Energy-Aware Multi-Organization Scheduling
Problem*

Johanne Cohen!, Daniel Cordeiro?, and Pedro Luis F. Raphael?

! Laboratoire de Recherche en Informatique (LRI, UMR 8623),
Université Paris-Sud, Bat 650 Ada Lovelace, 91405 Orsay, France
Johanne.Cohen@lri.fr
2 Department of Computer Science,

University of Sdo Paulo, Rua do Matao, 1010; 05508-090 Sao Paulo/SP, Brazil
{danielc,plfr}@ime.usp.br

Abstract. Scheduling algorithms for shared platforms such as grids and
clouds granted users of different organizations access to powerful re-
sources and may improve machine utilization; however, this can also
increase operational costs of less-loaded organizations.

We consider energy as a resource, where the objective is to optimize
the total energy consumption without increasing the energy spent by a
selfish organization. We model the problem as a energy-aware variant of
the Multi-Organization Scheduling Problem that we call MOSP-ENERGY.

We show that the clairvoyant problem with variable speed processors
and jobs with release dates and deadlines is NP-hard and also that being
selfish can cause solutions at most m®~! far from the optimal, where m
is the number of machines and o > 1 is a constant. Finally, we present
efficient heuristics for scenarios with all jobs ready from the beginning.

1 Introduction

Cooperative computational platforms such as grid computing or community
clouds are typically organized as a federated system where users and compu-
tational resources, belonging to different organizations — i.e., different adminis-
trative domains — share resources and exchange jobs with each other, in order
to simultaneously maximize the profits of the collectivity and their own inter-
ests. Those platforms create novel research and business possibilities that, in
turn, require ever more computational power. Examples of such organizations
are research laboratories, universities or company departments.

Current distributed systems and their underlying algorithms allow an efficient
redistribution of the jobs over the available resources, improving the overall
utilization of the platform. Specialized algorithms for cooperative computing
are capable of incite the creation of these platforms by guaranteeing that no
organization will worsen its own results (in terms of performance) by sharing its
resources with the others, even when the other behave in a selfish way.

* This work was partially funded by the Sao Paulo Research Foundation
(FAPESP #2012/03778-0).

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 186-197, 2014.
© Springer International Publishing Switzerland 2014

Energy-Aware Multi-Organization Scheduling Problem 187

The participation on such communities can have a side-effect that is often
neglected by its users: the unpredictable increase of the operational costs for the
organization. Less loaded organizations could save energy by putting its machines
on stand-by, turning them off, or even decreasing the speed of the processors for
non-priority jobs. The co-existence of these jobs with jobs migrated from other
organizations can make this practice unfeasible.

It is crucial to optimize the allocation of the jobs for the whole platform in
order to achieve good system performances. Moreover, it is important to do that
in such a way that no organization will be harmed by sharing its own resources.
The goal of this work is to study this problem considering energy costs also as
a kind of resource that should be exchanged between the participants.

1.1 Related Work

The evolution of the processors technology has been driven by the demand
of increased performance and reduced sizes. These demands resulted on chips
with high power density and temperatures. On large scale server farms, energy-
efficiency became an important issue because of the energy costs. Furthermore,
part of this energy is converted into heat, which degrades processor’s perfor-
mance and reliability. Technologies as Intel’s “Turbo Boost” or AMD’s “Power-
Now” were developed to offer speed-scaling capabilities, that allow the system
to set the speed of the processors in order to control energy consumption.

The Dynamic Speed Scaling scheduling model was first studied by Yao, Demers
and Shenker [9]. They considered a problem where n jobs with release dates
r;, deadlines d; and processing volumes w;, must be scheduled in a variable-
speed processor with the objective of minimizing the energy consumption on
that processor. The energy consumption is given by the integral over time of the
power function P(s(t)) = s(t), where s(t) is the speed in which the processor
is running on time ¢ and o > 1 is a constant real number that depends on
the technical characteristics of the processor — usually o € [2,3]. There are
two assumptions to simplify the model: the processor spectrum of speeds is
continuous and can be any real number between 0 < s < 4oc0.

