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Abstract. Computations with a sufficient amount of parallelism and
workload size may take advantage of many-core coprocessors. In con-
trast, small-scale workloads usually suffer from a poor utilization of the
coprocessor resources. For parallel applications with small but many com-
putational kernels a concurrent processing on a shared coprocessor may
be a viable solution. We evaluate the Xeon Phi offload models Intel LEO
and OpenMP4 within multi-threaded and multi-process host applica-
tions with concurrent coprocessor offloading. Limitations of OpenMP4
regarding data persistence across function calls, e.g. when used within
libraries, can slow down the application. We propose an offload-proxy
approach for OpenMP4 to recover the performance in these cases. For
concurrent kernel execution, we demonstrate the performance of the dif-
ferent offload models and our offload-proxy by using synthetic kernels
and a parallel hybrid CPU/Xeon Phi molecular simulation application.

1 Introduction

Throughout the different kinds of applications from science and economy per-
formance gains by up to one order of magnitude are demonstrated by using co-
processors like GPGPUs (General Purpose Graphics Processing Units) or Intel’s
Xeon Phi instead of traditional multi-core CPUs when the problem is large-scale
and highly regular [1,2]. In contrast, small-scale computations usually suffer from
a poor utilization of the coprocessor device as a whole. A usual means to achieve
acceptable utilization in these cases is executing many such computations in a
concurrent manner. This can be done either by merging multiple small compute
kernels into a larger “super kernel,” or by offloading multiple small kernels for a
“concurrent kernel execution” on the coprocessor.

Our work addresses application scenarios of the said type with offloads to
the Xeon Phi (“Phi” for short hereafter) from within multi-threaded and multi-
process workloads. Our contributions are:

1. A performance evaluation of concurrent offloading to Xeon Phi using Intel’s
Language Extension for Offload (LEO) and OpenMP4.

2. We study the impact of thread placements on Xeon Phi: Multiple concurrent
offloads should not perturb each other.
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3. We demonstrate how multiple simultaneous offload data transfers between
host and Xeon Phi can affect the overall program performance.

4. For OpenMP4, we propose an offload-proxy pattern to enable data persis-
tence across different function scopes.

In Section 2 we discuss related work. Section 3 is on the Xeon Phi copro-
cessor and it briefly introduces the Intel LEO and OpenMP4 offload program-
ming model. In Section 4 we use synthetic kernels to get information about the
achievable performance in the case of compute and memory bound computa-
tions. Section 5 focuses on a real-world application implementing a simulation
of a small molecule solvated within a nanodroplet. The application serves as a
representative of a parallel heterogeneous workload. Section 6 concludes.

2 Related Work

The offload model and runtime system for the Intel Xeon Phi coprocessor is
detailed by Newburn et al. [3].

Johnson et al. [4] explore the support for, what the authors call, Many-Task
Computing (MTC) on the Xeon Phi platform. The authors’ framework GeMTC
is interfaced to Intel’s SCIF communication API. It is based on a client server
architecture with persistent threads or processes on the Phi. The authors inves-
tigate the overhead associated with the task offload itself. With 90% efficiency
their approach outperforms OpenMP’s offload mechanism.

Somehow related to our real-world application, Pennycook et al. [5] analyze
the miniMD benchmark (Sandia) on Xeon Phi. The authors present a variety
of optimizations, e.g. taking advantage of the Phi’s SIMD units. They achieve
performance improvements of about a factor 4 – 5 depending on the problem
size and the cut-off value. With their minimal size of 32,000 atoms, the authors
consider problem sizes that are more than one order of magnitude above what
is addressed by our real-world application.

Prior to Xeon Phi, concurrent kernel execution [6] has been known from Nvidia
GPGPUs of the Fermi architecture and later. A major drawback of Fermi is
false-serialization of concurrent kernels as a result of the GPU is fed by just one
task queue [7]. Current Nvidia GPGPUs provide 32 hardware queues (Hyper-Q)
to improve concurrent kernel execution. Investigations on using Hyper-Q from
within parallel workloads on the host can be found in [8]. However, a comparison
of Xeon Phi offloading with its GPGPU counterpart is not part of this work.

