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Abstract. Positron emission tomography computed tomography (PET-
CT) is the preferred imaging modality for the evaluation of the lym-
phomas. Disease involvement in the lymphomas usually appear as foci of
increased Fluorodeoxyglucose (FDG) uptake. Thresholding methods are
applied to separate different regions of involvement. However, the main
limitation of thresholding is that it also includes regions where there
is normal FDG excretion and FDG uptake (NEUR) in structures such
as the brain, bladder, heart and kidneys. We refer to these regions as
NEURs (the normal excretion and uptake (of FDG) regions). NEURs
can make image interpretation problematic. The ability to identify and
label NEURs and separate them from abnormal regions is an impor-
tant process that could improve the sensitivity of lesion detection and
image interpretation. In this study, we propose a new method to auto-
matically separate NEURs in thresholded PET images. We propose to
group thresholded regions of the same structure with spatial and tex-
ture based clustering; we then classified NEURs on PET-CT contextual
features. Our findings were that our approach had better accuracy when
compared to conventional methods.

1 Introduction

Fluorodeoxyglucose positron emission tomography computed tomography (FDG
PET-CT) is regarded as the imaging modality of choice for the evaluation stag-
ing, assessment of response / relapse of the lymphomas, where sites of dis-
ease usually display increased FDG uptake and the co-registered CT provides
anatomical localization [6] [13]. A semiquanitative measure of FDG uptake is
referred to as a standard uptake value (SUV), which is a radiotracer concentra-
tion normalized by patient mass [13]. The SUV is commonly used to describe
regions of abnormal FDG uptake relative to other structures and SUV thresh-
olding is the most common method to identify these in patients with lymphoma.
Some investigators have proposed methods to calculate the threshold such as
50%SUV az or a SUV=2.5 [13]. A consequence of these methods is that when
applied globally to the entire image, the FDG excretion by the kidneys and the
normal high FDG such as cerebral uptake are delineated together with sites of
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disease. Further, NEURs are often fragmented into a number of regions in a sin-
gle structure, which make image interpretation more problematic. The ability to
identify and label NEURs and separate them from sites of disease will improve
lesion detection, interpretation and visualization.

In this study, we propose a multi-stage method to automatically label NEURs
from thresholded PET images. PET-CT images were used to derive contextual
image features with high discriminative attributes by taking advantage of the
high PET sensitivity and anatomical localization data from CT. We used a
spatial and texture based clustering algorithm to group the thresholded regions
belonging to the same structure and then classified these grouped regions into
one of the NEUR classes according to combined contextual features derived from
PET-CT images.

1.1 Related Work

Our study relates to image classification techniques that attempt to separate
and label different structures using image contextual features. We define related
work into three main categories:

Abnormality detection research that attempted to detect only one type of
abnormality, such as for liver tumors [11]. These methods rely on the selection
of appropriate image features to separate abnormal and normal regions; they
typically require segmentation to derive prior knowledge of the abnormalities,
which adds complexity to the classification.

Multi-structure localization methods that detect and semantically label
anatomical structures, such as the method proposed by Criminisi et al., [3].
These approaches generally only consider healthy normal structures, rather than
abnormal structures.

Abnormality detection and multi-structure labeling methods label the struc-
ture and abnormalities usually in parallel. These methods rely on contextual
features to separate normal from abnormal and rely exclusively on the localiza-
tion of normal structures [14] [12].

Our study also uses contextual features to identify normal structures but we
differ from previous work as follows: (1) we do not rely solely on contextual fea-
tures because PET images have inconsistent localization information and have
the inherent variability of FDG uptake among patients, NEURs are not consis-
tent from patient to patient and, (2) we deal with whole-body PET-CT images
rather than limited images of a particular region e.g. thorax or abdomen, which
have greater clinical relevance than a limited assessment of the body.

2 Methods

2.1 Materials and Ground Truth Construction

Our dataset consists of 33 whole-body PET-CT studies from 10 lymphoma pa-
tients provided by the Department of Molecular Imaging, Royal Prince Alfred
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(RPA) Hospital, Sydney; each patient had multiple scans (3 patients with 2
scans, 3 scans and 4 scans, each; 1 with 6 scans) during diagnosis and treat-
ment of their lymphomas. All studies were acquired using a Siemens Biograph
TruePoint PET-CT scanner (Siemens Medical Solutions, Hoffman Estates, IL,
USA) with a PET resolution of 168 x 168 pixels at 4.07mm? and CT resolution
of 512 x 512 pixels at 0.98mm? and slice thickness of 3mm. The bed and linen
were removed from CT by adaptive thresholding and image subtraction from a
bed template [9)].

