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Abstract. We present an unsupervised approach to segment optic cups in fundus
images for glaucoma detection without using any additional training images. Our
approach follows the superpixel framework and domain prior recently proposed
in [1], where the superpixel classification task is formulated as a low-rank rep-
resentation (LRR) problem with an efficient closed-form solution. Moreover, we
also develop an adaptive strategy for automatically choosing the only parameter
in LRR and obtaining the final result for each image. Evaluated on the popular
ORIGA dataset, the results show that our approach achieves better performance
compared with existing techniques.

1 Introduction

Glaucoma is the second leading cause of blindness worldwide [2], and cannot be cured
because the damage to the optic nerve is irreversible. Early detection is thus essential
for early treatment and preventing the deterioration of vision.

Among the structural image cues studied for glaucoma diagnosis, the vertical optic
cup-to-disc ratio CDR is a major consideration of clinicians [3]. However, clinical as-
sessment by manually annotating the cup and disc for each image is labor-intensive, so
automatic methods have been proposed to segment the disc and cup in fundus images.
Recently, optic cup segmentation has attracted relatively more attention, since the disc
segmentation problem is well-studied in the literature.

Various automated optic cup segmentation methods have been presented, by using
traditional image segmentation methods such as level-sets [4] and active shape model
(ASM) [5], or using a classification method to identify pixels [6] or regions [7] that
are part of the cup or rim (the disc area outside the cup). Comparatively, classification
methods show better segmentation accuracy than traditional segmentation methods, by
learning prior knowledge from additional training samples. Recently, an interesting su-
perpixel classification framework was proposed in [1], in which superpixel labeling is
a key module that pre-learns a linear SVM model from additional samples, or learns a
discriminative model on the test image itself using a domain prior in which superpixels
near the disc center are always in the cup and ones close to the disc boundary belong to
the rim (non-cup). Although the latter method is still a supervised method, no additional
training samples are needed. An unsupervised similarity based propagation method is
also introduced in [1], but it is lacking in accuracy.
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In this work, we employ the same framework [1] of superpixel labeling except that
we take an unsupervised approach. Based on the domain prior together with the low-
rank property of the data, we model the labeling problem from another perspective.
Specifically, it is formulated as a low-rank representation (LRR) problem, which can
be efficiently solved in closed form. In addition, to avoid manual parameter tuning, an
adaptive approach is developed based on analyzing the closed-form solution of the pro-
posed LRR problem. Specifically, we firstly determine with some theoretical guidance
a small number of parameter candidates that cover the whole range, and then obtain
the final label of each superpixel by fusing the labels corresponding to each candidate
parameter by majority voting.

2 Adaptive Low-Rank Reconstruction Based Superpixel
Clustering

The superpixel labeling framework proposed in [1] has four major steps as follows:

1. Use the SLIC [8] toolbox to divide an input disc into superpixels;
2. Remove superpixels that lie on blood vessels, since they appear similar whether

they lie in the cup or rim;
3. Label each superpixel as belonging either to cup or rim, using different methods;
4. Apply post-processing to obtain a unique ellipse representing the output cup bound-

ary.

In this work, we follow the exact same procedure as in [1] except that we propose a new
LRR based unsupervised approach for the major step of superpixel labeling.

2.1 Low-Rank Representation Formulation

Superpixel labeling is essentially a binary clustering problem, in which the two classes
correspond to the optic cup and rim, respectively. As illustrated in Fig. 1, superpixels
within the optic disc appear similar to each other. Moreover, in an ideal situation where
superpixels are similar in the same class but are dissimilar between different classes,
the superpixels in each disc image would form only two clusters (corresponding to cup
and rim respectively).

Formally, we assume that the given data (feature matrix of superpixels) X ∈ R
d×n

come from two linearly independent subspaces, where d is the feature dimension and n
is the number of superpixels in a given image. Moreover, the data should have the fol-
lowing self-expressiveness property: each data point (i.e. a superpixel) xi in the given
data (i.e. feature matrix of all superpixels in a optic disc) X can be efficiently repre-
sented as a linear combination of all data points, i.e. xi = Xzi, where zi ∈ R

n is
the vector of coefficients. Under such an assumption, we seek for an optimal low rank
representation Z = [z1, . . . , zn] of all the given data, and finally obtain the partition of
the data points into cup or rim via spectral clustering [9] in a manner similar to [10].

