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Abstract. Reeb graphs are combinatorial signatures that capture shape
properties from the perspective of a chosen function. One of the most
important questions is whether Reeb graphs are robust against function
perturbations that may occur because of noise and approximation errors
in the data acquisition process. In this work we tackle the problem of
stability by providing an editing distance between Reeb graphs of ori-
entable surfaces in terms of the cost necessary to transform one graph
into another by edit operations. Our main result is that the editing dis-
tance between two Reeb graphs is upper bounded by the extent of the
difference of the associated functions, measured by the maximum norm.
This yields the stability property under function perturbations.

Keywords: Shape similarity, editing distance, Morse function.

1 Introduction

In shape comparison, a widely used scheme is to measure the dissimilarity be-
tween signatures associated with each shape rather than match shapes directly
[14,12,18].

Reeb graphs are signatures describing shapes from topological and geometrical
perspectives. In this framework, shapes are modeled as spaces X endowed with
scalar functions f . The role of f is to explore geometrical properties of the space
X . The Reeb graph of f : X → R is obtained by shrinking each connected
component of a level set of f to a single point [15].

Reeb graphs have been used as an effective tool for shape analysis and de-
scription tasks since [17,16]. The Reeb graph has a number of characteristics that
make it useful as a search key for 3D objects. First, a Reeb graph always consists
of a one-dimensional graph structure and does not have any higher dimension
components such as the degenerate surface that can occur in a medial axis. Sec-
ond, by defining the function appropriately, it is possible to construct a Reeb
graph that is invariant to translation and rotation, or even more complicated
isometries of the shape.
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One of the most important questions is whether Reeb graphs are robust
against perturbations that may occur because of noise and approximation er-
rors in the data acquisition process. Heuristics have been developed so that the
Reeb graph turns out to be resistant to connectivity changes caused by simpli-
fication, subdivision and remesh, and robust against noise and certain changes
due to deformation [10,4].

In this paper we tackle the robustness problem for Reeb graphs from a the-
oretical point of view. The main idea is to generalize to the case of surfaces
the techniques developed in [6] to prove the stability of Reeb graphs of curves
against function perturbations. Indeed the case of surfaces appears as the most
interesting area of applications of the Reeb graph as a shape descriptor.

To this end, we introduce a combinatorial dissimilarity measure, called an
editing distance, between Reeb graphs of surfaces in terms of the cost necessary
to transform one graph into another by edit operations. Thus our editing distance
between Reeb graphs belongs to the family of Graph Edit Distances [9], widely
used in pattern analysis. As shown in [9], some of these Graph Edit Distances
are metrics, some other are only pseudo-metrics. Our editing distance turns out
to have all the properties of a pseudo-metric. The main result we provide is that
the editing distance between two Reeb graphs is never greater than the extent
of the difference of the associated functions, measured by the maximum norm,
yielding the stability property under function perturbations.

In the literature, some other comparison methodologies have been proposed
to compare Reeb graphs and estimate the similarity of the shapes described by
Reeb graph.

In [10] the authors propose a Multiresolutional Reeb Graph (MRG) based on
geodesic distance. Similarity between 3D shapes is calculated using a coarse-to-
fine strategy while preserving the topological consistency of the graph structures
to provide a fast and efficient estimation of similarity and correspondence be-
tween shapes.

In [4] the authors discuss a method for measuring the similarity and recog-
nizing sub-part correspondences of 3D shapes, based on the synergy of a struc-
tural descriptor, like the Extended Reeb Graph, with a geometric descriptor, like
spherical harmonics.

Although the matching frameworks proposed in [10] and [4] are characterized
by several computational advantages, the methods provided for Reeb graphs
comparison have not been proved to be stable with respect to noise in the data,
differently from the method proposed here.

Only recently the problem of Reeb graph stability has been investigated from
the theoretical point of view.

In [6] an editing distance between Reeb graphs of curves endowed with Morse
functions is introduced and shown to yield stability. Importantly, despite the
combinatorial nature of this distance, it coincides with the natural pseudo-
distance between shapes [8], thus showing the maximal discriminative power
for this sort of distances.
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The work in [2] about a stable distance for merge trees is also pertinent to the
stability problem for Reeb graphs: merge trees are known to determine contour
trees, that are Reeb graphs for simple domains.

