
Efficient Computation of the Outer Hull

of a Discrete Path�

Srecko Brlek, Hugo Tremblay, Jérôme Tremblay, and Romaine Weber

Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal,

CP 8888 Succ. Centre-ville, Montréal (QC) Canada H3C 3P8
{brlek.srecko,jerome.tremblay}@uqam.ca, hugo.tremblay@lacim.ca,

weberomaine@gmail.com

Abstract. We present here a linear time and space algorithm for com-
puting the outer hull of any discrete path encoded by its Freeman chain
code. The basic data structure uses an enriched version of the data struc-
ture introduced by Brlek, Koskas and Provençal: using quadtrees for
representing points in the discrete plane Z×Z with neighborhood links,
deciding path intersection is achievable in linear time and space. By com-
bining the well-known wall follower algorithm for traversing mazes, we
obtain the desired result with two passes resulting in a global linear time
and space algorithm. As a byproduct, the convex hull is obtained as well.

Keywords: Freeman code, lattice paths, radix tree, discrete sets, outer
hull, convex hull.

1 Introduction

The ever-growing use of digital screens in industrial, military and civil applica-
tions gave rise to a new branch of study of discrete objects: digital geometry,
where objects are sets of pixels. In particular, their various geometric properties
play an essential role, for allowing the design of efficient algorithms for recogniz-
ing patterns and extracting features: these are mandatory steps for an accurate
interpretation of acquired images.

Convex objects play a prominent role in several branches of mathematics,
namely functional analysis, optimization, probability and mathematical physics
(see [1] for a detailed account of convex geometry and applications). In Euclidean
geometry, given a finite set of points, the problem of finding the smallest convex
set containing all of them led to the introduction of the geometric notion of
convex hull. On the practical side, the computation of the convex hull proved to
be one of the most fundamental algorithm in computational geometry as it has
many applications ranging from operational research [2] to design automation [3].
It is also widely used in computer graphics, and particularly in image processing
[4]. For example, the Delaunay triangulation of a d-dimensional set of points

� With the support of NSERC (Canada).

E. Barcucci et al. (Eds.): DGCI 2014, LNCS 8668, pp. 122–133, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Computation of the Outer Hull of a Discrete Path 123

in Euclidean space is equivalent to finding the convex hull of a set of d + 1-
dimensional points [5]. It is well known that for the Euclidean case, algorithms
for computing the convex hull of a set S ⊂ R

2 run in O(n logn) time where
n = |S| (see [6,7]). One can also show that such algorithms are optimal up to a
linear constant (see [8,9,10] for the general case).

Nevertheless, by confining the problem to computing the convex hull of simple
polygons, linear asymptotic bounds are achieved (see [11,12]). The digital version
of this problem is a little more involved. For instance, one can compute the
convex hull of a set of pixels S by first computing the Euclidean convex hull
of S and then digitalizing the result [13]. This automatically yields O(n log n)
asymptotical bounds in the worst case. In the discrete case, the situation is
surprisingly easier with the help of combinatorics on words, a field which recently
led to the development of efficient tools to study digital geometry (see [17,18]).
For instance, linear asymptotic bounds are obtained when considering discrete
paths encoded by elementary steps. Indeed, Brlek et al. designed a linear time
algorithm for computing the discrete convex hull of non self-intersecting closed
paths in the square grid [14]. It is based on an optimal linear time and space
algorithm for factorizing a word in Lyndon words designed by Duval [15]. The
situation is more complicated for intersecting paths.

Here, we describe a linear algorithm for computing the outer hull of any dis-
crete path using the data structure described in [16] where the authors designed
a linear time and space algorithm for detecting path intersection. It rests on the
encoding of points in the discrete plane Z × Z by quadrees deduced from the
radix order representation of binary coordinate points. Then, each path is dy-
namically encoded by adding a pointer for each step of the discrete path encoded
on the four letter alphabet {0,1,2,3}. Starting from that, the wall follower algo-
rithm used for maze solutions allows to take at each intersection the rightmost
available step. The resulting two-passes algorithm is linear in space and time.
As a byproduct, the convex hull of any discrete path is computed in linear time.

2 Preliminaries

Given a finite alphabet Σ, a word w is a function w : [1, 2, . . . , n] −→ Σ denoted
by its sequence of letters w = w1w2 · · ·wn, and |w| = n is its length. For a ∈ Σ,
|w|a is the number of letters a in w. The set of all words of length k is denoted
by Σk. Consequently, Σ∗ =

⋃∞
i=0 Σ

i is the set of all finite words on Σ where
Σ0 = {ε}, the set consisting of the empty word. Σ∗ together with the operation
of concatenation form a monoid called the free monoid on Σ.