They have proposed an optimal greedy algorithm for the problem, known
as the YDS algorithm. It iteractively finds the mazimum density interval, that
is, the time interval [t,¢'] such that the sum of the processing volumes of the
jobs completely inside that interval, divided by the length of the interval, is
maximum. By the convexity of the power function, this value gives the optimal
speed on that interval (in the sense that no other feasible schedule can use less
power on that interval.) The jobs in the interval are then scheduled using the
Earliest Deadline First policy at this speed, jobs partially in the interval have
their release dates and deadlines adjusted.

Albers et al. [1,2] studied the problem with m variable-speed processors with
and without preemption and job migration. When migration is not allowed, the
problem is NP-Complete; otherwise there is a polynomial algorithm to find the
optimal solution. They also proved that, if the jobs have agreeable deadlines (i.e.,
given two jobs, if 7 < ro then d; < d2), the problem can be optimally solved in

188 J. Cohen, D. Cordeiro, and P.L.F. Raphael

polynomial-time by distributing the jobs in a round-robin fashion, prioritizing
jobs with smaller release dates.

Scheduling on cooperative platforms were first studied by Pascual et al. [5,8].
They proposed the Multi-Organization Scheduling Problem (MOSP). In their
model, independent organizations, sharing resources on a grid-like fashion, have
a local performance objective for their jobs besides the global makespan. Their
main contribution is the analysis of a centralized 3-approximation algorithm for
the makespan that always incite these organizations to cooperate.

The concept of selfishness on individualists organizations has been broaden
by Cohen et al. [4]. Studying workloads of bag-of-tasks jobs, they have analyzed
situations where selfish organizations could change the schedule of the jobs as-
signed to its own machines and proposed algorithms that avoid schedules where
the devised global schedule could be changed by re-inserting local jobs earlier.
When all organizations behave selfishly, any approximation algorithm has a ra-
tio greater than or equal to (2 — N/2) regarding the optimal makespan with lo-
cal constraints and presented several 2-approximation algorithms for the global
makespan that always respect the selfishness restriction. They have also analyzed
the decentralization of the decision making using Algorithmic Game Theory [3].

1.2 Contributions and Outline of this Paper

Scheduling algorithms for modern cooperative platforms composed of resources
shared between independent participants granted its user access to powerful re-
sources and improved the utilization of machines that were, most of the time,
idle. With the increasing need for more computational power, the energy con-
sumption on these machine also became an issue.

We modeled the problem as a Multi-Organization Scheduling Problem (MOSP)
with respect to the system total energy consumption. We have multiple orga-
nizations, each one with a processor that can operate at variable speed (as in
classic Dynamic Speed Scaling problems), and its own set of jobs. The goal is
to find a global schedule, migrating jobs from one organization to another, that
minimizes the total energy consumption.

Each organization has what is called a selfish restriction, that being a energy
restriction that makes unfeasible any schedule that increase the energy consump-
tion of that organization compared to what would be if the same organization
was alone (even if the global energy consumption decrease with that schedule.)

An interesting aspect of this problem is that the energy consumption is given
by a convex function on the speed of the processor, making its analysis signifi-
cantly different from the original MOSP problem.

On Section 2 we formally define the problem. Section 3 shows that the general
problem is NP-hard and that the ratio between the energetic consumption of
solutions that respect the selfish constraint to the cost of solutions that does not
respect may be unbounded for some instances of the problem. Heuristics for the
problem with several organizations executing jobs that must meet a deadline are
presented in Section 4, and their energy savings are experimentally analyzed in
Section 5. Finally, some conclusion remarks are presented in Section 6.

Energy-Aware Multi-Organization Scheduling Problem 189

2 Problem Description and Notations

The general problem studied in this paper is how to perform energy-aware
scheduling on cooperative platforms formed by a federation of organizations.
Different independent organizations, interconnected in a grid-like fashion, share
resources and exchange jobs, expecting an improvement on their performance
and costs. We are interested in studying how to redistribute the load between
the organizations, decreasing the total energy-cost of the entire platform.

We call this problem the Energy-Aware Multi-Organization Scheduling Prob-
lem (MOSP-ENERGY), after the Multi-Organization Scheduling Problem
(MOSP), that first studied scheduling on grid computing platforms. Formally,
we define our cooperative platform as a federation of N organizations. Each
organization O),| 1 < k < N, shares a machine that supports continuous dy-
namic speed scaling (i.e., processors can operate at any arbitrary speed s that
can be changed by the scheduler over time) and intend to execute n(¥) jobs. A
job Ji(k), 1 <i<n® is defined by its release date ’I“Z(k), its deadline dgk) and its
processing volume wgk). The job with the biggest deadline of O®) is defined as
dl(rlf;)lx = max; dgk). Job preemption is allowed.