3 Intel Xeon Phi Offload Programming

The Xeon Phi coprocessor is based on Intel’s Many Integrated Core (MIC) ar-
chitecture. It presently holds up to 61 64-bit compute cores [9], each of which
with fully-coherent L1 and L2 cache, a 512-bit SIMD vector unit, and 4-way
hardware multi-threading. Current Xeon Phis are used as coprocessors to a dis-
tinguished host system, where communication with the host is over PCIexpress
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(PCIe). The Phi runs its own Linux OS, enabling for a flexible integration into
cluster- and supercomputer setups.

From the programmers point of view there are two approaches to involve the
Phi into computations: (i) native program execution with support for message
passing, e.g. via MPI, and (ii) offload execution with the Phi as a coprocessor
to the CPU. While native execution on Xeon Phi requires the entire application
be parallelizable, the offload model is the common means to involve the Phi into
codes with both serial and parallel sections. In this work, we therefore focus on
the offload model and compare against native executions only where meaningful.

Intel LEO and OpenMP4. The Intel Language Extension for Offload (LEO)
is a non-shared memory offload model for the Intel Xeon Phi coprocessor [9]. It
provides a set of directives to the programmer that allow to mark code regions
within a host program to be executed on the coprocessor if present. Since host
and coprocessor are physically separate compute devices, memory transfers be-
tween the two are necessary in order to provide data for and get results of the
computation(s). The models are appropriate for dealing with flat data structures
that can be moved bitwise between host and coprocessor. For array-based data
structures the copy direction, and the amount of elements to be moved need to
be specified in the offload clauses – the actual copy process is implicit.

Figure 1 gives a code snippet that adds two vectors a and b into c using LEO
and OpenMP4 – Xeon Phi device 0 is used. a and b are moved from the host to
the coprocessor, and c is copied back after the computation. Except for different
directives and clauses OpenMP4 is compatible with LEO.

Persistent Data on the Coprocessor. The execution of the offload regions
in Fig. 1 go along with the (de)allocation of memory buffers on the coprocessor
and the actual data transfers into/from these buffers before and after the offload
computation. Repeated offloading with intensive data transfers thus can result
in non-negligible overhead and hence reduced overall performance.

Both LEO and OpenMP4 allow for the allocation of memory on the copro-
cessor, retaining and reusing it across multiple offload regions within the same
thread (process) context, and releasing it after the computation [9,10]. Enabling
data persistence in LEO is done via the alloc if(cond) and the free if(cond)

clause – memory is allocated or freed only if cond is true respectively 1. In the
OpenMP4 model, keeping data on the coprocessor across multiple offloads is pos-
sible within omp target data regions only. Offload regions that are enclosed by

float a[size],b[size],c[size];
// Offload using Intel LEO:
#pragma offload target(mic:0)\

in(a[0:size]) in(b[0:size])\

{ c[0:size]=a[0:size]+b[0:size]; }

// Offload using OpenMP4:
#pragma omp target device(0)\

map(to:a[0:size]) map(to:b[0:size])\

{ c[0:size]=a[0:size]+b[0:size]; }
out(c[0:size]) map(from:c[0:size])

Fig. 1. Vector addition using the LEO and the OpenMP4 offload model, respectively



Concurrent Kernel Execution on Xeon Phi 791

a target data region inherit memory allocations associated with variables listed
in the surrounding target data directive clauses.

Figure 2 illustrates the use of persistent memory on the coprocessor: A© Allo-
cate memory and transfer data from host to coprocessor without freeing it. B©
Reuse data for computation and copy content of b to the host. C© same as B©,
but memory is freed eventually. For OpenMP4 the regions marked X©, Y©, Z©
correspond to A©, B©, C©. Note the target update construct in Y©, where data
is moved from the coprocessor to the host within the target data region.

Although both models allow for persistent data on the coprocessor, LEO is
more flexible since memory allocated via alloc if(1) can be used anywhere in
the same thread (process) context. As OpenMP4’s target data region cannot
extend across different function scopes, function calls need to be enclosed by it
and variables representing persistent data have to be explicitly passed through.
Using OpenMP4 offload e.g. within libraries thus requires the user of the library
to create the target data region within its code. Contrary to design principles,
the user gets involved into the library’s memory management on the coprocessor.

OpenMP4 Offload within Libraries Using an Offload-Proxy. One solu-
tion to the target data problem when using OpenMP4 offload within libraries
is using an offload-proxy that is instantiated by the library itself. The proxy
creates a target data region, enters it, and remains within that region. Library
calls create tasks and use a signaling mechanism to wake up the proxy and make
it execute the tasks. When finished a task the proxy signals back to the caller.