Recently a functional distortion distance between Reeb graphs has been pro-
posed in the preprint [1], with proven stable and discriminative properties. The
functional distortion distance is intrinsically continuous, whereas the editing dis-
tance we propose is combinatorial.

In conclusion, the novelty of this paper is the announcement of a new com-
binatorial method to compare Reeb graphs in a stable way when shapes can be
modeled as surfaces. An outline of the proof of this stability result is also given
here, while full details and technicalities can be found in the technical report [7].

Outline. Section 2 reviews Reeb graphs. Section 3 introduces the admissible
editing deformations to transform Reeb graphs into each other. In Section 4 the
editing distance is defined. Section 5 illustrates the stability of Reeb graphs with
respect to the editing distance. Section 6 concludes the paper.

2 Preliminaries on Reeb Graphs

An overview of the properties of Reeb graphs from the mathematical foundations
to its history in the Computer Graphics context can be found in [3].

Since the main focus of this paper is on theoretical aspects, and computational
issues being postponed to a future research, the appropriate setting for studying
Reeb graphs is the following one.

M is a smooth (i.e. differentiable of class at least C2) closed (i.e. compact
and without boundary) orientable surface, and f : M → R is a simple Morse
function on M, i.e., a smooth function such that its Hessian matrix at each
critical point is non-singular and, for every two distinct critical points p and q
of f , the associated critical level sets f−1(f(p)) and f−1(f(q)) are disjoint.

Definition 1. For every p, q ∈ M, set p ∼ q whenever p, q belong to the same
connected component of f−1(f(p)). The quotient space M/ ∼ is a finite and
connected simplicial complex of dimension 1 known as the Reeb graph associated
with f .

Hence, the Reeb graph of a simple Morse function f : M → R is a graph whose
vertices are the connected components of the critical levels of f that contain a
critical point.

The Reeb graph associated with f will be denoted by Γf , its vertex set by
V (Γf ), and its edge set by E(Γf ). Moreover, if v1, v2 ∈ V (Γf ) are adjacent
vertices, i.e., connected by an edge, we will write e(v1, v2) ∈ E(Γf ).

The critical points of f correspond bijectively to the vertices of Γf . In partic-
ular, the assumption that M is orientable ensures that the vertices of Γf can be
either of degree 1 (when corresponding to minima or maxima of f), or of degree
3 (when corresponding to saddles of f). Moreover, if M has genus g, Γf has
exactly g linearly independent cycles.
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In what follows, we label each vertex of Γf by the value taken by f at the
corresponding critical point. We denote such a labeled graph by (Γf , �f ), where
�f : V (Γf ) → R is the restriction of f : M → R to the set of its critical points.
In a labeled Reeb graph, each vertex v of degree 3 has at least two of its adjacent
vertices, say w,w′, such that �f(w) < �f (v) < �f(w

′). An example is displayed
in Figure 1.

M (Γf , �f )
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Fig. 1. Left: the height function f : M → R; center: the surface M of genus g = 2;
right: the associated labeled Reeb graph (Γf , �f )

Following [13], it can be seen that, given a graph on an even number of vertices,
all of which are of degree 1 or 3, appropriately labeled, there is a simple Morse
function whose labeled Reeb graph is the given one. This result requires the
following definition.

Definition 2. We shall say that two labeled Reeb graphs (Γf , �f), (Γg , �g) are
isomorphic, and we write (Γf , �f) ∼= (Γg, �g), if there exists a graph isomorphism
Φ : V (Γf ) → V (Γg) such that, for every v ∈ V (Γf ), f(v) = g(Φ(v)) (i.e. Φ
preserves edges and vertices labels).

Proposition 1 (Realization theorem). Let (G, �) be a labeled graph, where
G is a graph with m linearly independent cycles, on an even number of vertices,
all of which are of degree 1 or 3, and � : V (G) → R is an injective function
such that, for any vertex v of degree 3, at least two among its adjacent vertices,
say w,w′, are such that �(w) < �(v) < �(w′). Then an orientable closed surface
M of genus g = m, and a simple Morse function f : M → R exist such that
(Γf , �f ) ∼= (G, �).

