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Abstract. Medical scans are today routinely acquired using multiple
sequences or contrast settings, resulting in multispectral data. For the
automatic analysis of this data, the evaluation of multispectral similarity
is essential. So far, few concepts have been proposed to deal in a prin-
cipled way with images containing multiple channels. Here, we present
a new approach based on a well known statistical technique: canonical
correlation analysis (CCA). CCA finds a mapping of two multidimen-
sional variables into two new bases, which best represent the true under-
lying relations of the signals. In contrast to previously used metrics, it
is therefore able to find new correlations based on linear combinations
of multiple channels. We extend this concept to efficiently model local
canonical correlation (LCCA) between image patches. This novel, more
general similarity metric can be applied to images with an arbitrary num-
ber of channels. The most important property of LCCA is its invariance
to affine transformations of variables. When used on local histograms,
LCCA can also deal with multimodal similarity. We demonstrate the per-
formance of our concept on challenging clinical multispectral datasets.
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1 Introduction

Multispectral imaging, in particular multi-sequence magnetic resonance imaging
(MRI), is increasingly becoming available in clinical practice. Image registration
forms an integral part in the analysis pipeline for computer aided diagnosis and
interventions based on medical imaging. However, to this date, few algorithms
have been proposed to explicitly handle multichannel image data [1,2]. A further
difficulty arises when not all exact same sequences are available for all patients
in a study. In order to establish correspondences across multichannel scans of
different patients (or with respect to an atlas), image registration relies on a
robust similarity metric. For different MRI sequences, such as T1-weighted, T2-
weighted or fluid attenuated inversion recovery (FLAIR), a certain degree of
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correlation across channels can be expected, since they are all based on the same
physical principle of the magnetisation of water protons. It is however difficult
to establish a priori which channels correlate best with each other and represent
a true correspondence based on the underlying physiology.

In order to deal with similarity of multichannel images one approach is to
average the cross-correlations [3] calculated for each channel individually. This,
however, disregards all cross-channel correlation. Generalised correlation coeffi-
cients for diffusion tensor images have been proposed in [4], which are used to
calculate a scalar correlation value (but also ignore cross-channel correlations).
This concept was extended to multi-tensor images in [5] using the matrix loga-
rithm of diffusion matrices. The linear correlation of linear combination (LC?)
metric [6], captures the similarity of a multichannel and a scalar image. Image
synthesis based on aligned training data [7], or general polynomial models [8]
have been used to predict the appearance of a different modality or contrast.
Multichannel demons [1], use squared intensity differences as force fields de-
rived independently from multiple channels. Multi-variate mutual information
has been proposed in e.g. [2], but certain approximations have to be made to
overcome the large complexity. In [9], image registration is performed by choos-
ing the optimal subset of Gabor wavelet features of multichannel images, using
independent component analysis and a ’choose max’ fusion strategy.

In this work, we overcome the challenges of multispectral image similarity us-
ing a established statistical technique: canonical correlation analysis (CCA) [10].
CCA has been previously used in the context of medical image analysis, e.g. to
detect neural activity in functional MRI [11]. It has also been used as a metric in
[12] for log tensor images, calculated over disjunct blocks, and was called gener-
alised correlation coefficient in that work. CCA measures the linear relationships
between two multi-dimensional random variables (see Sec. 2.1). We apply CCA
to define similarity across multichannel images, because it allows us to find a
mapping of the images into a new space where they maximally correlate. The
canonical correlation is invariant to affine transformations or permutations of the
input variables. Since linear relations between channels in medical images do not
hold globally, we propose an efficient scheme to evaluate the local canonical cor-
relation (LCCA). For this purpose, we extend the recently proposed guided filter
[13], which uses a (multichannel) image as a guidance to filter a second scalar
input image (in our work both images have multiple channels). The filter can
be implemented using box filters, with a computational complexity independent
of the local neighbourhood size. We make a further contribution by applying
LCCA to local histogram images enabling multimodal registration. In Sec. 3, we
demonstrate the state-of-the-art performance of our approach for two challenging
clinical multispectral datasets, evaluated with manual segmentations.