In the case that the given data is noise-free and embedded in linear subspaces, the low
rank representation Z can be obtained by solving the following optimization problem
[11]:

min
Z

rank(Z), s.t. X = XZ. (1)
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Fig. 1. Illustration of low-rank representation of superpixels in the optic disc. Left: 256 super-
pixels within the optic disc, where black dots mark superpixels outside of the disc region, blue
crosses indicate superpixels lying on blood vessels, and superpixels without dots or crosses are to
be labelled. Middle: The obtained low rank representation Z exhibits a block-diagonal structure,
in which each column/row corresponds to a superpixel (to be classified) sorted in ascending order
of distance from its center to the disc center. Warmer colors indicate higher coefficient values.
Right: Ncut results with Z, in which most of the superpixels in the cup are classified together in
one class, while most of the remaining superpixels are labelled as rim. Purple/blue indicates that
two superpixels belong to the same/different class.

However, in real-world cases, data is usually not noise-free. Supposing that the data
is corrupted, we penalize the reconstruction error matrix X − XZ using the squared
Frobenius norm (‖ · ‖2F ), instead of enforcing the equation constraint in (1). Moreover,
since the rank function is non-convex and difficult to optimize, we replace it by the
nuclear norm, which is a convex approximation of rank. Accordingly, we arrive at the
following low-rank representation (LRR) problem:

min
Z

λ‖Z‖∗ + ‖X−XZ‖2F , (2)

where λ is a positive trade-off parameter. A nonlinear version of this problem (2) was
dealt with in [12]:

min
Z

λ‖Z‖∗ + ‖Φ(X)− Φ(X)Z‖2F , (3)

where Φ(X) = [φ(x)1, . . . , φ(x)n], with φ(x)i being the nonlinear mapping of xi,
i = 1, . . . , n. Using the kernel trick, we introduce a kernel matrix K ∈ R

n×n for which
Ki,j = φ(x)′iφ(x)j , so (3) becomes

min
Z

λ‖Z‖∗ + tr((I − Z)′K(I− Z)), (4)

where tr(·) is the trace (i.e. the sum of diagonal elements) of a square matrix. For
efficient computation, a linear kernel with a low rank approximation of rank 20 is used
in our implementation.
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2.2 Solution

A nice property of the problem in (4) is that it can be solved in closed form, which only
requires a simple process based on singular value decomposition (SVD) of the kernel
matrix, as shown in the following lemma:

Lemma 1. Suppose that the SVD of the kernel matrix K is K = Vdiag(s)V′ , where
s = [σ1, . . . , σn]

′, with {σi}ni=1 being the singular values sorted in descending order.
The problem (4) is minimized by

Z∗
λ = Vdiag(dλ)V

′, (5)

where the i-th element of dλ is max(σi − λ, 0)/σi.

The proof of this lemma can be found in [12].

2.3 Adaptive Superpixel Clustering

For low-rank representation based methods such as [11], parameter selection is an open
problem. In previous works, the reported clustering results are often the one closest to
the ground truth after manually tuning the parameters. However, in this work, we pro-
pose an adaptive approach to automatically determine candidate values of λ, followed
by a majority voting process to obtain the final result based on the clustering results
with respect to different candidate values of λ.

Our proposed adaptive approach is based on the following analysis of the closed-
form solution in (5). Let Z∗

λ be the optimal solution of problem (4) with the parameter
λ, and nK be the total number of positive singular values of K. We define a set of
anchor points {σ̂i}nK+2

i=1 , where [σ̂1, . . . , σ̂nK+2] = [∞, σ1, . . . , σn, 0]. Using these
anchor points, we divide the valid range for λ, namely [0,∞), into nK + 1 intervals
{Si}nK+1

i=1 where Si = {λ|σ̂i > λ ≥ σ̂i+1}.
Based on the closed-form solution (5), we have the following conclusions: for any

λ ∈ S1, the corresponding optimal solution Z∗
λ is a zero matrix, which provides no

useful information for the subsequent clustering process. For any λ ∈ SnK+1, the cor-
responding optimal solution is Z∗

λ = V0V
′
0, where V0 ∈ R

n×r is obtained by skinny
SVD of K, with r being the rank of K. For real-world data which is generally not
noise-free, the resultant matrix Z∗

λ may not be desirable for the subsequent clustering
process, because it possibly contains too much noise. Therefore, we leave out the λ in
the intervals S1 and SnK+1.