One may wonder if such surface and function are also unique, up to labeled
graph isomorphism. Following [7], we answer to this question by considering
two equivalence relations on the space of functions, and studying how they are
mirrored by Reeb graphs isomorphisms.

Definition 3. Let D(M) be the set of self-diffeomorphisms of M. Two simple
Morse functions f, g : M → R are called right-equivalent if there exists ξ ∈
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D(M) such that f = g ◦ ξ. Moreover, f, g are called right-left equivalent if there
exist ξ ∈ D(M) and an orientation preserving self-diffeomorphism η of R such
that f = η ◦ g ◦ ξ.

Proposition 2 (Uniqueness theorem). If f, g are simple Morse functions on
a closed surface, then

1. f and g are right-left equivalent if and only if their Reeb graphs Γf and Γg

are isomorphic by an isomorphism that preserves the vertex order;
2. f and g are right-equivalent if and only if their labeled Reeb graphs (Γf , �f)

and (Γg, �g) are isomorphic.

3 Editing Deformations

In this section we present the moves that allow to edit Reeb graphs into each
other. Basically, these moves amount to finite ordered sequences of elementary
deformations.

Elementary deformations allow us to transform a Reeb graph into another
with either a different number of vertices (birth (B) and death (D)), or with the
same number of vertices endowed with different labels (relabeling (R) and moves
by Kudryavtseva (K1), (K2), (K3) [11]). We underline that the definition of the
deformations of type (B), (D) and (R) is essentially different from the definition
of analogous deformations in the case of Reeb graphs of curves as given in [6],
even if the associated cost will be the same (see Section 4). This is because the
degree of the involved vertices is 2 for Reeb graphs of closed curves, 1 and 3 for
Reeb graphs of surfaces.

Definition 4. With the convention of denoting the open interval with endpoints
a, b by ]a, b[, the elementary deformations (B), (D), (R), (Ki), i = 1, 2, 3, can be
defined as follows.

(B) For a fixed edge e(v1, v2) ∈ E(Γf ), with �f(v1) < �f (v2), T is an elementary
deformation of (Γf , �f) of type (B) if T (Γf , �f) is a labeled Reeb graph
(Γg, �g) such that

• V (Γg) = V (Γf ) ∪ {u1, u2};
• E(Γg) = (E(Γf )− {e(v1, v2)}) ∪ {e(v1, u1), e(u1, u2), e(u2, v2)};
• �f (v1) < �g(ui) < �g(uj) < �f (v2), with �−1

g (]�g(ui), �g(uj)[) = ∅, i, j ∈
{1, 2}, i �= j, and �g |V (Γf )

= �f .

(D) For fixed edges e(v1, u1), e(u1, u2), e(u1, v2) ∈ E(Γf ), u2 being of degree 1,
such that �f (v1) < �f(ui) < �f (uj) < �f (v2), with �−1

f (]�f (ui), �f (uj)[) =
∅, i, j ∈ {1, 2}, i �= j, T is an elementary deformation of (Γf , �f) of type
(D) if T (Γf , �f ) is a labeled Reeb graph (Γg, �g) such that

• V (Γg) = V (Γf )− {u1, u2};
• E(Γg) = (E(Γf )− {e(v1, u1), e(u1, u2), e(u2, v2)}) ∪ {e(v1, v2)};
• �g = �f |V (Γf )−{u1,u2}.
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(R) T is an elementary deformation of (Γf , �f ) of type (R) if T (Γf , �f ) is a
labeled Reeb graph (Γg, �g) such that
• Γg = Γf ;
• �g : V (G) → R induces the same vertex-order as �f except for at most
two non-adjacent vertices, say u1, u2, for which, if �f(u1) < �f(u2)
and �−1

f (]�f (u1), �f (u2)[) = ∅, then �g(u1) > �g(u2), and �−1
g (]�g(u2),

�g(u1)[) = ∅.
(K1) For fixed edges e(v1, u1), e(u1, u2), e(u1, v4), e(u2, v2), e(u2, v3) ∈ E(Γf ),

with two among v2, v3, v4 possibly coincident, and either �f(v1) < �f (u1) <
�f (u2) < �f (v2), �f (v3), �f(v4), with �−1

f (]�f (u1), �f (u2)[) = ∅, or �f (v2),

�f (v3), �f (v4) < �f(u2) < �f(u1) < �f(v1), with �−1
f (]�f (u2), �f (u1)[) = ∅,