There is a bijection between the set of pixels and Z
2 obtained by mapping

(a, b) ∈ Z
2 to the unitary square whose bottom left vertex coordinate is (a, b).

Therefore, we may consider pixels as elements of Z2. By definition, a discrete set
S is a set of pixels, i.e. S ⊂ Z

2. Also, S is called 4-connected if each pair of pixels
share a common edge and 8-connected if each pair of pixels share a common edge
or vertex. Since any discrete set is a disjoint collection of 8-connected sets, we
consider from now on that discrete sets are 4 or 8-connected.

124 S. Brlek et al.

A convenient way of representing discrete sets without hole is to use a word
describing its contour. In 1961, Herbert Freeman proposed an encoding of dis-
crete objects by specifying their contour using the four elementary steps (→
, ↑,←, ↓) � (0, 1, 2, 3) [19]. This encoding provides a convenient representa-
tion of discrete paths in Z

2. By definition, a discrete path P is a sequence of
points P = {p1, p2, . . . , pn} where pi and pi+1 are neighbors for 1 ≤ i < n.
Intuitively, two points u and v are neighbors if and only if u = v ± e where
e ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}.

It is clear from these definitions that any discrete path P is represented by
a word w ∈ F∗ where F = {0, 1, 2, 3} is the Freeman alphabet. It is worth
mentioning that in the case of a closed discrete path, w is unique up to a circular
permutation of its letters. For example, any circular permutation of the word
w = 001100322223 represents the discrete path shown in Figure 1(a). One says
that a word w ∈ F∗ is closed if and only if |w|0 = |w|2 and |w|1 = |w|3. Further,
w is called simple if it codes a non self-intersecting discrete path. For instance,
w = 001100322223 is non-simple and closed.

0 0

1

1

0 0

3

2222

3

(a)

0
1

0

3 0 3

3000
1

(b)

Fig. 1. (a) A discrete path coded by the word w = 001100322223; (b) and its first
difference word Δ(w) = 01030330001

It is sometimes useful to consider encoding of paths with turns instead of ele-
mentary steps. Such encoding is obtained from the contour word w = w1 · · ·wn

by setting

Δ(w) = (w2 − w1)(w3 − w2) · · · (wn − wn−1)

where subtraction is computed modulo 4. Δ(w) is called the first differences
word of w. Letters of Δ(w) ∈ F∗ are interpreted via the bijection (0, 1, 2, 3) �
(forward, left turn, u-turn, right turn). For example, one can verify in Figure 1(b)
that Δ(w) = 01030330001 and that it codes the turns of w.

Now, every path w is contained in a smallest rectangle, or bounding box such
that we can define the point W as in Figure 2(a). W is easily obtained in linear
time by keeping track of the extremum coordinates while reading the word. It
is worth mentioning that in the case of a closed simple path u, this coordinate

Efficient Computation of the Outer Hull of a Discrete Path 125

corresponds to the point W of the standard decomposition of u obtained by
considering the following four extremal points of the bounding box: W (lowest
on the left side), N (leftmost on the top side), E (highest on the right side) and
S (rightmost on the bottom side) (see Figure 2(b)).

W

(a)

W

S

E

N

(b)

Fig. 2. (a) Smallest rectangle containing a discrete path and the point W ; (b) Standard
decomposition of a self-avoiding closed path

We close this section by recalling some notions about topological graph theory
(see [20] for a thorough exposition of the subject). Let P be a discrete path (i.e.
a sequence of integer points) coded by the word w. The image of P as a subset
of R2 is noted GP while the graph of its image embed in the plane R

2 is noted
G(P). Such embeddings in the plane are completely determined by associating
a cyclic order on the edges around each vertex in the following way: Begin by
fixing an orientation at each point (e.g. counterclockwise). Then, for each vertex
v in GP , define the cyclic permutation on incident edges of v. This defines a
rotation scheme on GP . One can then show that such a scheme is equivalent to
an oriented embedding of GP on a surface. For example, Figure 3 illustrates the
path P coded by w = 001233, its graph GP and its associated counterclockwise
embedding G(P) in R

2.