A similar offload-proxy approach has been already evaluated by the authors
in the context of concurrent kernel execution on Nvidia Fermi GPGPUs [7]. Al-
though using the proxy pattern requires code modifications – when not included
into the library design from the first – the following benefits can be noted: (i) it
implements asynchronicity regarding coprocessor offloads, and (ii) for OpenMP4
it enables data persistence across different function scopes. The latter is also rel-
evant for the integration of OpenMP4 offloading into C++ class designs.

Intel LEO OpenMP4

float a[size],b[size];
a[0:size]=1.0; b[0:size]=0.0;
#pragma offload_transfer target(mic:0)\

in(a[0:size]:alloc_if(1) free_if(0))\
in(b[0:size]:alloc_if(1) free_if(0))

// do something on host
#pragma offload target(mic:0)\

nocopy(a[0:size]:alloc_if(0) free_if(0))\
out(b[0:size]:alloc_if(0) free_if(0))
{ b[0:size]+=3.0*a[0:size]; }

// do something with b[] on host
#pragma offload target(mic:0)\

nocopy(a..free_if(1)) out(b..free_if(1))
{ b[0:size]+=5.0*a[0:size]; }

// do something with b[] on host

float a[size],b[size];
a[0:size]=1.0; b[0:size]=0.0;
#pragma omp target data device(0)\

map(to:a[0:size]) map(b[0:size])
{

// do something on host
#pragma omp target device(0) map(a,b)

{ b[0:size]+=3.0*a[0:size]; }

// do something with b[] on host
#pragma omp target device(0) map(a,b)

{ b[0:size]+=5.0*a[0:size]; }

// do something with b[] on host

#pragma omp target update device(0)\
from(b[0:size])

} // b[0:size] is copied to the host

A

B

C

X

Y

Z

Fig. 2. Persistent data on the coprocessor using LEO and OpenMP4. White, gray- and
light-gray-shaded regions have the same meaning in the two models.
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4 Synthetic Benchmarks

In this section we assess the performance that can be achieved with LEO and
OpenMP4 (+proxy), where multiple concurrent host threads (processes) offload
(i) a compute bound, and (ii) a memory bound kernel to the coprocessor each. On
the coprocessor itself OpenMP is used within the kernels. As representatives for
(i) and (ii) we decided for the Intel MKL SGEMM and the STREAM Copy and
Triad benchmark. Our intention is for multiple concurrent “small-scale” setups to
determine the fraction of the performance achievable compared to “large-scale”
setups, and to find out meaningful thread placements on the coprocessor.

Hardware and Software Setup. We use a compute node hosting two Xeon
E5-2670 octa-core CPUs (Hyper-Threading enabled), 64GB RAM, and two Intel
Xeon Phi 7120P connected to the host via PCIe x16. Each Phi has 61 physical
(244 logical) cores, and 16GB ECC RAM – for benchmarking we use 60 physical
cores (one core is reserved for the Phi’s OS) and have ECC enabled. The host runs
a CentOS 6.3 Linux with kernel 2.6.32-279. We use the Intel MPSS 2.1.6720-19,
Intel compilers 14.0.3 (C++) and 14.0.1 (Fortran), and Intel MPI 4.1.1.036.

Benchmarking Setup and Methodology. For both SGEMM and STREAM
we vary the number of OpenMP threads and MPI processes on the host between
p = 1, . . . , 60. Each host thread (process) offloads a set of SGEMM kernels – we
call SGEMM directly on the Phi – or a STREAM kernels to the coprocessor by
means of LEO respectively OpenMP4. Each offload uses x = 1, . . . , 4 OpenMP
threads on the Phi for computation. The benchmarks are written as libraries to
allow for portability and ease of integration.

A single benchmark run consists of N = 50 successive offloads per thread
(process) using respective library calls. To determine the performance of a single
benchmark run, we measure the execution time of all offloads and use this value
to estimate the compute performance in case (i), and the bandwidth in case (ii).
The benchmark runs are repeated 10 times for each setup.