At a given time, if the chose speed is s, the power required to operate the
processor is given by P(s) = s*, where « is a constant real number that depends
on the type and model of the processor, usually with a value between 2 and
3. The energy consumption on one machine is given by the integral of P(s)
over time. The total energy consumption of the system is the sum of the power
consumption of the machines of all organizations.

In order to encourage the creation of these cooperative platforms, we impose
a hard constraint on the feasibility of the schedules: no organization can have its
costs increased by cooperating. We call this the selfish restriction of the organi-
zations. In other words, if an organization O®) can execute its jobs consuming

a total energy of El(f'c)al only using its own machines, then a feasible schedule S

must ensure that Eék) < El(f'c)al (otherwise the organization could just leave the

platform). The optimization problem to be solved can be stated as:

minimize Es subject to Eék) < E® Vk

local?

3 Complexity Analysis

3.1 The Cost of Having Selfish Organizations

Respecting MOSP-ENERGY selfish restriction restrains the set of feasible sched-
ules. This limitation have an impact on the quality of the optimal solutions. For
the general (i.e., without the selfish restriction) energy minimization problem
for multiple machines, it is known that:

Lemma 1 (Albers et al. [2]). For any set of jobs, the energy of an optimal
schedule on m processors is at least 1/m®~" times that of an optimal schedule
on one processor.

190 J. Cohen, D. Cordeiro, and P.L.F. Raphael

The worst case for MOSP-ENERGY is when all but one organizations are idle.
The overloaded organization may not be able to migrate its jobs to the others in
order to respect the selfish restriction. The optimal solution without the selfish
restriction would be able to redistribute the load among all the m machines. So,
the following corollary holds:

Corollary 1. The ratio between the best solution that respects MOSP-ENERGY
selfishness restriction to the best solution that does not respect it is m®~1.

3.2 Computational Complexity

This section studies how hard is to find an optimal solution for the MOSP-
ENERGY problem. We study, without loss of generality, the simpler case with
1 machine per organization. Lets consider the decision version of the MOSP-
ENERGY defined as follows:

Instance: a set of N organizations (for 1 < k < N, organization O™ has
n®) jobs and 1 processor with variable speed) and an integer K.

Question: does there exist a schedule S such that the selfish restriction
Eék) < El(f C)al is respected for all O®) and such that its total energy consumption
Es is less than or equal to K7

We will show that:

Theorem 1. The MOSP-ENERGY problem is NP-Complete.

Proof. 1t is straightforward to see that MOSP-ENERGY € NP. Our proof is
based on a reduction from the well-known PARTITION problem [6]:

Instance: a finite set of positive integers A = {a1,...,an}.
Question: is there two disjoint subsets A; and As of A such that ZaieAl a; =
Za iEAS aj ?

Given an instance of PARTITION, we construct an instance of MOSP-ENERGY
with N = 2 organizations as follows. Let ¢ and ¢’ be two integers representing two
different deadlines where ¢ < t’. Let D be an integer representing a processing
volume; we will discuss their values later.

Organization O™ has only one job, Jl(l), with rgl) =0, dgl) =t and wgl) =D.
Organization O has n+1 jobs: Jl(z), ceey J,(izl. The first job of O®) is identical
to the one from OM): 7"52) =0, d?) =t, w?) = D. The remaining n jobs have
TZ@) =0, d§2) =t and wz@) = a;.

Let 8 = ZaieA a;. We define an integer K as:

e ()
ol (¢)l (¢ —t)ed

And choose the values of D, t and ', such that: ’tj > D;,r’g. Choosing D > 50
and ¢’ > 3t + 1 satisfy these conditions.

