Back-Projection Filtration Inversion
of Discrete Projections

Imants Svalbe!, Andrew Kingston?, Nicolas Normand?,
and Henri Der Sarkissian®*

1 School of Physics, Monash University, Melbourne, Australia
imants.svalbe@monash.edu
2 Research School of Physical Sciences, Australian National University,
Canberra, Australia
andrew.kingston@anu.edu.au
3 LUNAM Université, Université de Nantes, IRCCyN UMR CNRS 6597,
Nantes, France
{nicolas.normand,henri.dersarkissian}@univ-nantes.fr
4 Keosys, Saint-Herblain, France

Abstract. We present a new, robust discrete back-projection filtration
algorithm to reconstruct digital images from close-to-minimal sets of ar-
bitrarily oriented discrete projected views. The discrete projections are
in the Mojette format, with either Dirac or Haar pixel sampling. The
strong aliasing in the raw image reconstructed by direct back-projection
is corrected via a de-convolution using the Fourier transform of the dis-
crete point-spread function (PSF) that was used for the forward projec-
tion. The de-convolution is regularised by applying an image-sized digital
weighting function to the raw PSF. These weights are obtained from the
set of back-projected points that partially tile the image area to be re-
constructed. This algorithm produces high quality reconstructions at and
even below the Katz sufficiency limit, which defines a minimal criterion
for projection sets that permit a unique discrete reconstruction for noise-
free data. As the number of input discrete projected views increases, the
PSF more fully tiles the discrete region to be reconstructed, the de-
convolution and its weighting mask become progressively less important.
This algorithm then merges asymptotically with the perfect reconstruc-
tion method found by Servieres et al in 2004. However the Servieres
approach, for which the PSF must exactly tile the full area of the recon-
structed image, requires O(N?) uniformly distributed projection angles
to reconstruct N X N data. The independence of each (back-) projected
view makes our algorithm robust to random, symmetrically distributed
noise. We present, as results, images reconstructed from sets of O(N)
projected view angles that are either uniformly distributed, randomly
selected, or clustered about orthogonal axes.
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1 Introduction

A Mojette projection of a 2D digital image Z is comprised of the sums of image
pixel intensities that are located along parallel lines, oriented at some set of an-
gles defined by pairs of co-prime integers, (p;, ¢;) [3]. A set of Mojette projections
can be used to reconstruct, either approximately or exactly, an image of the orig-
inal data. A discrete point-spread function (PSF) is defined by back-projection
of a single point by a set of projected views, (p;, ¢;). The PSF links the original
image data to the Dirac Mojette back-projected image, M,,, through:

M,y =T « PSF,, (1)

where * denotes spatial convolution.

The Mojette Transform (MT) [3], is one of several inherently discrete im-
age projection techniques, like the (closely related) Finite Radon Transform
(FRT) [9], where each image projection is defined explicitly by the discrete image
data. We prefer to approach image reconstruction by first defining the discrete
image that we want to display and then deciding what sets of projected views
are sufficient to reconstruct that image.

Our aim is to do tomography this way, i.e. to transform real, noisy projection
data into a form that is discretely Mojette-like as possible, and then use the
Mojette inverse to reconstruct the image.

Inversion from Mojette projection sets may also shine some theoretical light
on the Katz Criterion [6] used in discrete tomography. Katz showed that any
N x N image can be reconstructed exactly from a set of discrete projections
(pi, q;) provided max (3 |pi|, >_ |gi|) > N. Here we set K = maX(E\%I,ZIqH), S0
that K = 1 for a projection set at the Katz limit, whilst a set with K < 1 is
below the Katz limit and cannot reconstruct an exact image. Katz specifies the
spatial resolution and view angle requirements that permit exact digital inver-
sion, but says nothing about approximate reconstructions, the effect of noise,
the equivalence (or not) of different sets of angles, nor about the constraints
imposed by the dynamic range of quantised image values.