Training data and ground truth data were constructed using the PET Re-
sponse Criteria in Solid Tumors (PERCIST) thresholding method on each PET
image (see Section 2.3). The resulting binary mask, consisting of NEUR was
then manually labeled as belonging to the brain, bladder, heart, left kidney,
right kidney or other structures. The other class contained regions of increased
FDG uptake (identified from the clinical report) related uptake in brown fat and
lymph node inflammation. A total of 503 thresholded regions were manually la-
beled and included 42 brain, 32 bladder, 35 heart, 73 left kidney, 75 right kidney
and 246 other regions.

2.2 Multi-stage Classification Framework

Fig.1 shows the overview of the proposed classification framework; there are 4
main components: the PET image was thresholded based on PERCIST and its
counterpart CT image was pre-processed to detect the bony skeleton (Section
2.3). The skeleton was then removed from the PET image and the remaining
pixels were then grouped into individual regions via connected thresholding. A
spatial and texture based clustering were then applied to group the fragmented
regions into a structure (Section 2.4) prior to a contextual features based classi-
fication for NEURs labelling (Section 2.5).

PET PEROST Partitioning
Thresholding | s Bone Removal Spatial and and
and Regions Texture Based Contextual
Bony _I_) Formation Clustering Features
Skeleton Classification
Detection

Fig. 1. Overview of our proposed multi-stage classification framework

2.3 Automatic PERCIST thresholding and Bony Skeleton
Detection

PERCIST is a robust method for calculating the SUV threshold based on the
combined use of a SUV normalized with lean body mass (SUV gy ) together
with a reference region of interest (ROI) [13]. We adopted the automated PER-
CIST calculation in Bi et al., [1] to generate a binary mask Tpgrcrst. Here, the
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reference ROI was a sphere of diameter 3cm that was placed within the right
lobe of the liver. We segmented the bony skeleton from CT and then removed
these structures from the PERCIST thresholded PET image. A binary skeleton
Tskeleton mask was generated using a threshold of > 150 Hounsfield Units (HU)
[7] on the CT image. Tskeieton Was subtracted from TpgrrorsrT. A morphological
filter was applied on the resulting binary mask to remove noise.

2.4 Spatial and Texture Based Clustering

Thresholding methods typically result in a structure, e.g. the kidney, being frag-
mented into many regions. Such fragmentation increases the complexity of label
classification (Section 2.5) since each region only partially represents a structure.
Thus we grouped these fragmented regions, prior to classification, by identifying
groups of similar structures according to their spatial location and texture image
features.

Density-based spatial clustering (DBSC) was applied to find a number of clus-
ters from estimated density distributions of regions in the dataset [4]. Formally,
DBSC can be defined as a clustering algorithm based on the concept of density
reachability (density-connected) where a region R is directly density-reachable
from region R’ if R’ has at least x number of neighbor regions (including R)
residing within a given distance e. R is further considered as density-reachable
from R’ if there is a sequence of regions Ry,---, R, with Ry = R and R,, = R/,
where R; 41 is directly density-reachable from R;. Therefore, a density-based clus-
ter is the maximum set of density-reachable (including directly and non-directly)
regions. DBSC starts from a random region and iteratively visits all the regions.
To avoid the false clustering of regions where only the spatial distance to each
other was used, we incorporated a texture feature similarity between the regions
denoted as:

n
D(R,R') = ws-min(|| p—p' ) +wi- (| fi(R) = i [2) (1)

i=1
where p and p’ are the voxels spatial locations p € R, p’ € R’ and f, [’ rep-
resenting the texture features. Four texture features (mean, standard deviation,
skewness and kurtosis), from the PET and CT images, were used to measure the
similarities between the two regions; these features were selected for their proven
performances in representing these images [11] [12]. To reduce the variability of
FDG uptake across the PET scans when calculating texture similarity, we nor-
malized the FDG uptake into SUV gy . ws and wy are the weights associated
with the spatial distance and texture feature similarity terms. We set the min-
imum number of neighbor regions as k = 1. This ensured that all regions may
become a cluster and no fragmented regions were discarded. An equal weight
was set to spatial distance and texture similarity. We calculated the distance
€ = 10 from the training data (plotting all the distances for individual region to
its neighbors and then finding the distance that is able to group the maximum
number of regions while having the minimum inhomogeneity within the cluster).
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2.5 Whole-Body Partitioning and Contextual Features
Classification

Prior to NEURs classification, whole-body PET-CT images were partitioned
into three sections to reduce the search space: above lungs (AL), lungs (LA) and
below lungs (BL). The lung structures were automatically segmented using an
established adaptive thresholding method [7] to provide a coarse estimate of the
sections.