For each offload we take start and end times {t si,k} and {t ei,k} (i = 1, . . . , N
and k = 1, . . . , p) of the offload (including all overheads and data transfers),
and {τ s

i,k} and {τ e
i,k} for kernel execution on Xeon Phi – time stamps are taken

with clock gettime(CLOCK REALTIME,..). We approximate the degree of con-
currency Ct across all p host threads (processes) as follows: Let t s = max{t s1,k},
t e = min{t eN,k}, Δt = t e− t s, and Δti,k = t ei,k− t si,k. With Wt = {Δti,k : t si,k ≥
t s ∧ t ei,k ≤ t e}, we have 1 ≤ 1

Δt

∑
ω∈Wt

ω ≤ p. Hence, Ct ≈ 1
p−1

(
1
Δt

∑
ω∈Wt

ω −
1
)∈ [0, 1]. A similar expression holds for the thread concurrency Cτ on the Phi.
If computations perfectly overlap, and if the offloading overhead is negligible

then Cτ ≤ Ct ≈ 1. If memory transfers before and/or after the actual computa-
tion take place, Ct can be significantly larger than Cτ .

Thread Affinity on the Coprocessor. Since the Xeon Phi runs a Linux oper-
ating system, assigning threads to specific compute cores can be done by means
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of cpu-set masks directly within the offload kernel using the Linux scheduler in-
terface. For our setups we use up to 60 threads (processes) on the host, each with
a thread group of size up to 4 on Xeon Phi. We establish a “scatter-compact”
thread pinning with “scatter” on the level of the groups and “compact” within
the groups. The creation of the per-thread cpu-set mask is illustrated in Fig. 3
– on Xeon Phi the 0th and the last 3 logical cores are reserved for the Phi’s OS.

#pragma omp parallel num_threads(4) // groupId=0..59
{

CPU_SET(1+(4*groupId+omp_get_thread_num())%(4*60),&cpuMask);

sched_setaffinity(0,sizeof(cpu_set_t),&cpuMask);
}

cpu_set_t cpuMask; CPU_ZERO(&cpuMask);
Host Thread or

Process 0
Thread or
Process 59

...

Core0 Core 59
Group0 Group59

...Xeon
Phi

Fig. 3. Setting the thread affinity via sched setaffinity() on Xeon Phi 7-series de-
vices. The pinning model considered is “scatter-compact” (see text).

In many cases this low-level approach can be replaced by setting specific envi-
ronment variables: e.g. OMP PLACES=threads|cores results in successive logical
respectively entire physical cores are assigned to OpenMP threads within multi-
threaded offload kernels in the order the threads are created. We found using
KMP AFFINITY in multi-offload setups places OpenMP threads within different
offload kernels on the same cores, resulting in oversubscription, potentially caus-
ing performance degradation.

Intel MKL SGEMM Benchmark. We consider two different benchmarking
modes: all data is copied to Xeon Phi at the beginning, and is reused throughout
all computations (M1) without any additional data transfers between host and
Phi, and (M2) with data transfers containing 25%, 50%, and 100% of the problem
size – 100% means two matrices are copied to the Phi, and one is copied back to
the host. Benchmark results using matrices of size 10242are illustrated in Fig. 4.
Selected results for matrices of size 2562, 5122, and 20482 are given in Tab. 1.

With OMP PLACES=threads and 1 thread per offload only 15 cores of the Phi
are used if p = 60, whereas with OMP PLACES=cores one thread resides on every
physical core. The difference in the performance can be seen in sub-plots a) and

Table 1. Selected SGEMM performance results for runs using 60 host threads (pro-
cesses) with 4 threads on the Xeon Phi each. Matrices have size 2562, 5122, 20482.

OpenMP on Host MPI on Host
Intel MKL SGEMM 2562 5122 20482 2562 5122 20482

(M1) Performance [GFlops/s] 396±2 1226±4 1577±2 328±5 1157±5 1564±2
Concurrency Ct|Cτ 0.92|0.92 0.93|0.93 0.93|0.93 0.90|0.88 0.91|0.90 0.95|0.94

(M2) Performance [GFlops/s] 94±2 440±3 798±7 234±1 677±2 1452±10
Concurrency Ct|Cτ 0.94|0.10 0.93|0.29 0.94|0.48 0.85|0.34 0.89|0.46 0.92|0.88
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Number of Threads (Processes) p on Host

1Thread
2Threads
3Threads
4Threads

a) OMP_PLACES=threads b) OMP_PLACES=cores

c) ''scatter_compact'' d) ''scatter_compact''