2 Methods

Let us consider two general 3D multichannel images I and J, where each location
x is represented by an intensity vector of length m and n respectively. Given a
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neighbourhood radius r, image patches X(z) (in I) and Y () (in J) are defined
at every z within a spatial window 2, with a size of (r x 2+ 1)3. The individual
channels of each patch are denoted by a subscript: Xi,...,X,, and Y7,...,Y,.
The similarity at location x between two patches can be defined for the most
trivial case of two scalar images as the normalised correlation coefficient (NCC):

L Ea. (X =X - 1))
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where X; = | f;ml Zm X; represents the mean intensity of an image patch. The

pQ(Xthx) (1)

scalar NCC is invariant to any affine intensity transform X’ = aX + b of the
image patches. It can be extended to multichannel images (MC-NCC), defining
a vectorial correlation coefficient p:

pZ(Xv Y, 1') = {pQ(Xla Ylv x)a v aPQ(dema Ydmina .’ﬂ)} (2)

where dyin = min(m,n) is the minimal channel dimensionality. We note that p
is not well adapted to images with differing numbers of channels m # n, since
a choice of which extra channel to drop has to be made. Furthermore, it is not
invariant to arbitrary linear transformations of the input variables.

2.1 Canonical Correlation Analysis (CCA)

CCA is able to overcome these limitations by finding the two bases wx and
wy, which maximise the sum over p for the transformed variables X - wx and
Y - wy. In order to find the canonical basis vectors, we first need to construct a
full correlation matrix D. Let us define a m X n cross-covariance matrix X'xv,
where the entry in the kth row and /th column is defined to be:

Exon = g Xk~ XY~ ). 3)

The variance matrices X'xx and Xvyvy are defined analogously. The full corre-
lation matrix D then becomes:

D(X,Y) = Zxx Txy Zyy Tkv (4)

The basis vectors can be obtained by performing an eigendecomposition, where
wx is build up from the eigenvectors of D(X,Y) and wy from the eigenvectors of
D(Y,X). The canonical correlations are the eigenvalues Axy = {\1,..., A\d,... }
of D. A scalar similarity metric S(X,Y) of two patches can now be defined based
on the sum over Axy divided by dpin. Note, that even though the number of non-
zero eigenvalues is limited by min(rank(m),rank(n)) every image channel has
the same influence weight on calculating the eigenvalues. Another simplification
can be obtained, based on the fact that for any matrix the sum of eigenvalues
equals the trace of that matrix. So finally we get:

S(X,Y,z)=1-— trace(D(X,Y, z)) (5)

1
dmin
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Fig. 1. Visual example of (global) canonical correlation analysis applied to colour im-
ages. Left: I slice of the visible human dataset with its original colour, but rotated by
20°. Centre: J same slice without rotation, but with cyclically shifted hue. Right: J’
reconstructed true slice estimated using CCA (of T and J) and J' = wywy'J.

In contrast, to Eq. 2 the canonical correlation is invariant to affine intensity map-
pings of multichannel images. Figure 1 demonstrates the capabilities of finding
an intensity mapping, which affects all image channels simultaneously even when
one image is geometrically transformed. S is symmetric and also independent of
the order of X and Y. When one of the images is scalar n = 1, the correlation
matrix D becomes a scalar, and it can be shown that LCCA is equivalent to the
linear correlation of linear combination (LC?) metric [6] for this special case.

Local Canonical Correlation (LCCA) Computation: Linear correlations
rarely hold for the whole image, yet to get a point-wise local evaluation of the
similarity metric, we have to calculate D for every voxel, using all (2r+1)3 voxels
within the patch §2,. Fortunately, the calculation can be simplified without loss
of accuracy using box filters, following the ideas of guided image filtering [13].
The similarity has to be evaluated for every voxel, so the complexity is greatly
reduced and independent of the patch-size by first rearranging Eq. 3:

X -X)(Y-Y)=> XY -XY (6)

25 25
and then replacing the summation in Eq. 6 by a convolution kernel K,. The
moving average kernel has a constant complexity independent of kernel size
and the local means X and Y can be precomputed (again by convolution).
For the purpose of image registration, where multiple displacements have to be
evaluated, we can furthermore pre-calculate the inverse variance matrices 2)2%(
and X% once (per iteration). Thus only mn box filter convolutions (for the
whole image) and two matrix multiplications (for every voxel) are required. For
a typical dual channel image with one million voxels this enables us to process
the patch-wise similarity for every voxel and up to 40 displacements per second.’