There are other algorithms to invert Mojette projections, but these methods
have severe limitations. The corner-based algorithm of Normand, and related
geometric techniques [10], work only for noise-free projection sets that satisfy or
exceed the Katz condition. Alternatively Mojette data can be mapped to the pe-
riodic form of the FRT, for which inversion by back-projection is exact, or else by
applying the central slice theorem using Fourier [9] or number-theoretic trans-
forms [1,2]. Direct inversion of the projection matrix is possible, but requires
inverting very large matrices that are often ill-posed. Other methods, such as
conjugate gradient [11] or partially ordered sets, require an iterative or statis-
tical approach [4] that negate the advantages of using a direct reconstruction
algorithm.

The intensity at each forward-projected Mojette bin is back-projected across
the image reconstruction space, along the same discrete lines along which that
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Fig. 1. Left to right: back-projected reconstruction of a single point using (a) 4, (b) 12
and (c) 60 discretely projected Dirac Mojette views. Image data confined to the area
inside the red circle in (¢) can be reconstructed exactly because the translated PSFs
(green circles) intersect back-projected pixels that all have zero intensity.

data was projected (but with the mean projected sum, not the individual pixel
values that make up each sum). The back-projection method is “blind” to other
values in the projection data, it does not try to uncouple projection bins and pixel
values. A back-projection algorithm is then tolerant of noise on the projections;
it uses the same method for whatever data lies in each projection bin.

2 Image Reconstruction and the Discrete PSF

Fig. la shows four back-projected rays (at angles (+1,2),(£2,1)) for a single
point located at the centre of an image. Back-projecting intensity values of 1.0
at the peak and —1/(4 — 1) elsewhere, results in a normalised intensity of 1.0
at their intersection point, zero along the projected rays and —0.333 elsewhere.
Back-projecting 12 symmetric projections ((1,2), (1,3) and (2, 3) in Fig. 1b) with
intensity 1.0 or —1/(12 — 1) gives 1.0 at the intersection point, zero along each
of the 12 projected rays, and —0.0909 elsewhere. Fig. 1c shows the normalised
Mojette back-projection for 60 projected views (the symmetric set of shortest
vectors (p,q) = (0,1) to (£3,7)), yielding a centre value of 1.0 (white), the
central circular region has value zero (grey), other pixels have value —1/59.
Note how the zero pixels increasingly tile the region that surrounds the in-
tersection point. All translations of this PSF inside the red circle in Fig. 1c
can be reconstructed exactly (as a single 1 on a background of 0). A PSF can
only be translated as far as the green circles in that figure, before the negative
background value (here the black pixels) will cause reconstruction errors. For a
59 x 59 image, 3208 Mojette projections ((0,1) to (31,49)) are needed to uni-
formly tile a disc of radius R = 58 (since 312 + 492 = 3362 and 582 = 3364).
Hence direct, unfiltered, back-projection of discrete Mojette data works exactly,
but it requires approximately (g)Q 2N (2N — 1) views to reconstruct an N x N
image [13]. This result confirmed earlier work done by Servieres [12]. The shape
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of the image region of interest (ROI) also matters, as it determines how many,
and which, array pixels need to be exactly tiled by the discrete PSF.

If you have only M < N? views, you can try to interpolate the missing
N2 — M views that you don’t know, using the M views that you do know [13,12].
For example, we can synthesize the projected view for (13,14) from the known
projection for (1, 1). Interpolation of digital profiles is tough work, especially for
Dirac rather than the smoother Haar or higher-order spline projections.

If the image array is assumed to be periodic, the continuation of each projected
ray (other than for (1,0) and (0,1)) will pass across the ROI several times,
increasing the number of pixels that are filled by back-projection.

For the FRT [9], where the array size is prime, p X p, and for composite
N x N arrays [7,8], periodic back-projection can fully tile the ROI, the PSF is
then “perfect”, making exact inversion possible with O(N) projections from an
N x N image. A reconstruction method, for uniformly-distributed angle sets,
that merges elements of the discrete Mojette, Fourier and compressed sensing
techniques appeared recently [5].