T is an elementary deformation of (Γf , �f) of type (K1) if T (Γf , �f) is a
labeled Reeb graph (Γg, �g) such that:
• V (Γg) = V (Γf );
• E(Γg) = (E(Γf )− {e(v1, u1), e(u2, v2)}) ∪ {e(v1, u2), e(u1, v2)};
• �g|V (Γg)−{u1,u2} = �f , and either �f (v1) < �g(u2) < �g(u1) < �f (v2),

�f (v3), �f (v4), with �−1
g (]�g(u2), �g(u1)[) = ∅, or �f(v2), �f(v3), �f (v4) <

�g(u1) < �g(u2) < �f(v1), with �−1
g (]�g(u1), �g(u2)[) = ∅.

(K2) For fixed edges e(v1, u1), e(u1, u2), e(v2, u1), e(u2, v3), e(u2, v4) ∈ E(Γf ),
with u1, u2 of degree 3, v2, v3 possibly coincident with v1, v4, respectively,
and �f (v1), �f(v2) < �f(u1) < �f (u2) < �f (v3), �f (v4), with �−1

f (]�f (u1),
�f (u2)[) = ∅, T is an elementary deformation of (Γf , �f ) of type (K2) if
T (Γf , �f ) is a labeled Reeb graph (Γg, �g) such that:
• V (Γg) = V (Γf );
• E(Γg) = (E(Γf )− e(v1, u1), e(u2, v3)}) ∪ {e(u1, v3), e(v1, u2)};
• �g|V (Γg)−{u1,u2} = �f and �f(v1), �f (v2) < �g(u2) < �g(u1) < �f (v3),

�f (v4), with �−1
g (]�g(u2), �g(u1)[) = ∅.

(K3) For fixed edges e(v1, u2), e(u1, u2), e(v2, u1), e(u1, v3), e(u2, v4) ∈ E(Γf ),
with u1, u2 of degree 3, v2, v3 possibly coincident with v1, v4, respectively,
and �f (v1), �f (v2) < �f (u2) < �f (u1) < �f (v3), �f (v4), with �−1

f (]�f (u2),
�f (u1)[) = ∅, T is an elementary deformation of (Γf , �f ) of type (K3) if
T (Γf , �f ) is a labeled Reeb graph (Γg, �g) such that:
• V (Γg) = V (Γf );
• E(Γg) = (E(Γf )− e(v1, u2), e(u1, v3)}) ∪ {e(v1, u1), e(u2, v3)};
• �g|V (Γg)−{u1,u2} = �f and �f(v1), �f (v2) < �g(u1) < �g(u2) < �f (v3),

�f (v4), with �−1
g (]�g(u1), �g(u2)[) = ∅.

All the elementary deformations above defined are schematically displayed in
Table 1.

We observe that, differently from the case of curves [6], it is not sufficient to
consider only deformations of type (B), (D) and (R). The necessity to add those
of type (Ki), i = 1, 2, 3, can be in fact deduced by observing the changes a Reeb
graph undergoes when it is dynamically associated with Morse functions that at
a some instant fail to be simple (Table 1). Only in some particular cases, such
as when some of the vertices vj are of degree 1, operations (Ki), i = 1, 2, 3, can
be obtained by composition of operations (B), (D) and (R).
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Table 1. Elementary deformations of a labeled Reeb graph

�f (v1)�f (v1)

�g(u1)

�g(u2)
�f (v2)�f (v2)

(B)

(D)

�f (v1)

�g(u1) �g(u2)

�f (v2)

�f (u1)
�f (u2)

�f (v3)
�g(v3)

�g(v4)
�f (v4)

�g(v1)
�g(v2)

�f (v5)
�g(v5)

�g(v6)
�f (v6)

(R)

�f (v1) �f (v1)

�g(u1)
�g(u2)�f (u1)

�f (u2)

�f (v4) �f (v4)�f (v5) �f (v5)�f (v6) �f (v6)

(K1)

�f (v1) �f (v1)

�g(u1)
�g(u2)

�f (v2) �f (v2)

�f (u1)

�f (u2)

�f (v3) �f (v3)
�f (v4) �f (v4)

(K2)

(K3)
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Since each type of elementary deformation transforms a labeled Reeb graph
into another one, we can apply elementary deformations iteratively to transform
labeled Reeb graphs into each other.