Non-functional Intensity Mappings Using Local Histograms: A limita-
tion of NCC for medical image registration is that it is usually not applicable to
multimodal images. We present an interesting second application of LCCA to
address this shortcoming. Given a pair of scalar images I and J from different

1 Source code for LCCA will be made public at
http://www.mpheinrich.de/software.html
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Fig. 2. Left-centre: MRBrainS dataset with manual segmentations: B Cortical gray
matter, M Basal ganglia, ! White matter and White matter lesions, B Cerebrospinal
fluid in the extracerebral space, B Ventricles, @ Cerebellum, M Brainstem. Right:
Quantitative results of 4 multi-spectral registration experiments on training set of 5
patients. MC-NCC and LCCA both outperform LC? for experiment A, while LCCA
yields higher accuracy for all other tests (descriptions see text) than MC-NCC or LC2.

modalities, they can be transformed into multichannel images I = {I,...,1,,}
and J = {Jy,...,Jn}, where each channel represents the distance from a range
of m quantised intensity value v = {v1,..., v}, with I, = exp(—(I — vg)?/c?).
Here, o represents the uncertainty in image intensity similar to the Parzen win-
dow in mutual information calculation. This representation enables LCCA to
model even non-functional intensity mappings. In practice a very low number m
of histogram channels is sufficient. For this application the invariance of LCCA
to permutations of the channels is of great importance.

Regularisation and Optimisation: LCCA is employed in a discrete non-rigid
registration framework, which we have recently published in [14]. An explicit
search is performed over a discrete displacement space d € £ = {0,=+q,...,
+max }® (With quantisation step ¢) using the patch-wise formulation of CCA as
similarity metric. Starting from an initial estimate using the argmin v of the
discrete search, a globally smooth displacement field u is iteratively estimated
by two alternating steps. First, a Gaussian smoothing u <— K,v of the current
field is performed. Second, an auxiliary term é(u —v)? is added to the local
similarity distributions and a new argmin v selected. When the parameter 6 is
subsequently reduced, a convergence (u = v) is reached after few iterations.

3 Experiments

We compare the performance of the presented canonical correlation analysis
based similarity metric (LCCA) to multichannel NCC (MC-NCC) and the LC?
metric on two different multispectral image datasets.

Multispectral Brain Image Registration: First, we employ data from the
multispectral brain segmentation challenge (MRBrainS) held at MICCAT 2013
[15]. The organisers provided training datasets of five patients with T1-weighted,
T1 with inversion recovery (IR) and FLAIR MRI modalities. The scans have a
resolution of 1x1x3 mm, are rigidly aligned (to the FLAIR sequence) and man-
ually segmented into 8 labels (since white matter lesions cannot be detected
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using atlas-based segmentation, we merge labels 3 and 4). Pair-wise registra-
tions between all five patients are performed using a three-level approach of our
registration framework and the following parameters: down-sampling factors of
{3,2,1}, maximal displacement range of ¢max = {6,2, 1} and patch-radius r = 2
voxels. The Dice overlap before registration is on average 45.5%. We perform four
different experiments using all of the three metrics, whenever they are applicable
on dual-channel MRI scans (within the same optimisation framework):

— A: both channels are of the same modality for both moving and target image
and in the right order (e.g. I ={T1,72},J = {T1,T2})

— B: one channel is of the same modality for both images the other channel is
from two different modalities (e.g. I = {T1(IR),T1},J={T1(IR),T2})

— C: analogous to B, but the order of the channels is swapped for one image
(e.g. I={T2,T1},J={T1(IR),T2})

— MM (multimodal registration): only one MR sequence is used for the target
image and a different one for the moving image. Three histogram channels
are constructed for both single channel MR images.