0 0

1

2

3

3

(a)

A

B
C

D
E

F

(b)

A : E
B : C E
C : B D
D : C E
E : A F D B
F : E

(c)

Fig. 3. (a) The graph GP associated to the path coded by w = 001233; (b) The
counterclockwise embedding G(P) in R

2; (c) And its associated rotation scheme

126 S. Brlek et al.

3 Outer and Convex Hull

We recall from topology that given a set S, the boundary ∂S is the set of
points in the closure of S, not belonging to the interior of S. Now, let S be a
8-connected discrete set. The outer hull of S, denoted Hull(S) is the boundary
of the intersection of all discrete sets without hole containing S, i.e. the non
self-intersecting path following the exterior contour of S. Definition 1 extends
the notion of outer hull to any discrete path.

Definition 1. Let P be any discrete path. Then, the outer hull of P , denoted
by Hull(P) is the outer face of the embedded graph G(P).

The difference between Definition 1 and the preceding one lies in the use of the
embedding of P in the plane instead of a discrete set to describe the outer hull.
This choice is not arbitrary as it allows the treatment of discrete line segments
(i.e. Euclidean sets of area 0). For example, Figure 4 illustrates the outer hull
of the path coded by w = 021. Remark that using Definition 1, the boundary
of discrete line segments are coded by closed words, e.g. the outer hull of the
horizontal line segment coded by 0 is coded by 02 (see Figure 4). This ensures
that Definition 1 is a convenient generalization of the outer hull to discrete paths.
Indeed, if P codes the boundary of a discrete set S, then P is simple and closed
by definition. This gives P = Hull(P) and since Hull(S) is the boundary ∂(S)
of S by definition, we have

Hull(S) = ∂(S) = P = Hull(P).

0

2

1

(a)

2

3

(b)

W 0

2

1
3

(c)

Fig. 4. (a) The path w = 021, (b) its first diference word Δ(w) = 23 and (c) its outer
hull Hull(w) = 0213

Since there is a bijection between discrete paths in Z
2 and words on F , we

identify P with its coding word w and we write Hull(w) instead of Hull(P).
Finally, we recall some basic notions concerning digital convexity, for which a

detailed exposure appears in [14,18]. Let S be an 8-connected discrete set. S is
digitally convex if it is the Gauss digitalization of a convex subset R of R2, i.e.
S = Conv(R)∩Z2. The convex hull of S, denoted Conv(S) is the intersection of
all convex sets containing S. In the case of a closed simple path w, Conv(w) is

Efficient Computation of the Outer Hull of a Discrete Path 127

given by the Spitzer factorization of w (see [21,14]). Given w = w1w2 · · ·wn ∈
{0, 1}∗, one can compute the NW part of this factorization as follows: Start with
the list (b1, b2, . . . , bn) = (w1, w2, . . . , wn). If the slope ρ(bi) = |bi|1/|bi|0 of bi is
strictly smaller than that of bi+1 for some i, then

(b1, b2, . . . , bk) = (b1, . . . , bi−1, bibi+1, bi+2, . . . , bk).

By repeating this process until it is no longer possible to concatenate any words,
one obtains the Spitzer factorization of w. The NE, SE and SW parts of the
factorization are obtained by rotations.

4 Algorithm

Let w ∈ F∗ be a discrete path and Gw its graph representation. Remark that
the application g : w �→ Gw is not bijective since it is not injective (for example,
u = 0 and v = 02 admits the same graph). Now, recall from Section 2 that the
embedding G(w) of Gw in R

2 gives rise to a rotation scheme (provided we fix
an orientation). We use this embedding to compute the outer hull of w (i.e. the
outer face of G(w)): Fix an orientation O of the surface R2 and let ei = (u, v) be
an arc from vertex u to v in G(w) such that ei is an edge of the outer face of the
embedding G(w) and such that e follows the fixed orientation O. Next, compute
ei+1 = (v, σv(u)) where σv is the cyclic permutation associated to v in G(w).
By letting O be the counterclockwise orientation, one can iterate this process to
obtain the outer face of G(w). For example, using the rotation scheme defined
for w = 001233 in Figure 3(c) and starting with the arc (A,E), one computes
the sequence of arcs

(A,E), (E,F), (F,E), (E,D), (D,C), (C,B), (B,E), (E,A)

which corresponds to the outer hull of w (see Figure 5).

