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Abstract. The standard Hough transform does not provide length and
width of a line-segment detected in an image; it just detects the nor-
mal parameters of the line. We present a novel method for determining
also length and width of a line segment by using the Hough transform.
Our method uses statistical analysis of voting cells around a peak in
the Hough space. In image space, the voting cells and voting values are
analysed. The functional relationship between voting variance and voting
angle is deduced. We approximate this relationship by a quadratic poly-
nomial curve. In Hough space, the statistical variances of columns around
a peak are computed and used to fit a quadratic polynomial function.
The length and width of a line segment are determined simultaneously by
resolving the equations generated by comparing the corresponding coef-
ficients of two functions. We tested and verified the proposed method on
simulated and real-world images. Obtained experimental results demon-
strate the accuracy of our novel method for determining length and width
of detected line segments.
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1 Introduction

Line segments are important when analyzing geometric shapes in images for
machine vision applications; see, for example, [16]. In particular this problem
also involves a need to extract parameters of line segments in images, such as
width and length.

A class of methods for line detection applies least-square fitting; see, for exam-
ple, [15,17,19,22]. These methods are in general sensitive to outliers; they require
that feature points are clustered.

The Hough transform (HT) [1,8,11,23,24] defines an alternative class of meth-
ods. The basic HT does not provide length or width of a detected line segment;
it only provides the two normal parameters d and α of a line; see Eq. (1) below
for those two parameters. This paper contributes to the HT subject.

In principle, the HT is able to detect the length of a line segment. After having
the direction of a set of approximately collinear pixels detected, we can project
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the estimated collinear image features on the x- or y-axis in image space; see,
for example, [5,18,25]; the length of the line-segment is then determined as the
Euclidean distance between the estimated two endpoints.

There are also HT methods which use the butterfly distribution in the Hough
space, as identified in [10]. These butterfly-techniques have origins in methods
proposed earlier. Akhtar [2] calculates the length of a detected line segment
based on the spreading of voting cells in a column around the peak. Ioannou [12]
estimates the line-segment length by analyzing the total vote values of cells in
the peak column. In [3,4,13,14], the endpoints are detected by resolving simulta-
neously equations obtained by the first and the last non-zero-value voting cells
in any two columns around the peak; the length is then again calculated as the
Euclidean distance between the estimated two endpoints.

These methods detect the length besides the standard HT output of nor-
mal parameters of a detected line segment. But, they do not contribute to the
calculation of the width of the line segment.

Du et al. [6,7] consider the complete parameter description of a line segment,
defined by direction, length, width, and position. Here, length is obtained by
measuring the vertical width of a butterfly wing. The width of a line segment is
computed by comparing the actual voting value and theoretical voting values in
a specific column. Reliable length and width are obtained using a Mean Square
Error (MSE) estimation by considering multiple columns. This method is af-
fected by image noise. The detection accuracy relies on a very fine quantization
of the Hough space.

This paper proposes an HT method for obtaining the length and width of
a detected line segment. The voting variance is analyzed in image space, and
a 2nd order functional relationship is deduced. In Hough space, the statistical
variances of columns around a peak are computed and used to fit a quadratic
polynomial function. Length and width of a line segment are determined by
resolving the equations generated by comparing the corresponding coefficients
of two functions.

The rest of the paper is organized as follows. Section 2 analysis the voting
variance in image space. Section 3 introduces the voting distribution in Hough
space, and calculates the length and width of a line segment. Section 4 provides
experimental results. Section 5 concludes.

2 Voting Analysis in Image Space

Following [8], the standard Hough transform applies the following equation

d = x · cosα + y · sinα (1)

for representing a straight line by normal parameters α and d. This representa-
tion was introduced in [20] when defining a transformation in continuous space,
today known as the Radon transform; this transform is a generalization of the
Hough transform.
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All pixels on the line-segment in an image vote for all possible cells (αi, dj)
in Hough space. For a pixel, given a voting angle αi ∈ [0, π), the corresponding
dj-value is computed. The cell (αi, dj) is voted for by increasing the voting value
at this cell by 1. Let Hij be the voting value of cell (αi, dj) in Hough space.

For a voting angle αi, the number of voting cells and voting values of each
cell are analyzed first; then we deduce a functional relationship between voting
variance and voting angle.

The actual normal parameters of a line segment are denoted by (α0, d0). Let
L and T denote the length and the width of the line segment. For abbreviation,
let S and C be short for the values of sine and cosine of |αi − α0|, respectively:

S = sin |αi − α0| and C = cos |αi − α0| (2)

2.1 Voting Cells and Voting Values

Regarding a voting angle αi, the number of voting cells is proportional to the
number of parallel bars intersected by the considered line-segment. The voting
value Hij , corresponding to the voting angle αi and the distance dj , is propor-
tional to the length of the bar intersected by the line-segment.