For each remaining interval Sk = {λ|σ̂k > λ ≥ σ̂k+1}, where 2 ≤ k ≤ nK ,
we simply choose σ̂k+1 as a representative of the values inside this interval. However,
under some circumstances, even if λ1 and λ2 come from the same interval Sk+1, the
resultant optimal solutions to (4) may be fairly different from each other. Specifically,
we have the following lemma:

Lemma 2. For any λ1, λ2 in the same set Sk+1 where 1 < k < nK , and the corre-
sponding optimal solutions Z∗

λ1
,Z∗

λ2
to (4), we have

‖Z∗
λ1

− Z∗
λ2
‖F

‖Z∗
λ1
‖F ≤

|σk+1 − σk|
√∑k

i=1
1
σ2
i√∑k

i=1
(σi−σk)2

σ2
i

. (6)
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Proof. Since λ1, λ2 are in the same set Sk+1, we have σ̂k+1 = σk > λi ≥ σk+1 =
σ̂k+2, i = 1, 2. It can also be easily proved that for any vector a ∈ R

n, given that
V is orthogonal, we have ‖Vdiag(a)V′‖2F = ‖a‖2F =

∑n
i=1 a

2
i , where ai is the i-th

element of a. Accordingly, considering (5), we have ‖Z∗
λ1
−Z∗

λ2
‖2F = ‖dλ1−dλ2‖2F =∑k

i=1
|λ1−λ2|2

σ2
i

, and ‖Z∗
λ1
‖2F =

∑k
i=1

(σi−λ1)
2

σ2
i

. Therefore, we have

‖Z∗
λ1

− Z∗
λ2
‖F

‖Z∗
λ1
‖F =

|λ1 − λ2|
√∑k

i=1
1
σ2
i√∑k

i=1
(σi−λ1)2

σ2
i

.

Recalling that σ̂k+1 = σk > λi ≥ σk+1 = σ̂k+2, i = 1, 2, we have |λ1 − λ2| ≤
|σ̂k+1 − σ̂k| and σi − λ1 ≥ σi − σk, i = 1, . . . , k, which leads to (6).

Based on Lemma 2, when the bound in (6) (with respect to the interval Sk+1) is
larger than 10%, we additionally set 0.5(σk+1 + σk) as a candidate value of λ. Finally,
let P denote all candidate values for λ.

Given the candidate value set P for λ, we can efficiently obtain all the corresponding
optimal solutions {Z∗

λ|λ ∈ P} by using (5). By performing Ncut [10] based on each
Z∗
λ, we can obtain a label vector yλ ∈ {0, 1}n for all superpixels. Recall that the clus-

tering in our problem is binary, in which the two classes correspond to the cup and rim
respectively. For consistent labels {yλ}, the class of the central superpixels is assigned
as “1” (cup) and the other class as “0” (rim). Therefore, the final clustering label vec-
tor y ∈ {0, 1}n based on multiple label vectors {yλ}λ∈P can be obtained by majority
voting, i.e. ,

y = 1{ 1

|P|
∑
λ∈P

yλ > 0.5}, (7)

where 1{·} is an indicator function, and |P| is the cardinality of the set P . Therefore,
the i-th sample will be assigned to the cup class if the i-th element of y is equal to 1.

We note that since the candidate values of λ are related to the singular values of K,
this scheme adaptively selects the candidate values for each image.

3 Experiments

To validate the effectiveness of our unsupervised superpixel classification using LRR,
the exact same feature representation and experimental settings in [1] are adopted in this
work to facilitate comparisons, using the ORIGA dataset comprising of 168 glaucoma
and 482 normal images. The four labeling methods in [1] are compared, in which only
the pre-learned method requires a separate training set; for the other three methods, no
additional training samples are needed so they can be compared fairly to our proposed
approach.

For optic cup segmentation evaluation, we use the same criteria as in [1] and [7],
i.e., non-overlap ratio (m1), absolute area difference (m2) and absolute CDR error (δ),
defined as
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Table 1. Performance comparisons on different superpixel labeling methods. Note that our LRR
and refinement only are unsupervised methods, while the other three are supervised.

