
P. Golland et al. (Eds.): MICCAI 2014, Part I, LNCS 8673, pp. 536–543, 2014. 
© Springer International Publishing Switzerland 2014 

Breast Cancer Risk Analysis Based on a Novel 
Segmentation Framework for Digital Mammograms  

Xin Chen, Emmanouil Moschidis, Chris Taylor, and Susan Astley 

Centre for Imaging Sciences, Institute of Population Health,  
University of Manchester, Oxford Road, Manchester, M13 9PT, UK 

Abstract. The radiographic appearance of breast tissue has been established as 
a strong risk factor for breast cancer. Here we present a complete machine 
learning framework for automatic estimation of mammographic density (MD) 
and robust feature extraction for breast cancer risk analysis. Our framework is 
able to simultaneously classify the breast region, fatty tissue, pectoral muscle, 
glandular tissue and nipple region. Integral to our method is the extraction of 
measures of breast density (as the fraction of the breast area occupied by glan-
dular tissue) and mammographic pattern. A novel aspect of the segmentation 
framework is that a probability map associated with the label mask is provided, 
which indicates the level of confidence of each pixel being classified as the cur-
rent label. The Pearson correlation coefficient between the estimated MD value 
and the ground truth is 0.8012 (p-value<0.0001). We demonstrate the capability 
of our methods to discriminate between women with and without cancer by 
analyzing the contralateral mammograms of 50 women with unilateral breast 
cancer, and 50 controls. Using MD we obtained an area under the ROC curve 
(AUC) of 0.61; however our texture-based measure of mammographic pattern 
significantly outperforms the MD discrimination with an AUC of 0.70.    

Keywords: Digital mammogram, segmentation, breast cancer risk, mammo-
graphic density, texture analysis. 

1 Introduction  

A major focus of breast cancer imaging research in recent years has been the analysis 
of mammographic breast density. It has been shown that women with high percentage 
mammographic density (MD), measured as the proportion of the breast area occupied 
by dense fibroglandular tissue, have a two to six fold increased breast cancer risk 
compared to women with low MD [1,2]. Semi-automated computer based tools have 
been developed where the reader interactively sets thresholds for the breast region and 
for dense tissue, and the resulting MD is automatically calculated; the most widely 
used of these is Cumulus [3]. Whilst percentage density measured visually and by 
Cumulus have been related to cancer risk, these measures are subjective and area-
based. Increasing interest in direct and objective measurement of volumes of fat and 
dense tissue has led to the development of automated volumetric methods such as 
Cumulus V [5] and VolparaTM [6]. 
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3 Breast Cancer Risk Analysis 

3.1 Percentage Mammographic Density 

A commonly used definition of mammographic density is the area of glandular tissue 
in a mammogram relative to the area of the breast (denoted as the breast region in this 
paper). One application of the segmentation framework described in section 2 is fully 
automatic estimation of MD. Based on the output segmentation mask (Fig. 2(h)), the 
total number of pixels in the glandular region is calculated and denoted as Ng. The 
breast region that excluding the pectoral muscle area can be calculated by summing 
the total number of pixels in the glandular region, fatty region and nipple region, 

represented by Nb. Hence,  
ே೒ே್ ൈ 100% is the estimated MD. We have compared MD 

obtained automatically in this way with MD derived from the ground truth segmenta-
tion, and further investigated the capability to discriminate cancer and non-cancer 
subjects. The evaluation experiments and results are presented in section 4.  

3.2 Mammographic Pattern Analysis 

The DT-CWT has been shown to provide a suitable representation of linear structures 
in mammographic images [11]. We have also demonstrated that it is capable of dis-
criminating different anatomical features in mammograms (section 2 and [10]). We 
therefore further investigate the use of the DT-CWT to characterize mammographic 
patterns for breast cancer risk analysis.  

Similarly to the segmentation framework described in section 2, our method con-
sists of a model training stage and a classification stage. In the training stage, the DT-
CWT is applied to a number of selected pixel locations in the input training images. 
At each pixel location, the DT-CWT coefficients are calculated on 6 levels of the 
image pyramid and for 6 different orientations at each level. Therefore, a 72-element 
(2 magnitude and phase components of the DT-CWT× 6 orientations × 6 levels of 
image pyramid) feature descriptor is obtained for each selected pixel. Using the out-
put of our segmentation method, the pixel selection process can be random sampling 
from the breast region, or selective sampling from the fatty and/or glandular regions 
depending on classification probability values. A comparison of different sampling 
strategies is given in section 4.3. By feeding the feature descriptors and their corres-
ponding image types (cancer or non-cancer) to a RF classifier, a discrimination model 
can be trained. To determine whether an unseen image is likely to be from a woman 
with or without cancer, the same sampling strategy is used to extract a number of 
pixels. The same 72-element DT-CWT feature descriptor is calculated for each pixel 
and fed into the trained RF model. Based on the votes of trees from the RF model, the 
probability of each sample pixel belonging to a cancer (or non-cancer) mammogram 
can be calculated. The average probability of all the sample pixels is output as a 
breast cancer risk score. 
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4 Evaluation  

4.1 Data and Pre-processing 

We use a balanced case-control dataset of 50 cancer cases and 50 controls. All images 
are anonymised full-field digital screening mammograms obtained from GE Seno-
graphe Essential mammography systems with a pixel size of 94.1 μm. The cancer 
cases were selected randomly from the most recent available screen-detected malig-
nant breast cancers identified, excluding interval cancers and mammograms showing 
bilateral breast cancer. The medio-lateral oblique (MLO) view of the contralateral 
breast was analysed as a surrogate for the prior mammogram. Controls were selected 
randomly from normal screening mammograms where a subsequent normal mammo-
gram was available, using MLO views in the same ratio of left and right breasts as in 
the cancer cases. To minimise the effects of machine parameter variations and other 
image intensity variations, all the raw (unprocessed) digital mammograms were pre-
processed by a normalisation algorithm that is embedded in the commercially availa-
ble software VolparaTM [6]. The density maps output by VolparaTM are used as the 
input to our method. If not otherwise stated, all the experiments in section 4 were 
performed in a 5-fold cross validation manner. The dataset was randomly organised 
into five subgroups, each with 10 cancer cases and 10 controls. Four groups of images 
were used for training and testing was performed on the remaining group, repeating 
until all groups have been tested.     