Energy-Aware Multi-Organization Scheduling Problem 191

Now we can easily build an instance for MOSP-ENERGY from the set A
in polynomial time, as depicted in Fig. 1(a). In this instance, the optimal lo-

cal energy consumption of O (computed by the YDS algorithm) is given by
l(c}c)al = tgjl'

Now, we will compute the cost of the local energy consumption of organization
O®) . This cost can also be computed using the YDS algorithm. Recall from
Section 1.1 that the optimal speed to execute a job is calculated using the concept
of interval of maximum density, i.e., the time interval such that the sum of the
processing volumes of the jobs that start and finish in it, divided by the length
of the interval, is maximum. This density is the speed on which the jobs inside
this interval will be executed in the optimal schedule, hence, the total energy
spent by a job is determined by its speed in an optimal schedule.

D, t and ¢’ was chosen in such a way that ? > P ;,rﬁ . Thus, the interval of
maximum density for both organizations will always be the interval on which the
jobs of processing volume D and deadline ¢ are. This means that in the optimal
local schedule for O, job J1(2) must be executed alone from time 0 until time ¢.
From time ¢ until time #’, all the remaining jobs are executed. The energy spent

by O is then given by g® taDjl + (t/_i;a—l-

local —

speed speed
) [o |4V
N ! !) 7 72
@@ T T T o T o o~~~
o Jq Jéz) J§2) Jf) Jéz) Jé2) J;2) 1 Jéz) J§2) Jf)
t t‘,time t t‘,time
(a) Initial instance. (b)

Scheduling after the migration of some
jobs from O® to OW.

Fig. 1. Reduction of the MOSP-ENERGY problem from PARTITION

Now we must show that this transformation is a reduction. First, suppose that
the set A can be split into two disjoint subsets A; and As such that ZaieAl a; =
> ;€A 44+ In order to respect the selfish restriction and avoid an increase on

the local cost of organization O™V neither the first job from O™ nor O can
migrate. The only way to decrease the total energy cost is to migrate some of the
other jobs. We will split the last n jobs of O® into 2 subsets, J; and J» such
that if a; € A; than the job Ji(i)l, with wg)l = a;, belongs to set J;. Otherwise,
it belongs to J>.

We can migrate the jobs of one of the subsets, say 7, to organization O As
co(n?equence of our assumptions on D, ¢ and #’, the migrations does not change
s

loeal- After all migrations, the cost of organization 0® will be given by:

192 J. Cohen, D. Cordeiro, and P.L.F. Raphael

b (B (St

E® _
S ta—1 + (t/ _ t)afl + (t/ _ t)afl
Since ZJEQ’E‘% wZ@) = ZJ;Q’EJQ wj(?) = g, the global energy consumption on

this schedule is equal to:

2 ()"
_ (), p(2 _ 2D° (2)
ES - ES +ES - ta—1 + (t/ _ t)afl

Thus, the local constraints are respected and the total energy spent is K.

Suppose now that there is a valid schedule for this instance such that its total
cost is less than or equal to K. It implies that some jobs from organization O(?)
must have migrated. We can split the jobs from O into two subsets J; and Js
such that Ji@) € J; if job Ji(z) was migrated to O otherwise Ji(z) € J2. Now,
we split the set A in two subsets A; and A, in such a way that a; € A; if and
only if Ji(j-)l € J1; otherwise, it belongs to J>. The global energy consumption of
this schedule is given by:

2D« <ZJ752)€J1 U)Z(Z))a (ZJJ(?)EJz w](?))a

E =
ST a1 + (t' — t)a-1 + (' — t)o-1

Since Es < K, we deduce from the two previous equations that:

@)*
(Eoen ™) | (yene)” o ay

t/—t)x—1 (t"—t)x—1

(« « «
— (ZJEQ)E.ﬁ w§2)) + (ZJJ(.Q)EJQ wj(?)) < 2(5)

Since x® + y* is convex and x + y = S, then, by definition of convexity, the
function % + y® is minimum when x = y and =% + y® > 2(§)a. In our case,
this means that:

« «

2(5)2 >oow? | | X v §2<§)a (1)

1P en 1P e

Now, we split set A into two subsets A; and As such that a; € Ay if Ji(2) € Ji;
otherwise a; € Az. From Eq. 1, >°, 4 a; = Z']i(Z)ejl wz@) — 'g

In other words, it means that >, 4 a; = >_, .4, @;- This proves that set
A can be split into two disjoint subsets A; and A, such that ZaieAl a; =
> a;€As if and only if there is a valid schedule to this instance such that its
total cost is less than K. This concludes our proof.