2.1 Reconstruction of Images Using a Finite, Discrete PSF

Consider a finite PSF, such as our previous example composed of 60 views, which
reconstructs, perfectly, any image inside the red circle of Fig. 2a. If we try to
use this PSF to reconstruct a larger circular ROI (e.g. 60 x 60, the blue circle
in Fig. 2a), we need to correct for each of the discrete un-corrected negative
contributions that fall outside the flat zone of the blue PSF, i.e. all of the black
points that lie inside the green circle shown in Fig. 2a.

A discrete, back-projected image, M, reconstructed from a set of view an-
gles, (p,q), is exactly equivalent to convolution of the discrete PSF with the
original image, Z. This follows from the definition of discrete back-projection for
Dirac Mojette data [3]. This is easy to demonstrate; Fig. 3 shows an original im-
age, Z, and the direct back-projected image, M,,, for the set of 60 (p, q) angles
shown in Fig. 2. The back-projected image is identical to the convolution of the
original image data by the PSF shown in Fig. 2 (the differences on subtraction
are O(107%) and result from finite float computational precision). Then,

Mypg * PSF, ! =T (2)

= e ) )

where F{-} denotes the 2D finite Fourier transform (FFT) of the zero-padded
image data. Equation (3) is the basis for the de-convolution process presented in
this work. Recovery of Z from the direct, back-projected image M, is contingent
on the FFT of the PSF being well-conditioned or regularised. To ensure these
conditions, a weighted version of the raw PSF, denoted as PSF* in equation (6),
is then used in (3).
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Fig. 2. Left: (a) Normalised, back-projected PSF reconstructed from 60 discrete pro-
jections at angles (p,q) using the shortest vector lengths (white = 1, grey = 0, black
< 0). Images confined inside the red circle (with a diameter of about 23 pixels) can be
reconstructed exactly by direct back-projection. Reconstruction of images lying inside
the blue circle, with diameter 60 pixels, using the same 60 projected views, requires
correction for all of the missing (black) back-projected points the lie inside the green
circle with diameter 120 pixels. Right: (b) a 3D view of the PSF in (a).

Fig. 3. (a): Original image Z, circular ROI diameter 60 pixels. (b): Raw back-projected
reconstruction from 60 discrete Mojette views of the original data. Image (b) is exactly
the same as the result obtained by convolving image (a) with the discrete PSF shown
in Fig. 2b. (c¢): Reconstructed image from the 416 Mojette shortest (p, q) views (65 x 65
pixels, K = 57 > 1), PSNR = 46.62, MSE = 1.30. This is about 10% of the number of
views required for exact, unfiltered Mojette back-projection. (d): reconstruction errors
for this image are structural and arise from inversion of the PSF; they are not evidently
strongly image-related.

2.2 Image Reconstruction Examples with K > 1

We verify this approach by applying (3) to reconstruct images from discrete
projection sets comprised of many views, but far fewer than the O(N?) views
required for exact N x N reconstruction. Fig. 3¢ shows an example image, recon-
structed from 416 Mojette projections, that were obtained from a circular ROI
in 65 x 65 discrete image data (a cropped portion of the “cameraman” image).
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Adding normally distributed noise to each of the 416 projections only slightly
reduced the reconstructed image PSNR (from 46.62 to 43.8 + 0.2), confirming
the robustness of the back-projection approach. The reconstructed images for
K > 1 are of high quality, but our aim here is to reduce the number of discrete
projections required, so that K ~ 1, or preferably, K < 1. Using fewer projection
directions makes the outer zones of the PSF increasingly sparse and the flat
zone of zeros smaller, so that the PSF inverse becomes less well-conditioned and
requires some regularisation.

3 Regularisation of the PSF

Our approach to recover images for projection sets where K ~ 1, is to weight
the image of the PSF, in the form as shown in Fig. 2, so that the outer regions of
the PSF are made smoother and closer to zero, whilst preserving the central flat
zone. These weights should be smooth and close to unity for O(N?) projected
views, where no or little correction of the back-projected image is required.
For increasingly sparse views, the weights should be closer to zero around the
periphery of the PSF, and remain strongly discretised along those directions
where more correction is needed.