Our classification was based on contextual features, which included combina-
tions of region-level textures (RLT), scale-invariant features transform (SIFT)
[10], and histogram of oriented gradients (HOG) [5]. RLT features were the same
as in section 2.4 plus the addition of the average location in transverse, coronal
and saggital planes (represented in percentages). RLT were used to describe the
regions in a descriptive statistical manner representing a likelihood of a region
at a spatial context. SIFT was used to describe the local features and can be
considered to return important properties (key points) of the regions. The SIFT
is robust for classification in different image scales or noise levels, which is a de-
sired property for PET-CT. We sampled key points over the thresholded regions
and a default 128 dimensional feature vector was used to represent each of these
key points [10]. The HOG are similar to the SIFT, but they differ in that HOG
compute on an overlapping squared cell, from which the edge orientations are
measured. We used the same approach suggested by Felzenszwalb et al., [5] to
set cell size equal to 8, with 9 directions in each cell. The HOG were sampled
by using the cell over the thresholded regions and were represented via a 31
dimensional feature vector.

We used two separate bag-of-words (BoW) histograms to summarize the SIFT
and HOG features, individually. Each of BoW histograms had 200 bins (100 bins
for PET and CT). The two histograms, together with RLT features, were trained
separately with a radial basis function (RBF) kernel to non-linearly map the
data into a higher dimension space. This helps to make the training data more
separable in a computationally efficient way, where a linear kernel usually has
poor performance in a non-linear classification task while a polynomial kernel is
computationally expensive [8]. The RBF kernel parameters were optimized with
a default grid search analysis method in the LIBSVM described by Chang et al
[2]. These features were then fitted into three separate multi-class support vector
machine (SVM) (one-against-one) for classification, such that each SVM was
optimized for different features. The probability score of region R to be classified
as label m was calculated as the weighted combination of all the features defined
as:

P(R) =Y v, po(R),F = {RLT,SIFT, HOG} (2)
pEF

where m € {Brain, Bladder, Heart, L.kidney, R.kidney, Other}, ¢ is the
contextual feature and p,(R) is a probability matrix of different labels for given
R and it is the output from SVM. ~,, is the associate weight. We we used equal
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weights for this combination to avoid bias. The final labelling of region R was
based on the matrix label with the highest probability.

3 Results and Discussion

We compared the labels assigned by our method with the labels of the ground
truth. We used leave the same patient out cross-validation approach in our eval-
uation (leaving out all scans from the same patient to remove bias). In Fig. 2
we depict our classification results on 4 randomly selected patient studies. Our
approach was able to separate NEUR classes; in Fig. 2(b) the kidneys are frag-
mented and in Fig. 2(a) there are multiple sites of disease in the left axilla and
at the base of the left neck.
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Fig. 2. Classification results from 4 randomly selected studies rendered on PET

We compared our method to two other approaches. The first was a conven-
tional SVM method, similar to the work proposed by Wu et al., [14], where image
features were extracted over regions from both PET and CT and fitted with an
SVM. The second was based on a whole-body image partition (Section 2.5) and
SVM (denoted as P+SVM), which resembles the approach in Song et al., [12].
The results are summarized in Table 1. Our method had higher classification
accuracy, which we attribute to the grouping process; 5/5 studies had multiple
heart fragments that were correctly grouped and there were 7/8 for the brain.
P+SVM performed better compared to SVM, which was likely due to P4+SVM
restricting the search space during classification. The bladder was consistently
classified by all methods, which was likely to be due to the bladder typically
having the highest FDG value and in our data, without any fragmentation into
multiple regions. The errors were mainly in the misclassification of the other
regions. Two right kidney regions were wrongly classified as bladder, caused by
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Table 1. Classification results of our method compared to a conventional SVM (SVM)
and SVM applied to whole-body image partitions (P4+SVM)

Prediction (%)
Methods (Overall) Ground Truth Other Brain Bladder Heart L.Kidney R.Kidney

SVM Other 89.43 - 0.41 1.22 4.47 4.47
(79.93%) Brain 21.43 73.81 - - 4.76 -
Bladder 6.25 - 93.75 - - -
Heart 40.00 - - 57.14 2.86 -
L.Kidney 36.99 - 1.37 - 61.64 -

R.Kidney 30.67 - 1.33 - - 68.00

P+SVM Other 91.87 - 0.41 5.28 1.22 1.22
(89.01%) Brain 23.81 76.19 - - - -
Bladder 6.25 - 93.75 - - -
Heart 28.57 - - 71.43 - -
L.Kidney 8.22 - - - 91.78 -