Energy-Aware Multi-Organization Scheduling Problem 193

4 Heuristics

We developed heuristics for the MOSP-ENERGY problem for instances of bag-
of-tasks jobs that are available at the beginning of the batch (r; = 0). Without
loss of generality, we assume that all w; = 1 and only deadlines are free to vary.

The main idea of these heuristics is to migrate jobs from a more costly or-
ganization to a less costly one, always respecting the selfish restrictions. This
is achieved by adjusting the release date of the migrated jobs to values higher
then the higher deadline of the host organization. If one migrates a job to an
interval that overlaps with any job from the hosting organization, the processor
may have to increase its speed to be able to respect all the deadlines, resulting in
an increase of the energy cost to execute the jobs of hosting organization. This
may happen if value of the maximum density interval is changed. Avoiding these
migrations ensures that the energy to run the host’s jobs will remain unchanged.
Fig. 2(a) illustrates the idea, showing the result of a possible migration.

We start considering how to redistribute energy as a resource among N = 2
organizations and then present a generic heuristic for N organizations.

]
i 1
O(2> | :
| |
— I
_| 9 9 |
I M@ Lré) dél) :
O(l) f 1 I 1 :
d<h) @, di did time
(a) (2) . . 1 . (b) (1 . . 3 .
J5™ is migrated to OW and has its disly is adjusted and O® migrates
release date adjusted to diax. jobs to O® and O™,

Fig. 2. Schema of the heuristics migrations

4.1 Heuristics for N = 2 Organizations

Consider an instance of the MOSP-ENERGY problem with only N = 2 organi-
zations. Assume, without loss of generality, that dl(éf)lx < dl(ri)lx.

Our heuristics — based on the YDS algorithm (see Section 1.1) — iteratively
find the maximum density interval of the more costly organization on each iter-
ation. After performing the migrations, we use the original YDS algorithm on
each organization to compute the minimum processor speed to execute each job.

At each iteration, the heuristics compute the maximum density interval
[rg),d(j)] of the organization with the biggest dpay (in our case, O?)) and the

list of jobs J(Zi) IS jg) that lies inside it. We have three cases to consider:

194 J. Cohen, D. Cordeiro, and P.L.F. Raphael
(i) if d(2 < d®), the heuristic cannot migrate J(Azi) without increasing the
energy spent by the other organization’s local jobs;
(ii) if r(2) > dmax the heuristic can migrate the job “asis” (without changing its
release date and deadline). For N = 2, this case is equivalent to the problem
for m machlnes and can be optimally solved on polynomial-time [2];
(iii) if r) < d), and d(2 > d{i)y the job can be migrated, but its release
date must be adJusted “has shown in Fig. 2.

Our heuristics differ on how to handle the third case, which we call the border
jobs, since they intersects the border defined by dg;x. We will describe how each
heuristic tackles the border problem in the following sections.

Greedy Heuristic. The first heuristic deals with the border jobs in a greedy
way. At each iteration, we compute the maximum density interval of O, If the
jobs on jf) does not intersects the border, we solve the problem as explained
before. If the jobs are in the border, we choose the job with biggest deadline. If
the migration of this job (adjusting its release date to dglx) decreases the total
energy cost of the platform, the job is migrated. Otherwise, the job remains in
its original state on O?). We repeat this process until there are no more jobs to
consider on O

Probabilistic Heuristic. In this heuristic, the border is handled in a prob-
abilistic way. A job Ji(z) € jf) in the border is migrated with probability

dP a2 1
(o s if dz(' ' > dix
pi = d d!uax
0 otherwise.

This heuristic has the advantage of being very fast in practice, whereas Greedy
must run the YDS algorithm several times.

Brute-Force Heuristic. The border problem that we are trying to solve is,
essentially, a problem of splitting the set jf) into two disjoint subsets, migrating
one to O, For small inputs, it is computationally feasible to try all possible
splits. The results from the experiments with this approach gives insight into
the quality of the solutions provided by the other heuristics.

Consider the subset of JE) that is in the border. We enumerate all possible

partitions of jf) in two disjoint subsets (one set will be migrated and the other
will remain on 0(2)) and test which one minimizes the total energy cost. This

heuristic is, of course, exponential in the number of jobs in J 22).