A

B
C

D
E

F

(a)

0

3 1

0

1

2

3

2

(b)

u

σ3
v(u)

σ2
v(u)

v

σv(u)

(c)

Fig. 5. (a) The sequence of arcs obtained by using the rotation scheme of Figure 3(c);
(b) The outer hull of w = 001233; (c) The sequence (u, v), (v, σv(u)) corresponds to a
right turn in the graph of a path, provided the orientation is counterclockwise

128 S. Brlek et al.

The correctness of this method follows from the so-called “right-hand rule” or
“wall follower algorithm” for traversing mazes. Indeed, given an arc (u, v), taking
the adjacent arc (v, σv(u)) amounts to “turning right” at vertex v (see Figure
5(c)). The underlying principle of our algorithm is thus to walk along the path,
starting at an origin point on the outer hull and turning systematically right
at each intersection and returning to the origin point. The preceding discussion
guarantees that the resulting walk is then precisely the outer hull of w.

To efficiently implement this procedure, several problems must be addressed.
First, as stated before, the walk needs to start on a coordinate of the outer
hull, otherwise the resulting path may not describe the correct object. This can
be solved by choosing the point W associated with the contour word w as the
starting point.

Secondly, whenever a path returns to W (the simplest of which is the path
coded by w = 021, see Figure 4), before continuing on, one must make sure that
the algorithm does not stop until every such sub-path has been explored. An
easy solution for managing that situation is to keep a list of all neighbors of W
that are in the path P associated with w. This list has at most two elements
since no vertex in P is located below or left of W .

Finally, one needs to recognize intersections and decide of the rightmost turn.
We solve this problem by using a quadtree structure keeping information on
neighborhood relations. This so-called radix quadtree structure was first intro-
duced by Brlek, Koskas and Provençal in [16] for detecting path intersections.
Given a discrete path w starting at (x, y) ∈ N

2 and staying in the first quadrant,
the quadtree structure associated to w (see [18] and [16] for the generalization to
all four quadrants) is described as follows. G = (N,R, T) is a quadtree where:

N is the set of vertices associated to points in the plane;
R is a set of edges representing the fatherhood relation: r ∈ R is an edge from

(x, y) to (x′, y′) ⇐⇒ (x′, y′) is a child of (x, y), that is if (x′, y′) = (2x +
α, 2y + β) where (α, β) ∈ {0, 1}2;

T is a set of edges representing the neighborhood relation: t ∈ T is an edge from
(x, y) to (x′, y′) ⇐⇒ (x′, y′) is a neighbor of (x, y), that is if (x′, y′) =
(x, y) + e where e ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} (see Example 2).

One should note that the quadtree structure is described in [16] with unidirec-
tional edges while in this paper all edges are considered bidirectional. Further, by
following the procedure described in [16] to build the quadtree, one adds neigh-
borhood links between non-visited nodes during the recursion process. This is
easily fixed by adding a boolean label to each neighborhood edge indicating if
that specific edge is part of the discrete path or if it has been added by a recur-
sive call. This ensures that the points u and v are neighbors if and only if there
is a non-labeled neighborhood edge between these two vertices in the quadtree
structure.

It is worth mentioning that this structure is computed in linear time and
space. Moreover, it can be generalized to any discrete path as opposed to paths
staying in the first quadrant.

Efficient Computation of the Outer Hull of a Discrete Path 129

Example 2. Let w = 001100322223 be the word coding the discrete path in
Figure 1 translated to the origin. The quadtree structure associated to w is rep-
resented in Figure 6. Parenthood and neighborhood relations are respectively rep-
resented by black and red edges. Visited nodes are marked by red squares.

(0,0)

(0,1)

(0,2) (0,3) (1,2) (1,3)

(1,0)

(2,0)

(4,0) (4,1)

(2,1)

(4,2)

(3,0) (3,1)

(1,1)

(2,2) (2,3) (3,2) (3,3)

Fig. 6. Quadtree corresponding to the word w = 001100322223. Neighborhood edges
added by recursive calls are omitted.

This gives rise to the following Algorithm 1 to compute the outer hull of a
discrete path w, which proceeds as follows.

Algorithm 1. Outer hull

Require: A word w ∈ F∗ coding a discrete path
Ensure: A simple word w′ ∈ F∗ describing Hull(w)
1: Construct the quadtree G associated to w rooted in W
2: Let W be the leftmost lowest coordinate on the bounding box of w
3: Let N be the set of all visited neighbors of W
4: c← W+ (1, 0) if it is in N or W+ (0, 1) otherwise
5: w′ = Step(c− W)
6: while c �= W or N �= ∅ do
7: turn = 2 mod 4
8: for each neighbor v of c do
9: if [Step(v− c)− Lst(w′)] + 1 mod 4 ≤ [turn] + 1 mod 4 then
10: turn← Step(v− c)− Lst(w′)
11: next← v

12: end if
13: end for
14: w′ = w′ · Step(next− c)
15: remove c from N

16: c← next

17: end while
18: return w′

130 S. Brlek et al.

It is assumed that the pointW , that is the leftmost lower point of the bounding
box is known. First, the quadtree G associated to w is built starting from W .
Then, the graph G is traversed from its root W , following the path represented
by w. At every intersection c, we need to:

(a) extract the letter α associated to the vector −→cv for each neighbor v of c;
(b) determine the turn associated to each v, that is Δ(wc · α);
(c) choose the rightmost one, that is the closest to 3.