Definition 5. We shall call deformation of (Γf , �f) any finite ordered sequence
T = (T1, T2, . . . , Tr) of elementary deformations such that T1 is an elemen-
tary deformation of (Γf , �f ), T2 is an elementary deformation of T1(Γf , �f ), ...,
Tr is an elementary deformation of Tr−1Tr−2 · · ·T1(Γf , �f). We shall denote by
T (Γf , �f ) the result of the deformation T applied to (Γf , �f ). Moreover, we shall
call identical deformation any deformation such that T (Γf , �f ) ∼= (Γf , �f ).

Proposition 3. Let (Γf , �f ) and (Γg, �g) be two labeled Reeb graphs associated
with simple Morse functions f, g : M → R. Then the set of all the deformations
T such that T (Γf , �f) ∼= (Γg, �g) is non-empty.

In other words, any two Reeb graphs of simple Morse functions on a given
surface can be transformed into each other by a finite sequence of elementary
deformations. This result is a consequence of the fact that, through a finite
sequence of elementary deformations of type (B), (D),(R), (Ki), i = 1, 2, 3,
every Reeb graph can be transformed into one having only one maximum, one
minimum, and all the cycles, if any, of length 2 [7].

4 Editing Distance

Given two labeled Reeb graphs (Γf , �f) and (Γg, �g) associated with simple Morse
functions f, g : M → R, we denote by T ((Γf , �f), (Γg , �g)) the set of all possible
deformations between (Γf , �f) and (Γg, �g). Let us associate a cost with each
editing deformation in T ((Γf , �f ), (Γg, �g)).

Definition 6. Let T be an elementary deformation such that T (Γf , �f )∼=(Γg, �g).

– If T is of type (B) inserting the vertices u1, u2 ∈ V (Γg), then we define the
associated cost as

c(T ) =
|�g(u1)− �g(u2)|

2
.

– If T is of type (D) deleting the vertices u1, u2 ∈ V (Γf ), then we define the
associated cost as

c(T ) =
|�f(u1)− �f (u2)|

2
.

– If T is of type (R) relabeling the vertices v ∈ V (Γf ) = V (Γg), then we define
the associated cost as

c(T ) = max
v∈V (Γf )

|�f (v)− �g(v)|.

– If T is of type (Ki), with i = 1, 2, 3, relabeling the vertices u1, u2 ∈ V (Γf ),
then we define the associated cost as

c(T ) = max{|�f(u1)− �g(u1)|, |�f (u2)− �g(u2)|}.
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Moreover, if T = (T1, . . . , Tr) is a deformation such that Tr · · ·T1(Γf , �f ) ∼=
(Γg, �g), we define the associated cost as c(T ) =

r∑

i=1

c(Ti).

Now we can define the editing distance between labeled Reeb graphs as the
infimum cost we have to bear to transform one graph into the other [7, Thm.
3.3].

Theorem 1. For every two labeled Reeb graphs (Γf , �f ) and (Γg, �g), we set

d((Γf , �f), (Γg , �g)) = inf
T∈T ((Γf ,�f ),(Γg ,�g))

c(T ).

Then d is a pseudo-metric on isomorphism classes of labeled Reeb graphs.

We recall that a pseudo-metric is non-negative, symmetric, and has the tri-
angle inequality, but may be unable to distinguish different objects.

We do not exclude that our editing distance may have also the coincidence
axiom as in the case of curves. If so, it would turn to be a metric. The main
difficulty is that the linearization technique used in the case of curves does not
work in the case of surfaces. We are currently investigating different techniques.