0
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1000

1500

0

500

1000

1500

GF
lop

s/s
GF

lop
s/s

0 20 40 60 0 20 40 60

Different Thread Affinities, No Data Transfer (M1) Different Sized Data Transfers, 4 Threads/Offload (M2)

100%
50%
25%

Number of Threads (Processes) p on Host

0

500

1000

1500

0

500

1000

1500

GF
lop

s/s
GF

lop
s/s

0 20 40 60 0 20 40 60

e) LEO f) OpenMP4

g) OpenMP4+Proxy h) OpenMP4+Proxy
or LEO

host: OpenMP host: OpenMP

host: OpenMP host: MPI

host: OpenMP host: OpenMP

host: OpenMP host: MPI

Fig. 4. Performance for p concurrent SGEMM offload computations on Xeon Phi. Left-
hand side: Different thread affinities and numbers of threads used per offload. Right-
hand side: Impact of data transfers between host and coprocessor. Threads (processes)
are created either by means of OpenMP or MPI (right bottom corner of the sub-plots).

b). Increasing the number of threads per offload from 1 to 2, 3, and 4 results
in significant performance gains, supporting the point that at least 2 threads
per physical Xeon Phi core should be used [9]. However, in b) the 4-thread
performance is behind that in a). We found using OMP PLACES=threads|cores

for concurrent offloads does not guarantee for a particular host thread (process)
that its OpenMP threads on Xeon Phi are assigned cores with contiguous logical
core IDs. We observed that it is more likely for b) to have all threads of the same
group on different cores than it is for a). We assume the performance discrepancy
between a) and b) in Fig. 4 is caused by unfortunate thread placements.

Sub-plots c) and d) show the performance obtained with by-hand thread pin-
ning using the “scatter-compact” scheme. The 1-thread performance is identical
to b). In the 4-thread case, the performance is measurably larger than in a),
since all 4 threads within the same group execute on the same physical core.
Cache-optimized kernels can benefit from sharing the L1-cache in this case. A
comparison of c) and d) shows that MPI- and OpenMP-based executions perform
almost equivalent for large matrices. We achieve ≈65% efficiency in these cases
– the Xeon Phi 7120P provides about 2.4TFlops/s single precision peak per-
formance. Native Xeon Phi executions of SGEMM with larger matrices achieve
about 86% efficiency [2]. The performance shown in sub-plots a) – d) is inde-
pendent of whether LEO or OpenMP4 is used for the offload.

The right-hand side sub-plots display the performance impact of data transfers
between successive offload computations. If the entire problem size is transferred,
for all executions with multi-threading on the host the performance breaks down
significantly. Although each host thread has a corresponding Xeon Phi thread
linked by a COIPipeline (Coprocessor Offload Infrastructure) for kernel invoca-
tions and data transfers [3], concurrency across multiple pipelines suffers from
the current COI implementation uses just one DMA channel. As a consequence,
data transfers are serialized, possibly causing kernel executions be serialized too
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OMP_PLACES=threads
OMP_PLACES=cores
''scatter-compact''

Copy (64MB), x=1...4 OpenMP Threads/Offload Triad (64MB), x=1...4 OpenMP Threads/Offload
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Fig. 5. STREAM copy and triad benchmark for different numbers p of concurrent host
threads (processes) and x = 1, . . . , 4 OpenMP threads on the Xeon Phi

(see the decrease of the in-kernel concurrency Cτ for (M2) in Tab. 1). When
using MPI the number of DMA channels equals the number of MPI ranks. The
performance compared to no data transfers thus decreases only a little.

Sub-plot f) shows reduced performance when using OpenMP4 within libraries
with frequent data transfers between host and Phi. Our offload-proxy approach
recovers the performance achievable with LEO to almost 100% (Fig. 4, g).

STREAM Benchmark. The STREAM copy benchmark refers to b[0:size]=

a[0:size], while the STREAM triad is c[0:size]=a[0:size]+q*b[0:size].
We aim to measure the streaming performance that can be achieved when access-
ing main memory from within concurrent memory bound kernels. The stream-
ing performance for different thread affinities and different numbers of OpenMP
threads is shown in Fig. 5 – array size: 64MB. Host threads were created us-
ing OpenMP. For kernel offloading Intel LEO was used. Performance results for
OpenMP4 and MPI are almost identical as the host just initiates the offloads.

