
Discrete Tomography Reconstruction

Algorithms for Images with a Blocking
Component

Stefano Bilotta and Stefano Brocchi

Dipartimento di Matematica e Informatica ‘U. Dini’, Università di Firenze,
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Abstract. We study a problem involving the reconstruction of an image
from its horizontal and vertical projections in the case where some parts
of these projections are unavailable. The desired goal is to model appli-
cations where part of the x-rays used for the analysis of an object are
blocked by particularly dense components that do not allow the rays to
pass through the material. This is a common issue in many tomographic
scans, and while there are several heuristics to handle quite efficiently
the problem in applications, the underlying theory has not been exten-
sively developed. In this paper, we study the properties of consistency
and uniqueness of this problem, and we propose an efficient reconstruc-
tion algorithm. We also show how this task can be reduced to a network
flow problem, similarly to the standard reconstruction algorithm, allow-
ing the determination of a solution even in the case where some pixels
of the output image must have some prescribed values.

1 Introduction

Discrete tomography is the discipline that studies the reconstruction of discrete
sets from the partial information deriving from their projections. Its main mo-
tivation arises from applications that tackle the problem of obtaining informa-
tion about an object by examining the data obtained from the x-rays projected
through the material, as in medical scans. Differently from computerized tomog-
raphy, in discrete tomography we suppose that the pixels forming the original
image may have a limited set of discrete values, often only 0 or 1. This assump-
tion is reasonable in many cases where the object has a uniform density, and
allows the definition of efficient algorithms even upon availability of a limited
number of x-rays, as in [6].

In applications, often heuristic algorithms allow an efficient reconstruction,
but on the other hand determining exact algorithms for discrete tomography
reconstruction is often a hard task, as the involved problems in many cases
are highly undetermined or computationally intractable [12]. To tackle these
problems and to include some other information that may model effectively
properties of the image to be rebuilt, often discrete tomography problems include
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some prior knowledge that gives birth to many variations of the reconstruction
problem. Some examples that have been studied in literature include connectivity
and convexity [4,2], cell coloring [10,3] or skeletal properties [14,15]. Often, with
appropriate assumptions, the arising problems result to be connected to other
fields of study as timetabling [18], image compression [1], network flow [5], graph
theory [7] and combinatorics [13]. An excellent survey that can be examined for
some classical results is [16].

In this paper, we model a situation where, due to causes such as a very dense
block of material, some x-rays are blocked and do not provide measurements
for these zones of the object. This is a common problem in many tomograph-
ical applications that may cause artifacts in the rebuilt images, that in some
cases may reduce the quality of the reconstruction up to the point of making
the resulting image unusable, for example for diagnostic purposes in the case
of a medical scan. Many heuristics exists to reduce such artifacts, based on al-
gebraic approaches [20], statistical analysis [8], linear interpolation [17], partial
differential equations [9], and image impainting [11]. The described approaches
are often sufficient in applications, however to the best of our knowledge there
is no theoretical study that determines the basic properties of consistency and
uniqueness of these problems. In this paper, we answer these questions and we
propose an efficient reconstruction algorithm that uses the horizontal and ver-
tical projections. Differently from the cited works, this article does not have an
immediate practical application, but is aimed to develop the theory underlying
these problems. Here we consider as input of the problem projections in only two
directions; this assumption is quite typical in discrete tomography, as the recon-
struction problem of binary matrices from three of more projections is know to
be NP-complete [12].

The paper is organized as follows. In Section 2 we give some preliminaries and
describe the adopted notation. In Section 3 we describe some basic properties of
the problem, and how they relate to the classical reconstruction problems with-
out the blocking component. In Section 4 we describe an efficient reconstruction
algorithm for the problem. In Section 5 we show how the reconstruction is con-
nected with a flow problem; this result is a natural extension of the well known
reduction of the standard problem, and allows us to solve the reconstruction
even in the cases where some zones of the resulting image must be fixed to some
prescribed values. Finally, in Section 6 we discuss and draw some conclusions
with an insight on future developments.