For sets of projected views that exceed the Katz Criterion (K > 1), we con-
struct a weight function, that we call W,,,, that reflects the correlation between
the spatial distribution of points across the region of support in the PSF that are
correctly back-projected and the distribution of points where the back-projected
data is absent.

We generate first an image (p) of the PSF that contains the correctly back-
projected points over the region of image support. These points are set to one,
all other points are set to zero. We generate a second image (n) of the PSF that
contains the (complementary) set of uncorrected back-projected points over the
region of image support. These points are set to one, all other points are set
to zero. We then cross-correlate these distributions, across the full extent of the
back-projected space, as

Wi = (p%n) * (D » D) (4)

where x denotes the cross-correlation product and D has the uniform value of
1 over the image region of support and is otherwise zero. Pixels of W, that
fall within the central flat zone of the PSF (the area of perfect reconstruction)
should not be down-weighted, so the weight for these pixels is set to 1. The
function W, is then normalised to have maximum value 1, as shown in Fig. 4a.
For sets of projected views that fall below the Katz Criterion (K < 1), the
back-projected area becomes increasingly sparse outside the small flat central
zone of exact reconstruction and the region of support, D, plays an increasingly
smaller contribution. For these cases, the weight function, that we call T}, is
constructed as a direct correlation of the spatial distributions of the correctly
back-projected points in the PSF vs the non-back-projected points;

Tpn=p*n (5)
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Fig. 4. Top row: (a-b) Left: (a) Weight function Wp,, for the PSF for the set of 52
angles ((1,0) to (£2,7)), 63 x 63 image, circular region of support. Right: (b) Weight
function Tpy, for the same PSF as in (a).

Bottom row: (c-d) Left: (¢) The PSF weighted by Wy, for K > 1. Right: (d) the PSF
weighted by Tpn for K < 1. The central spike of the PSF has been suppressed here to
enhance the display of the small values at the periphery.

The weights for those pixels that lie within the central flat zone of the PSF
are set to 1, with the net result normalised, as shown in Fig. 4b. Weights W),
and T}, multiply, point to point, the raw PSF image values,

(6)

ppt _ 4 PSEO Wy, if K > 1
|\ PSFOT,,, ifK<1

where ® denotes the element-wise multiplication of 2D vectors.

4 Reconstruction Results for De-convolution of
Back-Projected Images Using the Weighted PSF

We applied the weightings W, and T}, to the PSF (as shown in Fig. 4c,d) and
recorded the PSNR for images that were reconstructed, using equations (3) and
(6), for varying numbers of projected views. Here all angle sets are comprised
of the shortest (p, ¢) vectors. The results are given in Table 1 for image sizes of
63 x 63 and 127 x 127, respectively. At the Katz point, K = 1, the PSNR values
for reconstruction from projections after adding normally distributed noise have
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Table 1. PSNR values for two images of sizes of 63 x 63 and 127 x 127, reconstructed
using a weighted PSF, as a function of the number of projected views (shortest (p,q)
vector angle sets)

Image size K (Katz’ value) Projections count Weight Wpy, Weight Tpr
0.59 20 18.89 18.67
0.81 24 19.98 19.93
1 28 21.63 21.63

63 x 63 1.22 32 22.92 22.73
2.52 52 27.61 26.76
3.67 64 30.08 28.54
6.46 96 34.34 31.06
9.89 128 35.74 31.62
0.5 28 17.77 17.78
0.61 32 18.90 18.75
0.73 36 19.30 19.38
0.84 40 20.30 20.09

127 x 127 0.98 44 21.35 20.92
1.11 48 22.54 21.66
3.2 96 29.70 26.95
4.91 128 32.74 28.55
9.11 192 35.01 29.44

also been included. Those results provide further confirmation of the robustness
of our direct inversion method.