R.Kidney 8.00 - 1.33 - - 90.67

Our Method Other 93.90 1.22 0.81 0.81 0.81 2.44
Grouping+P+SVM Brain 9.52 90.48 - - - -
(93.84%) Bladder 6.25 - 93.75 - - -
Heart 2.86 - - 97.14 - -
L.Kidney 5.48 - - - 94.52 -

R.Kidney 4.00 - 2.67 - - 93.33

Table 2. Classification results using SIFT, HOG or RLT image features alone

Prediction (%)
Feature (Overall) Other Brain Bladder Heart L.Kidney R.Kidney
SIFT (84.10%) 80.08 97.62 93.75 97.14 76.71 86.67
HOG (85.69%) 93.09 90.48 93.75 85.71 61.64 78.67
RLT (88.67%) 93.90 78.57 78.13 71.43 90.41 88.00

sites of disease that involved the kidneys but this is a rare occurrence since the
diseased regions would need to have similar contextual and spatial features from
PET-CT.

We assessed the importance of the individual image features in the classifi-
cation of NEURs by applying our method with only a specific feature of SIFT,
HOG or RLT. In the results in Table 2, individual feature resulted in better
classification of certain structures; indicating that heart can be better repre-
sented by SIFT and kidneys by RLT features for instance. When compared to
the combined features in Table 1, the combination was able to make best use of
the properties from all feature extraction algorithms.

4 Conclusion

In this study, we propose a new multi-stage classification method to classify
and label regions of FDG excretion and normal uptake automatically from
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PET-CT images. Our experiments with 33 clinical lymphoma PET-CT cases
demonstrated that our approach had higher accuracy when compared to con-
ventional methods. We suggest our approach will improve image interpretation
and visualization.

References

1. Bi, L., Kim, J., Wen, L., Feng, D.D.: Automated and robust percist-based thresh-
olding framework for whole body pet-ct studies. In: EMBC 2012, pp. 5335-5338.
IEEE (2012)

2. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM
TIST 2(3), 27 (2011)

3. Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial
context for organ localization in ct volumes. In: MICCAI Workshop on Probabilistic
Models for Medical Image Analysis (2009)

4. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226-231
(1996)

5. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE. T Pattern. Anal. 32(9),
1627-1645 (2010)

6. Freudenberg, L., Antoch, G., Schiitt, P., Beyer, T., Jentzen, W., Miiller, S.P.,
Gorges, R., Nowrousian, M.R., Bockisch, A., Debatin, J.F.: Fdg-pet/ct in re-
staging of patients with lymphoma. Eur. J. Nucl. Med. Mol. 1. 31(3), 325-329
(2004)

7. Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic lung segmentation for accurate
quantitation of volumetric x-ray ct images. IEEE. T. Med. Imaging. 20(6), 490-498
(2001)

8. Kakar, M., Olsen, D.R.: Automatic segmentation and recognition of lungs and
lesion from ct scans of thorax. Comput. Med. Imag. Grap. 33(1), 72-82 (2009)

9. Kim, J., Hu, Y., Eberl, S., Feng, D., Fulham, M.: A fully automatic bed/linen seg-
mentation for fused pet/ct mip rendering. In: Society of Nuclear Medicine Annual
Meeting Abstracts, vol. 49, p. 387. Soc. Nuclear Med (2008)

10. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision. 60(2), 91-110 (2004)

11. Pescia, D., Paragios, N., Chemouny, S.: Automatic detection of liver tumors. In:
ISBI 2008, pp. 672-675. IEEE (2008)

12. Song, Y., Cai, W., Kim, J., Feng, D.D.: A multistage discriminative model for
tumor and lymph node detection in thoracic images. IEEE. T. Med. Imaging. 31(5),
1061-1075 (2012)

13. Wahl, R.L., Jacene, H., Kasamon, Y., Lodge, M.A.: From recist to percist: evolving
considerations for pet response criteria in solid tumors. J. Nucl. Med. 50(Suppl.
1), 122S-150S (2009)

14. Wu, B., Khong, P.-L., Chan, T.: Automatic detection and classification of nasopha-
ryngeal carcinoma on pet/ct with support vector machine. IJCARS 7(4), 635-646
(2012)



	Multi-stage Thresholded Region Classification
for Whole-Body PET-CT Lymphoma Studies

	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Materials and Ground Truth Construction
	2.2 Multi-stage Classification Framework
	2.3 Automatic PERCIST thresholding and Bony Skeleton Detection

	2.4 Spatial and Texture Based Clustering
	2.5 Whole-Body Partitioning and Contextual Features Classification


	3 Results and Discussion
	4 Conclusion
	References