MC-NCC performs best when the exact same two channels are available, closely
followed by LCCA. Both methods improve significantly over LC? (p < 0.01
for Wilcoxon rank sum test), which can only utilise one multichannel image.
When only one channel is of common modality across scans, LCCA achieves
significantly better registration accuracy than MC-NCC or LC? (p < 0.01),
which demonstrate that it correctly finds new relationships between different
multispectral channels. When using local histograms for multimodal registration
(T1—-FLAIR) LCCA nearly reaches its performance from experiments B and
C. However, further experiments and comparisons are necessary to confirm its
suitable for other multimodal registration tasks. We also tested, if a combination
of global and local CCA would be beneficial, but found no improvements.

Canine Muscle Segmentation: To facilitate further comparison, we perform
registration experiments on the canine dataset (22 training subjects) from the
MICCAI SATA challenge [16] for which SyN [3] was used to provide standard-
ised registrations using both MRI channels (T2 and T2 with fat suppression).
Manual segmentations of seven proximal leg muscles have been provided (see
Fig. 3) to study muscular dystrophy. The significant differences in size and ap-
pearance of the studied dogs render this a very challenging registration task.
We include an affine alignment step (using block matching with LCCA and
trimmed least squares [17]) and increase the patch-radius r to 3 voxels. Our reg-
istration approach significantly outperforms SyN (both use affine+deformable
transformations) with an improvement in overlap of 15% (p < 0.01). When ini-
tialising SyN using the affine transforms obtained for LCCA, the results improve
to D=52.44+15%, which is still significantly (p = 0.008) inferior to our results
of D=55.5+13%. These results for single-atlas segmentation can be further im-
proved using label fusion [16]. Already a simple majority voting results in a Dice
overlap of D=73.0£14% for our approach (compared to 55.1% for SyN in [16]).
Our algorithm is with a runtime of /240 sec. several times faster than SyN.



208 M.P. Heinrich et al.

Dice overap for canine dataset

<3
L2
5]
k<)

SyN (def.)

CCA (aff.)
CCA (def.)

Fig. 3. Results of registration of canine dataset with LCCA. Left: Slice of atlas scan
with manual segmentation. Centre: Target scan with automatically transferred labels.
Right: Quantitative evaluation of Dice overlap shows improvement using our approach
with deformable (def.) registration (D=>55.5 %) compared to ANTs SyN (D=39.8 %).
When applying majority voting, LCCA achieves a segmentation accuracy of D=73.0%.

4 Conclusion

We have presented a novel similarity metric for registration of multispectral im-
ages. Local canonical correlation analysis (LCCA) is based on an established
statistical concept for multivariate variables. An efficient computational scheme
inspired by guided image filtering is used to calculate dense patch-wise similar-
ities. The main benefit of LCCA is its ability to find new linear relationships
across channels. Our new metric generalises established techniques, such as
NCC [3] and LC? [6], and works for images with an arbitrary number of chan-
nels. When applied to local histograms it is able to deal with multimodal data.
The validation results demonstrate its advantages over current state-of-the-art
methods especially for challenging multispectral data.

LCCA can be very useful in clinical practice where not always the same se-
quences are acquired for every patient and scanner parameters (e.g. repetition
time, flip angle) may vary. In future work, we plan to apply this concept within
an ongoing clinical study to improve the detection and segmentation of stroke le-
sions in multispectral MRI. A further application is its use to analyse sequences,
where time-points are not necessarily temporally aligned [1]. LCCA can also
be used to achieve rotational invariance for multidimensional orientated image
descriptors [18], removing the need for recalculation/reorientation of them. It
could also be used to find optimal correlations across feature-based image rep-
resentations. The metric can easily be applied to multi-atlas based label fusion
and extend it to multichannel images. Future work may investigate whether se-
lecting only the strongest correlations (akin to dimensionality reduction) and/or
the calculation of the eigenvector mapping on a coarser scale are beneficial.
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