This procedure ends when returning to the point W .

Theorem 3 (Correctness of Algorithm 1). For any word w ∈ F∗, Algo-
rithm 1 returns Hull(w).

Proof. Let Hull(w) be of length k ∈ N
+. We use the following loop invariant:

At the start of the ith iteration of the while loop in Line 6, w′ is a
prefix of length i of the contour word associated to Hull(w).

The invariant holds the first time Line 6 is executed, since at that time, w′

is the first step of the outer hull of w computed at Line 5. Now, assume the
invariant holds before the ith iteration of the loop. Then, Lines 8 to 13 find the
rightmost turn at the current coordinate c. Then in Line 14, w′ is concatenated
with the step of this turn. By the right-hand rule for solving simply connected
maze, considering rightmost turns yields coordinates on the outer hull of w.
Consequently, at the end of the iteration, w′ is a prefix of the contour word
associated to Hull(w) of length i + 1. Finally, at the end of the loop, w′ is a
prefix of the contour word associated to Hull(w) of length k, that is w′ = Hull(w).
Note that since any neighbor of W is on Hull(w), Line 15 clearly removes every
element from N yielding, at termination, an empty set. ��

We end this section by showing that Algorithm 1 is linear in time and space.
First, the quadtree structure is constructed in linear time (see [16]). Also, as
stated before, the point W is easily computed in linear time. Consequently,
computations in Line 1 are performed in linear time. Next, Line 2, 4 and 5 each
take constant time. Moreover, the set N is constructed in linear time by accessing
neighborhood informations of the root in the quadtree structure, so Line 3 takes
linear time. Now, since any coordinate has at most four neighbors, the for loop
in Line 8 is executed at most four time per iteration of the while loop. Line 15
takes constant time. This is due to the fact that N contains at most two elements.
Since instructions in Line 7, 9, 10, 11, 14 and 16 all are computed in constant
time, at most k(4c1 + c2) computations occur during the execution of the while
loop where k ∈ N

+ is the length of Hull(w) and c1, c2 ∈ R some constants, thus
making Algorithm 1 linear in time. Finally, the quadtree structure needs space
linear in the length of the path, so that our algorithm is also linear in space.

Efficient Computation of the Outer Hull of a Discrete Path 131

Example 4. Consider the word w = 001100322223 of Example 2. Then, Algo-
rithm 1 yields w′ = 001001223223 (see Figure 7). One can easily verify that w′

is a simple path describing the outer hull of w, so Hull(w) = w′.

0 0

1

0 0

1

22

3

22

3

(a) w′ = 001001223223

0
1

3 0
1

1
0

1

30
1

(b) Δ(w′) = 01301101301

Fig. 7. Outer hull of w = 001100322223

Our algorithm was implemented using the C++ programming language and
tested with numerous examples (see Figure 8). The source code is available at
http://bitbucket.org/htremblay/outer_hull.

 10

 100

 1000

 10000

 100000 1e+06 1e+07

Ex
ec

ut
io

n
tim

e
(m

s)

Length of the path

Fig. 8. Running time of Algorithm 1 for random discrete paths of length 105 to 107,
with each point representing the mean running time of 100 random discrete paths of
same length

Finally, we show how Algorithm 1 can be used to compute in linear time
and space the convex hull of any discrete path. It relies on the following rather
obvious result:

http://bitbucket.org/htremblay/outer_hull

132 S. Brlek et al.

Proposition 5. Let w ∈ F∗ be a boundary word coding a discrete path. Then,

Conv(w) = Conv(Hull(w)).