2 Notation and Preliminaries

In this section we give a formal description of the studied problem. Classically, a
solution of a reconstruction problem is represented by a binary matrix containing
the values 0 and 1; we refer to the entries of the matrix as cells. In this paper, we
suppose that for some zones of an image the horizontal and vertical projections
that would account for some zones are unavailable, as if in a tomographical scan
the area corresponding to these pixels blocked the x-rays. We refer to this set
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of cells as a blocking component ; the image that we aim to rebuild hence also
contains a special symbol * in correspondence to the cells in this component.

Without loss of generality, the blocking component can be positioned in the
last columns and rows of the matrix, as we could relate to this situation any
other configuration by a rearrangement of the columns and of the rows. We
also suppose that the blocking component has a rectangular shape, as any other
shape would introduce some cells that do not contribute to neither the horizontal
nor the vertical projections, and that are not relevant to the formulation of the
problem. The problem is hence defined as follows:

Input: two integers kh and kv representing the size of the blocking component,
and two vectors of projections H = (h1, . . . , hn−kv ), V = (v1, . . . , vm−kh ).

Output: an n×m matrix A = (ai,j), such that:
- ∀ 1 ≤ i ≤ n− kv,

∑m
j=1 ai,j = hi;

- ∀ 1 ≤ j ≤ m− kh,
∑n

i=1 ai,j = vj ;
- ∀ ai,j : i > n− kv, j > m− kh then ai,j = ∗.

An interesting feature of our problem is that, due to the missing projections,
the sum of the horizontal and vertical projections may differ, but even in this
case, there may be a solution fitting the constraints. We define this difference
as D =

∑
j vj −

∑
i hi, and without loss of generality we consider D ≥ 0. In

Figure 1, we depicted an example of the problem with horizontal and vertical
projections, and with a blocking component covering two rows and two columns.
The vectors H and V represent the input of the problem, while the content of
the cells of the matrix represents one of the possible solutions.
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Fig. 1. An instance of the considered problem and a possible solution

3 Properties

From classical results in literature, we dispose of a theorem which guarantees
the existence of a solution of the standard reconstruction problem. In this case,
we want to rebuild a binary matrix with horizontal and vertical projections equal
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to H and V . Without loss of generality, hereafter we consider the vectors H and
V to be ordered, so h1 ≥ h2 ≥ h3 . . . and v1 ≥ v2 ≥ v3 . . .

Definition 1. For two vectors A,B of length n, then A ≤d B if for every j we
have

∑j
i=1 ai ≤

∑j
i=1 bi.

Theorem 1. (Ryser [19]) The reconstruction problem with projections H,V has
a solution if and only if H ≤d V ∗, where V ∗ = (v∗1 , v

∗
2 , . . . , v

∗
n) is defined as

v∗i = |{vj : vj ≥ i}|. The problem admits a unique solution if and only if H = V ∗.

In this section we formally define the reconstruction problem involving block-
ing components. For a simpler notation, we define a partition of the cells of a
matrix A in three different submatrices C,X and Y in order to be able to identify
immediately the relative position of each cell with a blocking component. These
three matrices are dependent from A, however we omit this dependency in the
notation. The cells in C are those who give contribution to both the horizontal
and vertical projections, while those in X and Y are only counted in one of the
two. We have:

– C = (ci,j) of size (n − kv) × (m − kh) with ci,j = ai,j for i ≤ n − kv and
j ≤ m− kh;

– X = (xi,j) of size (n− kv)× kh with xi,j = ai,m−kh+j for 1 ≤ j ≤ kh;
– Y = (yi,j) of size kv × (m− kh) with yi,j = an−kv+i,j for 1 ≤ i ≤ kv.

