λ(m) = Λ(m)T

(2)

where M is the number of subjects within the population, and ‖.‖F denotes the
Frobenius norm. The regularization term, as the sum of the squared norm of U
and Λ(m), is added to improve the numerical stability, and β is a tunable param-
eter balancing the two terms of reconstruction error norm and regularization.
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2.2 Optimization Solution

Due to symmetry of S(m) and Λ(m), equation (2) can be rewritten as

J
(
U ,Λ(m)

)
=

M∑
m=1

trace

{(
S(m) −UΛ(m)UT

)2
}

+ β

(
trace

{
UUT

}
+

M∑
m=1

trace
{
Λ(m)2

})
,

subject to Uij ≥ 0 , λ
(m)
ij ≥ 0 and Λ(m) = Λ(m)T .

(3)

To minimize (3), we propose an iterative procedure in which U and Λ(m) are
alternately optimized by given multi-layer graph of the population

{
S(m)

}
. We

use the gradient decent approach, i.e. alternately updating Uij = Uij − ηij
∂J
∂Uij

and λ
(m)
ij = λ

(m)
ij − ζ

(m)
ij

∂J

∂λ
(m)
ij

with step-sizes ηij ≥ 0 and ζ
(m)
ij ≥ 0, where

∂J

∂U
= −4

M∑
m=1

[(
S(m) −UΛ(m)UT

)
UΛ(m)

]
+ 4βU , (4)

∂J

∂Λ(m)
= −2UT

(
S(m) −UΛ(m)UT

)
U + 2βΛ(m). (5)

Due to non-negativity of S(m), our non-negativity constraints will be guaran-
teed by positive initialization of U and (symmetric) Λ(m), and applying the step

sizes as ηij =
1
4Uij

(βU+
∑M

m=1 UΛ(m)UTUΛ(m))
ij

, ζ
(m)
ij =

1
2λ

(m)
ij

(βΛ(m)+UTUΛ(m)UTU)
ij

.

This results in the following multiplicative updating solutions

Uij = Uij

(∑M
m=1 S

(m)UΛ(m)
)
ij(

βU +
∑M

m=1 UΛ(m)UTUΛ(m)
)
ij

, (6)

λ
(m)
ij = λ

(m)
ij

(
UTS(m)U

)
ij(

βΛ(m) +UTUΛ(m)UTU
)
ij

, for 1 ≤ m ≤ M. (7)

Starting with initial random positive elements on U and (symmetric) Λ(m),
the iterative procedures (6) and (7) are performed alternately until convergence.
Such initialization will guarantee non-negativity on U and Λ(m) as well as the
symmetry of Λ(m), which can be verified from equations (6) and (7).

2.3 Optimizing Subject-Level Factors

The above procedure is performed on the multi-layer graph of a population to
create an atlas of network hubs. The common factor U obtained from them is
employed to optimize equation (2) to compute subject-level factors Λ(m) from
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their connectivity matrices. Since the common factor U is given, (2) can be min-
imized by only performing the iterative procedure of (7) with random symmetric
non-negative initialization of Λ(m) for each subject, yielding the subject-specific
intra- and inter-connectivity weight of network hubs. It is worth noting that,
given U , equation (7) is iterated on both control and patient data so that both
populations undergo the same procedure to be comparable in statistics.

2.4 Statistical Analysis and Interpretation

As explained at the beginning of section 2, elements of the subject-level factors
Λ(m) represent weights of network hubs in that subject. The intra-connectivity

of network hubs is represented by the diagonal elements of Λ(m), i.e. λ
(m)
ii , and

their inter-connectivity is represented by the upper triangular elements (due to

symmetry of it). Hence, a significant group difference at a diagonal element λ
(m)
ii

interprets as an alteration in the communication within the ith network hub,

characterized by uiu
T
i , and a group difference at an off-diagonal element λ

(m)
ij

indicates changes in the interaction between the network hubs i and j, i.e. the
inter-connectivity pattern uiu

T
j + uju

T
i has been affected by disease.

3 Results

The proposed method provides a means to extract common population level
information while also capturing individual subject variation. We demonstrate
the applicability of this methodology to the study of resting-state (RS) MEG
functional connectivity in a population of ASD, in comparison to a network hub
atlas that has been learned on a TDC population. The connectivity of the entire
population is then represented in this more concise module representation.

In order to perform a preliminary test, we applied our method to a set of
synthetic noisy networks with known common modules (hubs), which were suc-
cessfully restored by the procedure explained in section 2.

Dataset Demographics. The dataset consisted of 77 male children, 37 ASD
and 40 TDCs, aged 6-14 years (mean=10.2 years, SD=1.8 in ASD, andmean=10.3
years, SD=1.7 in TDC, no significant difference in age p > 0.6). RS MEG was
acquired in a magnetically shielded room using a 306-channel Elekta scanner. Two
minutes of recorded datawere obtained after artifact removal, whichwere low-pass
filtered before downsampling to 500 Hz to avoid aliasing.