Proof. If w is simple, then Hull(w) = w so the claim holds. Now, suppose w is
non-simple. Then by definition, Hull(w) is the boundary of w. Since, Conv(w)
is the intersection of all convex sets containing w, it must also contain Hull(w)
and thus Conv(w) = Conv(Hull(w)). ��

Recall that Hull(w) is non self-intersecting for any path w. Proposition 5 then
yields a very simple procedure for computing the convex hull of a discrete path
using Brlek et al. simple path convex hull algorithm (see [14]):

1. Start by computing Hull(w) = w′;
2. Compute Conv(w′).

It is clear that the preceding procedure computes the convex hull of a discrete
path in linear time and space. Indeed, we showed in Section 4 that the first step
is computed in linear time and space. Furthermore, it is shown in [14] that the
second step is computed in a similar fashion.

5 Concluding Remarks

We presented an algorithm for computing the outer hull of a discrete path. This
led to a procedure for computing the convex hull of any discrete set. Our algo-
rithm is a significant improvement over the convex hull algorithm presented in
[14] in the sense that computations can be made on any discrete path as opposed
to non self-intersecting ones. Moreover, we proved that such computations can
be made in linear time and space.

Instead of computing the outer hull of a discrete path P as described in
this paper, one could want to compute the largest simply connected isothetic
polygon such that all integers points on its boundary are visited by P . Although
some modifications to our algorithm are necessary in order to perform such
computations, the time complexity would not change.

In addition, this research begs to be generalized to three dimensional discrete
spaces, that is geometry in Euclidean space R3 studying sets of unit cubes. Also,
applications of our algorithm is not limited to convex hull problems. We plan on
using it to study various path intersections problems such as primality, union,
intersection and difference of discrete sets.

Acknowledgement. Martin Lavoie helped in implementing Algorithm 1.
Thanks Martin. We are also grateful to the reviewers for the accurate comments
which substantially improved the theoretical background of our work.

Efficient Computation of the Outer Hull of a Discrete Path 133

References

1. Gruber, P.M.: Convex and discrete geometry. Springer (2007)
2. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics 3(3), 411–430 (1990)

3. Kim, Y.S.: Recognition of form features using convex decomposition. Computer-
Aided Design 24(9), 461–476 (1992)

4. Kim, M.A., Lee, E.J., Cho, H.G., Park, K.J.: A visualization technique for DNA
walk plot using k-convex hull. In: Proceedings of the Fifth International Conference
in Central Europe in Computer Graphics and Visualization, Plzeň, Czech Republic,
Západočeská univerzita, pp. 212–221 (1997)

5. Okabe, A., Boots, B., Sugihara, K.: Spacial tesselations: Concepts and applications
of Voronoi diagrams. Wiley (1992)

6. Graham, R.A.: An efficient algorithm for determining the convex hull of a finite
planar set. Information Processing Letters 1(4), 132–133 (1972)

7. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry 16, 361–368 (1996)

8. Yao, A.C.C.: A lower bound to finding the convex hulls. PhD thesis, Stanford
University (April 1979)

9. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete &
Computational Geometry 10, 377–409 (1993)

10. Goodman, J.E., O’Rourke, J.: Handbook of discrete and computational geometry,
2nd edn. CRC Press (2004)

11. McCallum, D., Avis, D.: A linear algorithm for finding the convex hull of a simple
polygon. Information Processing Letters 9(5), 201–206 (1979)

12. Melkman, A.: On-line construction of the convex hull of a simple polyline. Infor-
mation Processing Letters 25, 11–12 (1987)

13. Chaudhuri, B.B., Rosenfeld, A.: On the computation of the digital convex hull and
circular hull of a digital region. Pattern Recognition 31(12), 2007–2016 (1998)

14. Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel =
digitally convex. Pattern Recognition 42, 2239–2246 (2009)

15. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–
381 (1983)

16. Brlek, S., Koskas, M., Provençal, X.: A linear time and space algorithm for detect-
ing path intersection. Theoretical Computer Science 412, 4841–4850 (2011)

17. Blondin Massé, A.: À l’intersection de la combinatoire des mots et de la géométrie
discrète: Palindromes, symétries et pavages. PhD thesis, Université du Québec à
Montréal (February 2012)

18. Provençal, X.: Combinatoire des mots, géométrie discrète et pavages. PhD thesis,
Université du Québec à Montréal (September 2008)

19. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Transac-
tions on Electronic Computers EC-10(2), 260–268 (1961)

20. Gross, J.L., Tucker, T.W.: Topological graph theory. Wiley (1987)
21. Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans-

actions of the American Mathematical Society 82, 323–339 (1956)

	Efficient Computation of the Outer Hull
of a Discrete Path

	1 Introduction
	2 Preliminaries
	3 Outer and Convex Hull
	4 Algorithm
	5 Concluding Remarks
	References