We define the operators H(M) and V (M) that extract the horizontal and
vertical projections of a generic matrix M . We use the following operators to
count the number of ones in each zone; we define NC(A) as

∑
ci,j , and similarly

we refer to NX(A) and NY (A); also N(A) =
∑

ai,j �=∗ ai,j . When the argument

of these operators is unambiguous, we omit the argument (A) of the function,
referring simply, for example, to NC or NX . Finally, NH =

∑
i hi and NV =∑

j vj .
One of the additional difficulties of our problem is that the number of cells in

H may be different from the ones in V , since some cells contribute only one of the
horizontal or vertical projections. In order to define a reconstruction algorithm,
one of the first steps is to determine correct values for NX and NY . As some
first trivial conditions, it must stand NC +NX +NY = N , and NY ≥ D. The
maximal number of cells MX (symmetrically, MY ) in the group X (resp. Y ) for
any solution of the problem is given by the following property.

Property 1. For any matrix A having V as vertical projections, we have NY ≤
MY , where MY is defined by MY =

∑
j min(vj , k

v).

Proof. To prove this simple property, it is sufficient to observe that NY > MY

would imply that on some column the number of cells equal to 1 would exceed
the height kv of the matrix Y or a vertical projection, bringing to a contradiction.

��
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Note that while the N operators have as argument a matrix, the M operators
are in dependence from the input of the problem. From this property and the
trivial condition NY = NX +D we obtain the following corollary.

Property 2. For any matrix A solution of a reconstruction problem with blocking
component, we have NY ≤ min(MY ,MX +D).

3.1 Switching Components and Unique Solutions

We recall that the cells inside the blocking component of a matrix A, i.e. the
elements ai,j such that i > n − kv and j > m − kh, are represented with the
special symbol ∗. We now define some switching operations that, starting from a
solution of a problem, enable us to build other matrices satisfying the problem
constraints. These operations are similar to the standard switches found in liter-
ature, but the presence of a blocking component leads to other types of switches
involving the symbol ∗. The possible switches are shown in Figure 2 (left); it is
easy to verify that all these operations do not alter the horizontal and vertical
projections of a matrix.

1 0

10

0 1

01

1 *

*0

0 *

*1

1 0

*0

1 0

**

0 1

**

0 1

*1

1 1

1

1

1 0

00

0

0

*

Fig. 2. (Left) Possible switches in our instances. The one in the upper left is the
classical switching operation in the standard reconstruction problem, while the other
three are introduced by the existence of a blocking component in the problem. (Right)
The only possible structure of a matrix with no switching components, assuming rows
and columns are ordered by projections.

Considering these four types of switch, we can state a uniqueness result. In
that aim, we first show the structure of a matrix A that does not contain any
of the switching components. We recall that since w.l.g. h1 ≥ h2 ≥ . . . and
v1 ≥ v2 ≥ . . ., then we have:

Theorem 2. Let A be a solution of a blocking component reconstruction prob-
lem. The matrix A does not contain any switching components if and only if
its partitions C, X and Y satisfy the conditions below, for the generic values
i ∈ [1, n] and j, j′ ∈ [1,m].

1. ∀i, j, j′ then xi,j = xi,j′ ;
2. ∀i, i′, j then yi,j = yi′,j;
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3. ∀xi,j = yi′,j′ then ci,j′ = xi,j = yi′,j′ ;
4. H(C) = V ∗(C).

Proof. Observe that to avoid switching components involving two equal sym-
bols * every row of X and every column of Y must contain only one of the
values (points 1 and 2). To prohibit switches with one *, we impose Condition
3, while rule 4 must be adopted in order to prevent the standard switching
operation. ��

In Figure 2 (right) we depicted a graphical representation of a matrix A
without any switching components. An example of a unique solution on a specific
problem instance can be seen in Figure 3.

In the standard reconstruction problem, the absence of switching components
is sufficient to prove that a matrix is the unique solution. In this problem, how-
ever, we may speculate about this fact, as two different solutions may exist,
but that there is no series of switching operations that transform one of them
into the other. The following theorem is necessary to show how this conjecture
turns out to be false, and furthermore its proof exhibits a procedure allowing
the determination of the unique solution if it exists.