Source Localization and Connectivity Measures. RS eyes-closed data
were band-pass filtered to the alpha band activity (8–12 Hz). MEG data were
divided into 2.5-second epochs with 50% overlap and transformed into the fre-
quency domain. A 5mm isotropic source grid was obtained by sampling cortical
gray-matter areas from the T1-weighted MRI of each subject. The sensor-space
frequency-domain data were used by VESTAL [7] to obtain source amplitude at
each source location. From this spatial distribution of source amplitudes, an in-
verse operator was determined [7] and applied to the MEG data yielding source
time-courses at each location. 301 structurally meaningful regions of interest
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(ROIs) were determined using Freesurfer tools to subdivide the cortical surface
of a template subject and to map these ROIs into each of the 77 subjects. Of the
301 ROIs, we identified 202 ROIs that have at least one source assigned to them.
ROI dominant time-courses were then determined by using singular value de-
composition. Connectivity matrices were computed for the 202 regions yielding
77 matrices of size 202 × 202. Synchronization likelihood (SL), a non-negative
measure of synchronous activity between 0 (no connection) and 1 (completely
synchronous), was used to quantify the connectivity between two regions [3].

Connectivity Network Analysis. The SL connectivity matrices of 40 TDC
subjects were used to compute the network hubs as well as their 40 subject-level
weights. We set β = 0.1 and used k = 10 to obtain 10 network hubs. The iterative
procedure of (6) and (7) was performed that converged to the network atlasU of
size 202× 10. The resulting ten network hubs (i.e. the first term in equation (1),
uiu

T
i for 1 ≤ i ≤ 10) are shown together on a brain map in Fig. 1, thresholded

for binary visualization of their dominant edges.
Given the network hubs computed for the TDC population, the subject-level

weights Λ(m), each of size 10× 10, for the 40 TDC as well as 37 ASD connectiv-
ity matrices were obtained. These subject-level weights of the two groups were
then used to perform statistical group comparison for each of 10 diagonal and
45 upper-triangular elements of Λ across subjects, out of which five of upper-
triangular elements indicated significant group differences (p < 0.05). In Fig. 2,
we show the five inter-connectivity patterns that correspond to the significant
weights, by displaying their inter-connectivity maps generated by the second
term of equation (1), i.e. uiu

T
j + uju

T
i , as explained in section 2.4. The inter-

connectivity patterns which have larger weights in TDC are shown in blue (Fig.
2 (a) to (c)), while those larger in ASD are shown in orange (Fig. 2 (d) and (e)).

It is observed from Fig. 1 that our method has extracted modular brain func-
tional hubs that are spatially close but sparsely distributed on the cortex. The
arrangement of these network hubs may also define the default functional net-
work in MEG brain connectivity. As mentioned above, the statistical group com-
parison of ten diagonal elements of subject-level weights did not show significant
difference (with p < 0.05) indicating that the contribution of network hubs does
not substantially differ between ASD and TDCs. It is however worth noting that
Hub#5 demonstrated the most different intra-connectivity among the ten hubs
shown in Fig. 1. This network showed a group difference of p < 0.1 (with higher
weights in ASD) indicating hyperconnectivity in short-range communications in
the very frontal area of ASD brain, an observation consistent with the literature
of ASD frontal lobe overconnectivity [8]. It is interesting to observe that such
enhanced connectivity within this hub in ASD, coincides with underconnectiv-
ity in the interaction of this hub with bilateral hubs Hub#1 and Hub#6 (Fig.
2(a) and (c)) as well as the occipital hub Hub#4 (Fig. 2(b)). This may be an
indication that the local overconnectivity in the front of ASD brain has led to
long-distance underconnectivity, or vice versa.

Fig. 2 (a)–(c) shows that ASD brain has deficient long-range connectivity pri-
marily in fronto-occipital communications (connectivity pattern between Hub#4
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Fig. 1. The k=10 functional network hubs of brain MEG alpha activity obtained from
the 40 TDC connectivity matrices, displayed together with no specific order

Fig. 2. The five inter-connectivity (between-hub) patterns with significant group dif-
ference between ASD and TDC (axial and sagittal view). Blue and orange inter-
connectivity networks have higher weights in TDC and ASD, respectively. p < 0.05
and p < 0.01 are labelled with one and two stars, respectively.

and Hub#5 shown in Fig. 2 (b)) as well as in fronto-parietal connections (be-
tween Hub#1 and Hub#5 as well as Hub#6 and Hub#5 shown respectively in
Fig. 2 (a) and (c)), consistent with findings of fronto-posterior under-connectivity
in autism [9]. In addition, Fig. 2(d) shows that ASD has enhanced short-range
connectivity (between Hub#8 and Hub#6). Fig. 2(e) also shows increased inter-
connectivity between the frontal and temporal/subcortical regions in ASD (be-
tween Hub#3 and Hub#7).

The network hubs obtained here are clinically interpretable as they implicate
the regions associated with the known default mode network (DMN) which is
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the network most commonly elucidated in functional resting state literature.
We have also observed that the average weights of the intra-connectivity net-
works (i.e. hubs) are an order of magnitude larger than the inter-connectivity
weights. Therefore, the inter-connectivity network modules do not substantially
contribute to reconstructing subjects’ functional networks, but important in
characterizing the effect of disease. Finally, we tested the method on subsets
of healthy subjects and have obtained similar network hubs indicating the re-
peatability of the results.

4 Conclusion

We have presented a new analysis technique of connectivity matrices using a low-
rank matrix factorization model that extracts a set of population specific network
hubs shared by all the matrices in a multi-layer graph framework. Application to
a dataset of TDC subjects provided a set of functional network hubs and their
intra- and inter-connectivity weights. The network hubs obtained from TDC
were used to compute the subject-level weights for ASD subjects. Group-wise
analysis of intra- and inter-connectivity weights revealed significant long-range
connectivity deficiencies as well as short-range overconnectivity in ASD. The
proposed framework can be extended to any non-negative connectivity matrix,
and the weights obtained in the process can be exploited for statistical analysis.
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