4.2 Evaluation of Automated Mammographic Density Estimation 

We have compared MD from the automatic method described in section 3.1 with MD 
derived from the ground truth. The ground truth mask was obtained interactively as 
described in section 2, in a process similar to that used by Cumulus [3]. The Pearson 
correlation coefficient between the automated MD and their corresponding ground 
truth MD is 0.8012 (p-value <0.0001). A Bland-Altman plot and scatter plot of the 
two sets of values are shown in Fig. 3, which demonstrates the strong correlation 
between them. Additionally, by varying the threshold of the MD scores to assign im-
ages to cancer and non-cancer groups and comparing with known image classes, a 
receiver operating curve (ROC) can be generated which illustrates the capability of 
the method for determining whether a mammogram belongs to a cancer case or not. 
The area under the ROC curve (AUC) values for MD from the ground truth and from 
the automatic MD are 0.6160 and 0.5812 with the sensitivity and specificity at the 
equal-error-rate point of 60% and 57% respectively. These results are listed in Table 1 
with the results obtained from the texture analysis method in section 4.3.  

4.3 Evaluation of Mammographic Pattern Analysis 

As described in section 3.2, based on the segmentation results, different sampling 
strategies can be used in the mammographic pattern analysis method. Here we com-
pare different sampling strategies in terms of their discriminatory power for cancer  
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Table 1. ROC performance for breast cancer risk analysis by using different sampling 
strategies in texture analysis and MD scores 

 AUC Sensitivity/Specificity at EER 

3KRBreast (a) 0.6050 54.0% 

0.5KRFat (b) 0.6532 58.0% 

0.5KRGla (c) 0.6032 56.0% 

0.5KPFat (d) 0.6912 66.0% 

0.5KPGla (e) 0.5508 56.0% 

0.5KPFat_0.5KRGla (f) 0.7052 66.0% 

Ground Truth MD 0.6160 60.0% 

Automatic MD 0.5812 57.0% 

0.5KPFat_0.5KRGla & Ground Truth MD 0.6800 64.0% 

 
 
sampling strategy (shown in the caption of Fig. 4) was determined experimentally, 
with the aim of achieving optimum performance in terms of discriminatory power and 
computational time.    

The ROC performance of each evaluation is listed in Table 1. The first column in 
Table 1 corresponds to the sampling methods illustrated in Figure 4, together with 
results for MD from the ground truth and the automatic MD. The last row in Table 1 
shows the ROC performance by combining the best texture method and the ground 
truth MD using logistic regression. It can be seen from the results that the combination 
of selective sampling in fatty region and random sampling in glandular region pro-
duced the best discrimination power, with an AUC of 0.7052 and 66% sensitivity and 
specificity at the equal error rate (EER) point. Selective sampling in the fatty region 
alone produced almost as good performance as the combined sampling. We can also 
conclude that mammographic pattern (texture) analysis outperforms MD for breast 
cancer risk analysis, and linear combination of the two does not improve performance.   

5 Conclusion and Discussions 

In this paper, we presented a novel and effective framework for digital mammogram 
segmentation and breast cancer risk analysis. From this framework, the mammo-
graphic breast density can be estimated automatically, and has a strong correlation 
with the results from the ground truth (Pearson correlation coefficient of 0.8012). 
Automation is essential for use in breast screening, where throughput is high. Our 
method corresponds to the area based methods of estimating mammographic density 
which have, to date, shown the strongest relationship to cancer risk. Objective as-
sessment of risk based on mammographic appearance has a texture component that 
has not been widely exploited in automated applications and commercial software, 
which tends to focus on the quantity of dense tissue within the breast rather than its 
pattern. We have developed an automated mammographic pattern analysis method 
which has achieved an AUC of 0.70 for discriminating between the contralateral 
mammograms of women with breast cancer and mammograms of women without 
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breast cancer. This texture analysis method was found to have more discriminatory 
power than the well-established MD approach (AUC 0.61). The advantages seem to 
come from the sampling that concentrated on the fatty region rather than the selection 
of DT-CWT feature descriptor, since sampling over the entire breast or the glandular 
region performed no better than the MD. Presumably, such a sampling strategy might 
also work well with other texture measures. In the literature, AUC values reported for 
breast cancer risk analysis are in the range of 0.55 to 0.65, dependent on the data used 
for evaluation. We therefore claim that our methodology and evaluation as reported in 
this paper make a significant contribution to the problem of estimating breast cancer 
risk. Future work will concentrate on improving segmentation accuracy by investigat-
ing the contribution from each part of the feature descriptor, refining the sampling 
strategy. We will explore the underlying reason that fatty region contributes more 
than the glandular region for breast cancer analysis in an extended version of the pa-
per, based on a larger dataset. 
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