5 Stability Result

Let F(M,R) be the set of smooth real valued functions on M, endowed with
the C∞ topology, and let us stratify such a space, as done by Cerf in [5]. Let us
denote by F0 the submanifold of F(M,R) of co-dimension 0 that contains all the
simple Morse functions f : M → R. Then, let F1 = F1

α∪F1
β be the submanifold

of F(M,R) of co-dimension 1, where: F1
α represents the set of functions whose

critical levels contain exactly one critical point, and the critical points are all
non-degenerate, except exactly one; F1

β the set of Morse functions whose critical
levels contain at most one critical point, except for one level containing exactly
two critical points.

The main result, proven in [7], is the following one.

Theorem 2 (Stability Theorem). For every f, g ∈ F0,

d((Γf , �f ), (Γg, �g)) ≤ ‖f − g‖C0 ,

where ‖f − g‖C0 = max
p∈M

|f(p)− g(p)|.

The proof relies on two intermediate results. The first one states that, con-
sidering a linear path connecting two functions f, g ∈ F0 and not traversing
strata of co-dimension greater than 0, the editing distance between the Reeb
graphs associated with its end-points is upper bounded by the distance of f and
g computed in the C0-norm. In this case the graph (Γg, �g) can be obtained
transforming (Γf , �f ) with a sequence of elementary deformations of type (R).



Stable Shape Comparison of Surfaces via Reeb Graphs 211

– Let f, g ∈ F0 and let us consider the path h : [0, 1] → F(M,R) de-
fined by h(λ) = (1 − λ)f + λg. If h(λ) ∈ F0 for every λ ∈ [0, 1], then
d((Γf , �f), (Γg , �g)) ≤ ‖f − g‖C0 .

The second result states that, if two functions f, g ∈ F0 can be connected by
a linear path having only one point which belong to a stratum F1 and do not
traverse strata of co-dimension greater than 1, the cost to transform (Γf , �f)
into (Γg, �g) is again upper bounded by ‖f − g‖C0 . In particular, crossing a
stratum F1

α (F1
β , resp.), means that the Reeb graph is undergoing an elementary

deformation of type (B) or (D) ((R) or (Ki), i = 1, 2, 3, resp.).

– Let f, g ∈ F0 and let us consider the path h : [0, 1] → F(M,R) defined by
h(λ) = (1−λ)f +λg. If h(λ) ∈ F0 for every λ ∈ [0, 1] \ {λ}, with 0 < λ < 1,
and h transversely intersects F1 at λ, then d((Γf , �f), (Γg, �g)) ≤ ‖f − g‖C0 .

As an example illustrating the stability property of the editing distance, con-
sider f, g : M → R as in Figure 2. Let f(qi) − f(pi) = a, i = 1, 2, 3. It holds
that d((Γf , �f), (Γg , �g)) ≤ a

2 , showing that the editing distance is bounded by
the norm of the difference between the functions. Indeed, for every 0 < ε < a

2 ,
we can apply to (Γf , �f ) a deformation of type (R), that relabels the vertices
pi, qi, i = 1, 2, 3, in such a way that �f(pi) is increased by a

2 − ε, and �f (qi) is
decreased by a

2 − ε, composed with three deformations of type (D) that delete
pi with qi, i = 1, 2, 3. Thus, since the total cost is equal to a

2 − ε + 3ε, by the
arbitrariness of ε, it holds that d((Γf , �f ), (Γg, �g)) ≤ a

2 .

q1

p1

q2

p2

q3

p3

q q′

p p′

c1 + a

c1

c2 + a

c2

c3 + a

c3

c

d

c

d
(Γf , �f ) (Γg, �g)f g

Fig. 2. For these two simple Morse functions f, g it is easy to see that
d((Γf , �f ), (Γg, �g)) is bounded from above by the norm of f − g

6 Discussion

Building on arguments similar to those given in [6] for curves, we have presented
a combinatorial dissimilarity measure for Reeb graphs of surfaces. For a complete
analogy with the case of curves, we still need to prove that the editing distance is
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not only a pseudo-metric but actually a metric. Also, it would be useful to prove
that, as for curves, it discriminates shapes as well as the natural pseudo-distance.

From the computational viewpoint, it would be very interesting to find an
analogue of the editing distance for the case when the considered surfaces are
discrete models, e.g. triangular meshes, and the functions accordingly discrete.
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