Dataset SA&SB SC SA&SB&SC

Method m1 m2 δ m1 m2 δ m1 m2 δ

LRR 0.244 0.275 0.078 0.268 0.265 0.080 0.256 0.270 0.079
refinement only 0.331 0.341 0.105 0.325 0.318 0.112 0.328 0.329 0.109

intra-image+refinement 0.265 0.313 0.079 0.269 0.267 0.082 0.267 0.290 0.081
intra-image only 0.269 0.324 0.084 0.277 0.283 0.087 0.273 0.303 0.086

pre-learned 0.277 0.314 0.087 0.301 0.285 0.091 0.289 0.300 0.089

m1 = 1− area(Edt

⋂
Egt)

area(Edt

⋃
Egt)

, m2 =
|area(Edt)− area(Egt)|

area(Egt)
,

δ = |CDR(Edt)− CDR(Edt)|,
(8)

where Edt denotes a detected cup region, Egt denotes the ground-truth cup region, and
CDR(·) calculates the vertical diameter of the cup. Among the three metrics, m1 is the
most commonly used for segmentation.

3.1 Comparison of Different Labeling Methods

Based on the state-of-the-art superpixel framework, using the same domain prior, our
proposed LRR method is shown in Table 1 to yield improvements over all the four
methods in [1]. The comparison to the unsupervised refinement only method shows that
our unsupervised method models the problem better with the low-rank property, while
the similarity based one does not fully utilize this prior information. The comparison to
the other three supervised methods shows that with a proper problem formulation and
solution, an unsupervised approach can achieve equal or even better performance than
a supervised method, on this specific problem. From some cup segmentation results
shown in Fig. 2, one can observe that most failure cases occur when the assumption of
LRR does not hold, and some of the failure cases may be caused by the influence of
blood vessels that occupy a large area of the cup and are removed early from labeling.
This problem will be studied in our future work. For the successful cases that fit the
assumption well, the cup regions are very similar with a higher intensity than the rim
area.

3.2 Discussion

Validation of Adaptive Parameter Tuning. The results listed in Table 2 are all ob-
tained by using our adaptive clustering scheme, either with or without the use of Lemma
2, to generate additional candidate parameter values. In contrast, the use of additional
candidate values achieves better results with an average relative reduction of 1.8%,
2.3% and 2.7% in terms of m1, m2 and δ, respectively.
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Fig. 2. Some sample results of LRR based cup segmentation with 256 superpixels: failure cases in
the top row and successful cases in the bottom row. The cyan × denotes the center of the image,
and the red and blue + denote the center of the detected cup and the ground truth, respectively;
correspondingly, the red dashed-line ellipse represents the detected cup and the blue solid-line
ellipse represents the ground truth.

Table 2. Performance comparisons of our adaptive clustering scheme using different superpixel
numbers

Adaptive scheme Using Lemma 2 Without using Lemma 2
# superpixels m1 m2 δ m1 m2 δ

2048 0.265 0.271 0.081 0.270 0.276 0.082
1024 0.262 0.274 0.080 0.267 0.280 0.082
512 0.263 0.270 0.079 0.269 0.277 0.083
256 0.256 0.270 0.079 0.259 0.278 0.081

Influence of Superpixel Number. Every superpixel labelling method in [1] has two
to four parameters to be tuned besides the number of superpixels, which is the only
parameter that needs to be pre-chosen manually. The cup segmentation errors with dif-
ferent superpixel numbers are listed in Table 2. From the table, a similar conclusion
can be made as in [1], that superpixel based results are relatively stable with a proper
superpixel size. However, the lowest m1 is obtained with the smallest number (256)
of superpixels per image, and the best result in [1] is obtained with the largest number
(2048) of superpixels. A possible explanation is that when dividing an image into very
small-sized superpixels, the information contained in each superpixel becomes less dis-
criminative. In contrast, larger-sized superpixels (e.g., when the number of superpixels
is 256) preserve more local structure, which may provide more discriminative power.

4 Conclusion

In this work, we deal with the cup segmentation problem for glaucoma detection. We
extended the state-of-the-art superpixel framework [1] by modeling the binary super-
pixel clustering/classification task as a low-rank representation (LRR) problem in which
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the domain prior and the low-rank property of the superpixels are employed. Moreover,
we developed an adaptive strategy to automatically choose the candidate values of the
only parameter in the LRR formulation, based on a theoretical analysis of the closed-
form solution. In relation to prior art [1] [7], our method yields improved unsupervised
segmentation. In addition, the proposed LRR-based unsupervised solution performs as
well as or better than the supervised methods presented in [1]. The experimental re-
sults also demonstrate the effectiveness of the adaptive parameter selection strategy in
producing robust results. For future work, we would like to explore the possibility of
developing a similar LRR-based formulation for supervised learning. A supervised or
semi-supervised LRR-based solution can benefit from utilizing discriminant informa-
tion from additional training samples, while offering all the advantages of low-rank
representations.
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