We observed that weight W), performs better for K > 1, whilst the recon-
struction results for weight 7},, become slightly better than for weight W, for
K < 1, especially in larger images. For example, a 509 x 509 portion of the Lena
image, reconstructed using the 96 shortest angles, where K = 0.8, yields a PSNR
of 19.80 for T}, and 18.41 for Wp,,.

The only other tool used to regularise the inverse of the PSF is to apply
a threshold test to the Fourier coefficient values before taking their inverse. If
the Fourier coefficient of the (weighted) PSF at (u,v) was less than a selected
fixed value, that coefficient was set to the mean of all above-threshold 3 x 3
neighbouring coefficients. The choice of this threshold value turned out to be
relatively insensitive; optimising its value made relatively small differences to
the final PSNR values. When reconstructing any images, we keep track of the
number of times the threshold is reached, to indicate if the threshold needs to
be modified. For example, at K = 0.59, for 20 angles, PSNR = 18.89 improves
to 19.45 after scanning across a range of threshold values to optimise the PSNR.

The size of the zero-padded region can be adjusted to be made (symmetrically)
slightly smaller or larger. This can change the reconstructed PSNR (again, only
slightly), as it may affect the degree of aliasing by the discretisation of the finite
Fourier transform at specific frequencies.
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(a)

Fig. 5. Reconstruction of an image from a clustered set of 52 projection angles
(£1,4), (£i,1);0 < ¢ < 13}, for which K = 3.29. Left: (a) the raw clustered view
PSF (125 x 125). Right: (b) the reconstructed image (63 x 63, using weight T}y, ), with
PSNR = 23.33. After adding normally distributed noise, PSNR, = 23.1 + 0.1.

5 Reconstruction Using Different Distributions of
Projected View Angles

5.1 Clustered Projection Angles

We reconstructed images from sets of projected views that are clustered around
0° or around 90°. We do this by selecting discrete angles (p, ¢) corresponding to
(£1,4) and (£, 1), for integers 0 < ¢ < n. To maintain four-fold angle symmetry,
we usually increment the number of angles in steps of 4. The strongly non-
uniform distribution of angles makes the shape of the PSF less uniform and
thus more difficult to correct. Here the discrete weight T,, (PSNR = 23.33)
performs better than weight W,,,, (PSNR = 20.08), even for K > 1. An example
reconstructed image is shown in Fig. 5.

5.2 Randomly Distributed Projection Angles

We generated a random set of M projection angles selected from a range of
(p, q) vectors that was three times larger than for the shortest angle set for M
projections. As p and ¢ can now be much larger than for the shortest set, the
number of bins in these projections, as given by nwin = (|p| + |¢|)(N — 1) + 1, is
also larger.

Whilst randomising the projection angles generally decreases the reconstructed
image quality because the PSF is less uniform, the use of large p and ¢ values
generally improves the discrete reconstructions. The large |p| + |¢| discrete pro-
jections are less heavily summed, because there are more projection bins, but the
projected ray passing into each bin intersects fewer pixels. Forcing the inclusion
of the projections (1,0), (0,1) and (1, 1) as part of the “random” set improves
the results, as those projections carry significant information about the image.
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(a) (b)

Fig. 6. (a-b): PSF (125x125) for two random sets of 52 projection angles. (a): Including
(1,0), (0,1) and (£1,1). (b): Excluding (1,0), (0,1) and (+1,1). (c): Corresponding
63 x 63 reconstructed images using filter Wp,. Top image, PSNR = 31.31, bottom
image, PSNR = 26.33. After adding normally distributed noise PSNR = 27 + 1 and
24.5 £ 1 respectively.

(a) (b)

Fig. 7. (a): Raw discrete PSF (129 x 129) for the 440 shortest (p, ¢) angles. The high-
lighted portion of the rows and columns 60 pixels away from the PSF centre are heavily
tiled by back-projection. In contrast, pixels along the rows and columns a prime dis-
tance from the centre (e.g. 59 and 61) are sparsely tiled. (b): Differences in the discrete

PSF for the projection sets comprised of the 440 and 416 shortest angles emphasize
the bias towards better reconstruction along the horizontal and vertical directions.