For detecting line segments with different length and width, we consider two
cases for estimating the number of voting cells and voting values.

Fig. 1. The number of voting cells and voting values for |αi − α0| < arctan(T/L) .
Actual parameters are normal parameters d0 and α0, and width T and length L. For
the remaining parameters in the figure see the text for explanations.
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For a voting angle αi, if |αi −α0| < arctan(T/L) then there are T ·C +L ·S
parallel bars crossing the considered line-segment in total. This is illustrated in
Fig. 1. At the middle of the parallel bars, the number of voting cells equals

T · C − L · S (3)

and the voting values are identical. On both outer sides of parallel bars, there
are L ·S voting cells for each side; and the voting values decrease to 0 gradually.

For a voting angle αi, if |αi −α0| > arctan(T/L) then there are L ·S+T ·C
parallel bars crossing the considered line-segment in total. This is illustrated in
Fig. 2. At the middle of the parallel bars, the number of voting cells equals

L · S − T · C (4)

and the voting values are identical. On both outer sides of the parallel bars, there
are T ·C voting cells on each side; and the voting values decrease to 0 gradually.

Fig. 2. The number of voting cells and voting values for |αi − α0| > arctan(T/L) .
See the text for explanations.

2.2 Voting Variances

In both cases for a voting angle αi, we consider the voting cells along the axis
d to be a random variable. The voting values of corresponding cells define a
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probabilistic density function. The voting variance σ2
i , which corresponds to

voting angle αi, is calculated based on the corresponding probabilistic density
function.

For both discussed cases, the voting variance σ2
i is calculated as follows:

σ2
i =

L2 sin2 |αi − α0|+ T 2 cos2 |αi − α0|
12

=
(L2 − T 2) sin2 |αi − α0|+ T 2

12
(5)

We only consider those voting cells around the peak in Hough space. It means
that |αi − α0| is small, and that we can approximate sin |αi − α0| by |αi − α0|.
Thus we have the following:

σ2
i ≈ (L2 − T 2)(αi − α0)

2 + T 2

12

=
(L2 − T 2)(α2

i + α2
0 − 2αiα0) + T 2

12

=
(L2 − T 2)α2

i − 2α0(L
2 − T 2)αi + (L2 − T 2)α2

0 + T 2

12
(6)

This shows that the functional relationship between voting variance σ2 and vot-
ing angle α can be approximated by a 2nd order curve (called f for later reference)
as expressed in Eq. (6).

Fig. 3. Voting distribution in an αi column for one “thick” line segment. Blue gradient
cells illustrate that the voting values decrease gradually on both sides.
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3 Statistical Distribution in Hough Space

For a line segment in an image, all collinear pixels vote for all possible cells in the
Hough space. Due to various uncertainties, the voting in a column is considered
as being a random variable. The voting value at each cell defines a probabilistic
distribution. We compute the statistical variances in columns near the peak and
use them to fit a quadratic polynomial curve, called g for later reference.

After voting, a peak is detected and represented by (αp, dp). This is just a
coarse estimate for the actual normal parameters (α0, d0).

In that αi-column which is close to the peak αp, the middle cells have approx-
imately identical voting values. Those voting values are larger than the voting
values at outer cells. See Fig. 3 for an illustration.

3.1 Statistical Variances

For each column αi in a peak region, the statistical mean mi and statistical
variance σ2

i are computed as follows:

mi =
∑

j∈W

[Hij · dj ]/
∑

j∈W

Hij

σ2
i =

∑

j∈W

[Hij · (dj −mi)
2]/

∑

j∈W

Hij (7)

where W defines the peak region in the Hough space.

3.2 Quadratic Polynomial Curve Fitting

Based on a voting analysis as discussed above, the functional relationship be-
tween statistical variance σ2 and angle α can be approximated by a quadratic
polynomial curve.

We fit a quadratic polynomial curve g to pairs (σ2
i , αi), all calculated in the

peak region. Formally, this is denoted by

g : σ2 = g(α)

� e2α
2 + e1α+ e0 (8)

3.3 Length and Width of Line-Segment

We compute length and width of a detected line segment based on the coefficients
of the fitted function.

Following Eqs. (6) and (8), we obtain the following equational system:

(L2 − T 2)/12 = e2 (9)

−2α0(L
2 − T 2)/12 = e1 (10)

((L2 − T 2)α2
0 + T 2)/12 = e0 (11)
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By solving simultaneously those equations, the length L and width T of the line
segment are as follows:

L =
√
12

√

e2 + e0 − e21
4e2

(12)

T =
√
12

√

e0 − e21
4e2

(13)

This defines our novel closed-form solution.