Using OMP PLACES=cores the Phi’s physical cores are populated faster than
with OMP PLACES=threads. Hence, the streaming performance is higher for both
copy and triad. The “scatter-compact” thread pinning scheme gives the same
performance as OMP PLACES=cores if a single thread is used per offload. With
60 host threads (processes) and two OpenMP threads per offload, the streaming
performance starts to saturate at about 162GB/s, which is close to the value of
174GB/s (ECC enabled) for native Phi execution of STREAM triad by 93% [2].

5 Strong Scaling for Simulations of Small Molecules

The program package GLAT (Global Local Adaptive Thermodynamics)
overcomes the problem of critical slowing down of conventional thermodynam-
ical simulations by decomposing the conformational space into metastable sub-
regions, which can be investigated almost independently. The current paper
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addresses a typical question of pharmaceutical or biochemical applications: The
prediction of solvation for a conformational ensemble.

Even small drug-like molecules with < 50 atoms can exhibit more than 100
metastable states. The sampling of such molecules in water environment requires
the explicit modeling of a solvation shell, containing at least one order of mag-
nitude more atoms than the “internal molecule.” To achieve strong scaling for
simulations on these small molecules, GLAT performs almost independent Hy-
brid Monte Carlo (HMC) samplings of the water solvation for many metastable
states concurrently. HMC is a combination of short term Molecular Dynamics
(MD) followed by a Monte Carlo (MC) weighting of the generated conforma-
tions with respect to the total energy. The calculation of the contributions of
the solvent to energy and forces, is transferred to Xeon Phi. The data for the
water environment remains on the Phi, whereas the forces of the water on the
internal molecule, as well as the potential/kinetic energy of the water are sent
back to the host for the HMC step.

Figure 6 illustrates the workflow of a simulation within one metastable state:
First the simulation is initialized with coordinates, velocities, and force-field pa-
rameters of the internal molecule in a given metastable conformation. Followed
by an automatic modeling and minimization of the water environment, the re-
sult is a water droplet containing the molecule of interest. Then the water data
as well as the positions of the internal molecule are transferred to the Phi where
the calculation of the covalent contributions and the forces of the water on the
internal molecule is started. Meanwhile the host carries out the force calculation
of the internal molecule with itself. At the following barrier the host receives the
forces on the internal molecule, completes the MD step, and copies the updated
coordinates of the internal molecule to the Phi, whereas the coprocessor calcu-
lates the water-water interactions and performs the MD step for the water. Since
the whole simulation is embedded into an HMC scheme, the host performs some
statistical weightings after a sequence of ≈ 10 MD steps. The HMC sampling
is repeated for a given water environment several times until about 103 MD
steps are reached. The final convergence check will either finish the simulation
or restart it with another randomly created water environment.

- The GLAT core is written in Fortran, whereas the coprocessor portion of
the code is encapsulated into a C++ library. We introduced the possibility to
fall back to the CPU when calling the library. For both Xeon Phi and CPU,
kernels have been optimized using SIMD intrinsics.

Initialization
+

Minimization
of Water

Environment

Water-IntMol
async

IntMol-IntMol

Water-Water
async

Complete 

H   Phi: Positions Water+IntMol
H   Phi: Force Constants

Phi   H: Forces on IntMol

Water MD-Step

Force Computation
IntMol

MD-Step
H   Phi: Positions IntMol
Phi   H: EnergiesWait for Xeon Phi

+ MC
every ~10
MD-Steps

Conver-

HMC Iterations (~~103 MD Steps)

Xeon Phi
Host

gence
Check

Fig. 6. Workflow of GLAT. The schematic displays an entire simulation cycle.
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Benchmarking Setup and Methodology. We consider three different sized
problems: An internal molecule consisting of 27 atoms embedded into a water
droplet containing 101 (P1), 302 (P2), and 505 (P3) molecules. As a performance
measure we determine the number of particle-particle interactions per second for
(A) the MD loop only, and (B) an entire simulation cycle including the water
minimization, the HMC step, and the final convergence check. Runtimes for 2000
iteration steps are measured using clock gettime(CLOCK REALTIME,..).