Theorem 3. If a matrix with no switching components exists for a blocking
component reconstruction problem, then the given matrix is the only solution of
the problem.

Proof. Consider as input of the problem the dimension of the blocking compo-
nent described by kv and kh and the vectors of projections H = (h1, . . . , hn−kv ),
V = (v1, . . . , vm−kh). We shall determine, if possible, a value s ∈ [0, v1−kv] such
that for the kv elements in V ∗ from v∗s+1 to v∗s+kv , we have v∗s+1 = . . . = v∗s+kv =

r for some value r, and such that H = (v∗1 + kh, . . . , v∗s + kh, v∗s+kv+1, . . . , v
∗
v1).

The solution for the blocking component reconstruction problem is given by a
matrix A whose submatrices are defined uniquely by the following:

– H(C) = V ∗(C) = (v∗1 , . . . , v∗s , v∗s+kv+1, . . . , v
∗
v1);

– H(X) = (x1, . . . , xs) where xi = kh, 1 ≤ i ≤ s;
– V (Y ) = (y1, . . . , yr) where yj = kv, 1 ≤ j ≤ r.

Clearly, H(C)+H(X) = H and V (C)+V (Y ) = V ; note that knowing H(X)
and V (Y ) the matrices X and Y are trivially determined. By Theorem 2 each
solution with the previous structure does not admit any switching components.
Supposing that such solution exists, then we show that it is unique by proving
that there is only one possible value for s ∈ [0, v1 − kv]. Let us compute the
number of ones in the matrices C and X :

v1∑

i=1

v∗i −
s+kv
∑

i=s

v∗i + skh =

n−kv
∑

i=1

hi.

Since V ∗ is decreasing, then
∑s+kv

i=s v∗i is decreasing in s, and further skh grows
with s. From these properties, the left side of the equation is strictly increasing
with s, so this variable can have only one value to satisfy the equation. ��
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In Figure 3 we depicted a graphical representation of the unique solution for
the blocking component reconstruction problem having as input kv = 3, kh = 2,
H = (10, 8, 7, 7, 6, 6, 5, 2, 2, 1, 1) and V = (14, 12, 10, 6, 4, 2, 1, 1).

4 The Reconstruction Algorithm

In this section we describe the reconstruction algorithm for a problem with a
blocking component. The core of the procedure is defined by Algorithm 1 that
determines the vector V (Y ) given a fixed number NY =

∑
i vi(Y ). We remark

that the array V (Y ) contains the vertical projections of Y . Our goal is to define
V (Y ) such that the vector V − V (Y ) is the minimum that we can obtain with
respect to the dominance ordering; this property guarantees that if V − V (Y )
and H−H(X) are not consistent with a solution for the standard reconstruction
problem for matrix C, then any other configuration of X and Y cannot yield a
solution. Without loss of generality, we impose that the elements of both V and
V −V (Y ) are ordered. The idea of the procedure consists in determining a value
p such that for every element vi ≥ p we may set vi(Y ) ∈ {kv, vi − p, vi − p+ 1},
and for every element vi < p then vi(Y ) = 0. To compute p, the procedure uses
a vector T , containing the maximum number of cells that could be contained in
V (Y ) for every possible choice of p. Doing so, placing kv elements in the first
columns of V (Y ) and 0 in the last ones, we maximize the vector V − V (Y ) in
the dominance ordering. In Figure 4 is shown an example of the execution of
Algorithm 1, where kv = 3 and NY = 23.

It may be possible to compute the vectors T and Z with a closed formula,
but this algorithmic formulation simplifies the following proof.