4 Experimental Results

We tested and verified the proposed method for determining the length and
width of a detected line segment. We used a set of simulated image data as well
as real-world images.

Used simulated binary images are of size 200 × 200. Each image contains a
representation of one digitized line-segment as well as background image noise.
A background pixel is called noisy if it is black due to the generated background
noise. For the digitised line segments we have all their parameters available,
including length and width, defining the ground truth. The direction, position,
length, and width of a synthesised line segment are generated randomly in our
test data.

Figure 4 illustrates an example for line segment detection. The length and
width are accurately calculated when applying the proposed method.

Fig. 4. Illustration of an example of our simulated binary images for determining the
length and width for a line-segment with the proposed method. The blue box is drawn
according to calculated length and width of the detected line-segment.
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Fig. 5. Detection errors in the common case. Top: Length. Bottom: Width.

Fig. 6. Detection errors in the coarse-quantization case. Top: Length. Bottom: Width.

Fig. 7. Detection errors in the heavy-noise case. Top: Length. Bottom: Width.
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Our method focuses on the accuracy of length and width calculation for a
single detected line segment. For the accuracy of length and width determination,
three cases have been considered in terms of different quantization steps and
noise scales.

In the common case there are no noisy pixels, and the quantization of the
Hough space equals (Δα,Δd) = (1◦, 1p) (the unit for d is the pixel distance). For
the coarse-quantization case, we set parameter quantization equal to (Δα,Δd) =
(4◦, 4p). For the heavy-noise case, 1,000 noisy pixels are randomly generated in
each of the 200× 200 images used.

We generated 500 synthetic images randomly for each of the three cases and
tested the proposed method. For each of the three cases, 500 resulting detection
errors for length and width are documented by Figs. 5, 6, and 7.

In the common case, the calculated values for length and width are accurate.
The mean errors of length and width are equal to 0.4853 and 0.0781, respectively.
When the Hough space is quantized at (Δα,Δd) = (4◦, 4p), the mean errors
of length and width are equal to 0.5796 and 1.1478, respectively. The length
detection is accurate, while the width detection is sensitive to the quantization
interval Δd. By adding 1,000 noisy pixels, the mean errors of length and width
are equal to 3.0772 and 0.2613, respectively. The calculated width values are still
accurate but length calculation is now effected by the given image noise.

For testing on recorded images, we use image sequences published in Set 5
of EISATS [9]. Images are of size 640× 480. Those image sequences have been
recorded for studying algorithms for vision-based driver assistance, in particular
for algorithms detecting and tracking lane borders. (A review about visual lane
analysis is given in [21]).

Fig. 8. Detection results for lane markers in real-world images. Left: Original images.
Right: Detected lane markers.

Lane-detection results for one image of this data set is shown in Fig. 8. Only
pixels in the lower half of the images are processed by supposing that lane
borders are constrained to this image region. We are able to detect both frontiers
(i.e. left and right border lines) of one lane marker as individual line segments
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Fig. 9. Detection results for a building facade and road images. Left: Original images.
Right: Detected result.

when using the accurate line detector reported in [23]. However, lane-border
detection usually does not require such a fine and accurate line detection; it is
more appropriate to detect one lane marker as a line segment of some width.
This also supports the typically following step of lane-border tracking that only
such line segments are accepted which do have a width within a given interval
estimated for lane markers.

We also test the proposed method on building facade images and road images;
see Fig. 9 for two examples, also showing detected lines. For the building facade
image, all linear features with different length and width are detected. Two wide
roads are detected in the shown aerial road view.

Line-segment features in images have varying lengths and widths. The pro-
posed method calculates the length and width of these linear features using a
Hough transform.

5 Conclusions

This paper proposes a novel method for line-segment length and width calcu-
lation using a Hough transform. We analyse the voting variance. We derive a
functional relationship between the voting variance and the voting angle. This re-
lation is approximated by a 2nd-order function f . Due to quantization errors and
image noise, we consider voting in an α-column as being a random variable, and
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voting values define a probabilistic distribution. We compute the corresponding
statistical variances and use them to fit a quadratic polynomial curve g.

We obtain three equations by comparing the coefficients of functions f and g.
We calculate the length and width of a line segment by solving simultaneously
these three equations. Various simulated and real-world images have been used
for testing the proposed method, and also for illustrating new opportunities
which are not yet available with previously specified line detection algorithms.

Experimental results verify the accuracy and feasibility of the proposed solu-
tion for line-segment length and width detection.

Acknowledgments. The first author thanks Jiangsu Overseas Research &
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Presidents for granting a scholarship to visit and undertake research at The
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