For each setup we use OpenMP4, with and without our offload-proxy approach
(Sec. 3), and Intel LEO for coprocessor offloading. Concurrency on the host is
achieved by means of multiple OpenMP threads and/or MPI processes, each of
which creating a Markov chain throughout the HMC sampling, and offloading
kernels to the Phi to speed up force computations.

The system used for benchmarking is described in Sec. 4. It provides 16 phys-
ical respectively 32 logical CPU cores. When using a single Xeon Phi, we create
1 . . . 16 concurrent host threads (processes). On Xeon Phi we use 15 OpenMP
threads per offload computation for a total of up to 240 threads – we use 60 out
of 61 physical cores (see Sec. 4). Computations with two Xeon Phis use either
2 . . . 32 MPI ranks on the host, or two multi-threaded MPI ranks with up to 16
OpenMP threads per rank. When redirecting the offload to the host – CPU-only
computation –, two OpenMP threads are used for kernel execution.

Benchmarking Results. The benchmarking results are displayed in Fig. 7.
For each sub-plot the left hand side graphics are for the MD loop only, whereas
the right hand side ones are for an entire simulation cycle – the performance on
the right thus is lower. In all cases larger values are better.

Throughout all sub-plots the OpenMP4 performance, when not using our
offload-proxy approach, is significantly behind the others due to data transfers
(Sec. 3). The performance loss can be compensated to a certain extent with our
proxy approach. However, it is below the one obtained with LEO as our offload-
proxy performs busy-waiting during the OpenMP4 offloads, and hence consumes
CPU resources on the host. Since best performance values can be achieved with
LEO, the implementation of the entire simulation uses LEO. The right hand side
sub-plots in Fig. 7 thus do not contain data for OpenMP4.

Using MPI on the host can result in measurable performance gains over using
OpenMP if problems are small, e.g. (P1) and (P2). With OpenMP concurrent
data transfers suffer from just one DMA channel is used by the current COI
implementation, causing serialization of data movements between Xeon Phi and
host. In case of small problem sizes, where kernel execution times are of the same
order as the associated data transfer times and the offload overhead, serialization
of data transfers implicitly serializes kernel executions (Tab. 1).

Executions using two Xeon Phis achieve almost twice the overall performance
compared to single-Phi executions if the setup becomes large – e.g. (P3). Best
performance in these cases can be obtained with a hybrid MPI/OpenMP ap-
proach on the host. However, with significantly more than 16 host threads (pro-
cesses) concurrency on the host, and hence on the Phi, suffers from contention
due to oversubscription of CPU resources. It thus would be meaningful to extend
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Fig. 7. Particle-particle interaction rates obtained with GLAT for three different sized
problems (P1) – (P3) (see the text). Each host thread (process) offloads computations
to Xeon Phi via OpenMP4 or LEO. Note the different scales. Larger values are better.

the computation across more than one compute node. Since the current offload
models can use coprocessors within the same node only, hybrid approaches like
MPI+X are necessary in this case. For GLAT the offloads to Xeon Phi are in-
dependent of each other and thus not affected by MPI traffic.

Since GLAT draws on a legacy Fortran code base containing a non-negligible
amount of sections that are not highly parallel, comparing our results against
native Xeon Phi execution of GLAT (as a whole) would suffer from insufficient
performance of its serial parts and the low performance of the internal-molecule
kernels.

6 Summary and Conclusion

In this work we investigated the performance of multi-threaded/-process appli-
cations with concurrent offloading of many small-scale computational kernels to
Xeon Phi. We evaluated the two offload models Intel LEO and OpenMP4 in-
cluding our offload-proxy approach. For a small synthetic compute bound kernel
performing an SGEMM computation, we achieved a high degree of concurrency
with up to 60 host threads (processes) offloading to the Phi. For scenarios with-
out data transfers LEO and OpenMP4 perform equally. We observed deficiencies
in the OpenMP4 offload model regarding data persistence across different func-
tion scopes, limiting its usability within libraries offloading computations to a
coprocessor. To partly compensate for this issue, we proposed and evaluated an
offload-proxy approach. For a real-world application implementing a simulation



Concurrent Kernel Execution on Xeon Phi 799

of drug-like molecules solvated within a nanodroplet, we demonstrated its via-
bility. By using OpenMP4 respectively LEO offloading to Xeon Phi speedups of
about a factor 2 – 3 over an optimized and parallelized CPU implementation
could be achieved.
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