Theorem 4. Consider a vector V and two fixed integers NY and kv, and call
V − V (Y ) the output of Algorithm 1 with input V,NY , kv. For any ordered

Horizontal projections 
= h  , h     , ...

k  equal values

Horizontal projections 
= h + k, h + k, ...h h

1 2

v

n n-1

V

k

k

v

h

Fig. 3. Computing the only solution without switching components. To the left, we
have the graphical representation of V , while to the right we can see the unique solution
of the problem.
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Algorithm 1. Determination of V (C)

1. Input: a vector V , two integers NY , kv

2. Z = [0, . . . , 0], T = [0, . . . , 0], p = 0
3. for i = 1 to m− kh do
4. for j = vi downto max(vi − kv + 1, 1) do
5. zj = zj + 1
6. end for
7. end for
8. tv1 = zv1
9. for i = v1 − 1 downto 1 do

10. ti = ti+1 + zi
11. end for
12. p = max

i
(ti ≥ NY )

13. for i = 1 to m− kh do
14. vi(y) = vi −max(vi − kv, p)
15. end for
16. r = NY −∑

i vi(Y )
17. b = max

i
(vi ≥ p)

18. for i = b downto b− r + 1 do
19. vi(Y ) = vi(Y ) + 1
20. end for
21. return V − V (Y )

vector V ′(Y ) such that
∑

i v
′
i(Y ) =

∑
i vi(Y ) and ∀i, v′i(Y ) ≤ min(kv, vi), we

have V − V (Y ) ≤d V − V ′(Y ).

Proof. (Sketch) Call K = V − V (Y ) and L = V − V ′(Y ), and suppose by
contradiction that it does not stand that K ≤d L, hence that for some index
i,
∑i

w=1 kw >
∑i

w=1 lw. Since
∑

w kw =
∑

w lw this implies that for some j >
i, kj < lj . Consider the value p computed in the procedure, and name a =
maxw(vw > p + kw) and b = minw(vw < p) (b is the same value as the one
computed in Algorithm 1). For w ≤ a then V (Y ) = kv, hence i > a. For w ≥ b,
then V (Y ) = 0, and i < j < b. By construction of the algorithm, it follows
that [ka+1, . . . , kb−1] = [p, . . . , p, p− 1, . . . , p− 1], hence no indexes i and j can

be found in this interval that satisfy the conditions
∑i

w=1 kw >
∑i

w=1 lw and
kj < lj , and also maintain the vector K ordered, hence this brings us to our
contradiction. ��

At this point we are ready to define formally our reconstruction procedure;
since we have proved that given a fixed NY , Algorithm 1 executes an optimal
choice for the cells in V (Y ) (resp. H(X)). Thanks to this property, to solve the
problem it would suffice to find an appropriate value for NY (resp. NY − D).
Unfortunately, we have not found yet a compact formula to determine this value.
For this reason, the following procedure, described by Algorithm 2, iterates on
all possible values until one yielding a solution is found.
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Fig. 4. The optimal choice for vector V (Y ); in grey, the maximum number of cells that
could be placed in each column given kv = 3. In this example, p = 3, hence every grey
cell at height > 3 contributes to V (Y ), while every cell of height < 3 doesn’t.

Algorithm 2. Reconstruction algorithm

1. Input: two vectors H and V , two integers kh and kv

2. for c = D to min(My,Mx +D) do
3. Determine V (Y ) and H(X) containing c and c−D cells using Algorithm 1
4. if (V − V (Y ))∗ ≤d H −H(X) then
5. Rebuild C with Ryser’s algorithm, fill X and Y according to H(X) and V (Y ),

exit for
6. end if
7. end for
8. If a solution has not been yet determined, return NO SOLUTION

5 A Network Flow Approach to Reconstruction

In this section, we show how the blocking component reconstruction problem
may be solved by means of a reduction to a network flow problem. It is well
known that the standard reconstruction problem can be solved by a network
flow approach; the procedure consists in considering a source for every hi with
capacity equal to the projection, a sink for every vj again with the appropriate
capacity, and a node for every cell (i, j) connected to the related source and sink
with arcs of capacity 1.