The PSF weight W, performs slightly better here (mean PSNR = 28.5+£1.5)
than does weight T}, (mean PSNR = 25.5 £+ 1.5), as the view angles are, on
average, more uniform and K > 1. Here K = 4.5 + 0.3, see Fig. 6.

5.3 Discrete Image Reconstruction Errors

Our reconstruction errors occur predominantly along the image rows, columns
and diagonals (as in Fig. 3). Partly this effect may be due to the method we
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used to weight and invert the PSF, but another contribution comes from the
non-random distribution of (p, ¢) points as they get back-projected.The number
of back-projected points and their inclusion in the PSF depends on the set of
(p, q) view angles, but also on the size of the image ROI to be reconstructed.

Fig. 7a shows a PSF back-projected from the 440 discrete shortest (p, q) an-
gles (as a 129 x 129 pixel image). Entries in the PSF that arise from projec-
tion (p,q) are back-projected as points located (np,nq) pixels from the centre
of the PSF. Many back-projected points will lie on columns or rows that are
60 pixels distant from the centre, as n can be any of the many factors of 60;
n=1{2,3,4,5,6,10,12,15,20,30}.

However the PSF has few (almost zero) back-projected points along columns
or rows located 59 and 61 pixels from the centre, as these numbers are prime.
A 61 x 61 portion from the image in Fig. 3¢ reconstructs (using an unweighted
PSF at 440 shortest views) with a PSNR of 41.76, whereas a 59 x 59 portion of
the same data reconstructs with PSNR = 47.68, using identical views. Including
or excluding row and column 60 from the reconstructed ROI makes a large
difference to the PSF that, in turn, affects the reconstructed PSNR.

Strong, local changes at the edges of the PSF may also explain why we obtain
reconstructions for 65 x 65 images using 416 angles (PSNR = 46.62, last (p, q) =
(12,17)) that are, uncharacteristically, slightly better than those for a much
larger angle set of 440 views (PSNR = 46.41, last (p,q) = (4,21)). For 63 x 63
images we obtain PSNR = 45.52 for 416 views, PSNR = 46.69 at 440 views,
because part of the outer circle of back-projected points shown in Fig. 7b (arising
from the (4,21) view), are now excluded.

6 Summary, Conclusions and Future Work

We presented, in this work, an approach to reconstructions that uses a weighted
version of the raw back-projected discrete PSF to recover, by direct de-
convolution, the original digital image from its direct back-projected reconstruc-
tion. As this is a linear system, the same approach could equally be achieved by
filtering the Mojette data in 1D before back-projection, as was originally sug-
gested by Andrew Kingston. Correction of 3D back-projected images, via the
inverse of the 3D PSF, is a natural extension of this 2D approach.

This filtered back-projection approach also tolerates the presence of significant
levels of noise in the projected data. Computation of these filtered back-projected
images is fast to compute, especially if the Fourier transform of the discrete PSF
and the associated weight functions (T, or Wp,) are known.

The relatively high accuracy of our reconstructions and the rapidity with
which they can be obtained would provide high quality initial-image estimates
that may enhance the convergence rate for slower, statistical iterative recon-
struction methods.

The use of an exact, algebraic approach to pre-filter each projection also
seems possible. Nicolas Normand has shown that direct inversion is possible
for projection data cast as a Vandermonde matrix and has also shown that
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Moore-Penrose pseudo-inverse techniques may be used to invert projection ma-
trices (unpublished work). These new techniques complement the existing “row-
solving” techniques [1,2] or methods based on the central-slice theorem [9] that
map between Mojette (or FRT) data and image space.

An enhanced ability to invert arbitrary sets of Mojette data will permit de-
tailed studies to be undertaken to understand how the grey-level quantisation of
a digital image affects image reconstruction, as seen via the Katz criterion. Our
method has already been applied to reconstruct binary and ternary image data
from sparse sets of discrete projections (unpublished work).
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