Beyond showing an interesting connection with an important research field,
this reduction also enables us to define a simple algorithm to solve the problem
in the case where we have some forbidden positions, i.e. cells that can not have
a value of 1. This can be useful in a variety of cases in applications, for example
if we already know the configuration of some areas of the image and we want to
include this information in the solution; note that positions where a cell must
have value 1 can be included in the formulation of the problem with forbidden
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positions, by simply subtracting 1 from the related projections and setting the
cell to a forbidden position. Using the network flow equivalence, we can solve
the problem by simply removing the nodes deriving from forbidden positions.
Hence by giving a similar reduction in our problem, we also trivially solve the
blocking component reconstruction problem with forbidden positions.

The idea of the construction is to compensate the difference in the projections
D with an artificial source. Since at least D cells of Y must be equal to 1 in
order to obtain a solution, we connect the source with capacity D to all of the
cells in Y ; further, since for every cell xi,j = 1, there must be an additional cell
in Y , we also connect the cells in X to every cell in Y .

Formally, the flow problem is composed by the following elements. To simplify
the notation, we refer to a node with the name of the related cell; every pair of
connected nodes has an edge of capacity 1 linking them. We call the following
problem the associate flow problem of the original reconstruction one:

– |H | sources of capacity h1, . . . , hn−kv ;
– 1 source of capacity D;
– |V | sinks of capacity v1, . . . , vm−kh ;
– |C| nodes, where ci,j is connected with source hi and sink vj ;
– |Y | nodes, where yi,j is connected to the source D, to the sink vj and with

every node in X ;
– |X | nodes, where xi,j is connected to each source hi and with every node

in Y .

The problem configuration is depicted in Figure 5, where the cells are repre-
sented by groups, and an edge labelled r represents a series of edges connecting
all nodes related by a column or row (as ci,j with hi) while unlabelled edges
represent connections between all possible pairs of the two groups.

Theorem 5. A reconstruction problem P admits a solution if and only if the
associate flow problem F has a solution.

Proof. (Sketch) From a solution of the flow problem, we can build a matrix that
is solution of P by simply setting to 1 every cell in F where the flow enters and

H

V

C X

Y

H D

C Y

V

Xr

r

rr

Fig. 5. Reducing an instance of the reconstruction problem to a flow problem
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exits. It is easy to verify that the projections match the input vectors H and V ,
as in F every sink and source receives (emits) a quantity of flow equivalent to
the contribution of the cell to the related projection.

Conversely, starting from a solution of P , we can build a solution of F in a
similar fashion, but while the edges connecting the groups H,C or C, V or H,X
are uniquely determined, we may have many ways to connect the cells in X,Y
and D,Y . Any choice yields a correct solution, as long as the number of cells to
select in the Y group is equal to D plus the number of nodes to select in the X
group, and this property follows immediately from the definition of D. ��

6 Conclusions

We have studied how the standard reconstruction problem in discrete tomogra-
phy can be extended to the case where some vertical and horizontal projections
are unavailable, as if a component of the scanned object blocked the x-rays used
to study the material. We defined a criteria to determine when a problem has
a unique solution, and we furnished two polynomial reconstruction algorithms.
One allows us to reduce the problem to the standard reconstruction, allowing
the usage of the efficient algorithms known in literature; the other transforms
the problem in a flow problem, allowing us to solve it even when we want some
prescribed values in the output image.

Since the existence of a blocking component is a recurring problem in some
applications, in future works it will be interesting to consider also other assump-
tions on the image that has to be rebuilt, describing realistic environments. For
example, it would be interesting to study how a reconstruction algorithm could
work if the image must represent a convex polyomino as in [4], or more gen-
erally if we have of some skeletal information as in [15]. Introducing the right
assumptions, this line of research could indeed obtain results that could be ap-
plied in tomographic applications dealing with reconstruction artifacts caused
by blocking components.
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