4.2 Heuristic for N Organizations

Using the ideas presented on Section 4.1, we have designed a simple polynomial-
time heuristic for the case when we have more than two organizations. The
heuristic is based on the Iterative Load Balancing Algorithm (ILBA [5]).

The basic principle of our heuristic is to redistribute the energy expenditure
of the organizations starting with the two organizations that have the smallest
deadlines and iteratively add the jobs from the most costly organizations. One-
by-one, each organization has its energy decreased.

Energy-Aware Multi-Organization Scheduling Problem 195

The heuristic enumerates the organizations by non-decreasing values of their
dmax, €., dr(r}g)m < dg;x <. < dr(n]\;; and considers, one-by-one, each organi-
zation O%) for k = {2,..., N}. The choice of which jobs from O®) should be
migrated is done based on the concept of the maximum density interval (MDI).
The algorithm computes the MDI of its jobs and migrates the border job with
biggest deadline to the organization among O™, ... O%~1 that decreases the
most the total energy.

When there is no more job worth migration on the density interval, the value
of diax of all organizations O, ..., O*=1) is updated — see Fig. 2(b) — and
the algorithm checks if there is a new MDI on O®) with jobs worth migration. If
yes, it repeats the migration process. If not, the algorithm will try to redistribute
the jobs of the next organization (O*+1)).

This process is repeated until all organizations had been considered. Note
that by updating the dn,.x value after considering each MDI, we never increase
the energy spent to execute the jobs already scheduled. Consequently, MOSP-
ENERGY selfish restrictions are always respected.

5 Experimental Evaluation

We designed a series of experiments to evaluate the heuristics presented on
the previous section. The experiments were evaluated using randomly gener-
ated workloads akin to typical environment found on academic cooperative
platforms [5]. We evaluated the algorithms with instances containing a ran-
dom number of machines, organizations and jobs with different deadlines. Two
different scenarios were considered.

In the first, the number of initial jobs in each organization follows a Zipf
distribution with exponent equal to 1.4267 and the jobs’ deadlines are uniformly
distributed. In the second, the Cp,.x of these organizations follows the same Zipf
distribution, and dgk) = I(rﬁzx, Vi, k and the jobs are uniformly distributed among
the organizations. The intuition about the scenarios is that the first configuration
best models the distribution of jobs among organizations in shared platforms [7],
where the second models the selfish restriction of the original MOSP problem,
with the deadlines representing the initial makespan of the organizations.

Table 1. Results for N = 2 organizations. For different numbers of jobs per organiza-
tion, we show how each heuristic performs if compared to no cooperation at all.

Jobs/Org % Greedy % Probabilistic % Brute-Force

5 0.69 1.85 2.45
10 0.94 2.12 3.09
15 2.29 1.61 3.21
20 1.79 1.27 4.97
50 0.78 0.67 7.44

100 0.32 0.30 3.08

196 J. Cohen, D. Cordeiro, and P.L.F. Raphael

Table 2. Results for N = 10 and 20 organizations, showing how the iterative algorithm
performs if compared to no cooperation at all

N # Jobs/Org Energy Saved (%) N # Jobs/Org Energy Saved (%)
10 5 11.87 20 5 15.64
10 10 6.81 20 10 9.81
10 15 5.47 20 15 6.11
10 20 4.64 20 20 5.04
10 30 2.86 20 30 3.24

Table 3. Performance results for N = 2 organizations on the second scenario

Jobs/Org % Greedy % Probabilistic % Brute-Force

5 4.22 5.86 6.72
10 4.12 3.19 5.94
15 2.08 2.96 6.81

Tables 1 and 2 summarizes the results obtained by our heuristics for the
first scenario. Our preliminary tests showed that the maximum dy.x does not
affect significantly the results for the first scenario. So, due to the lack of space,
all results for this scenario are presented for dy.x = 50. Varying the number
of jobs per organization, we show how much each heuristic can save on the
total energy usage if compared to the total energy usage that could have been
obtained without migrations (applying the YDS algorithm for each organization
individually.) Each result is presented as the average of 200 experiments.

The results shows that for N = 2 organizations, the energy saving is limited
by the selfish restriction of the organizations. The Greedy heuristic is able to
save more energy than Probabilistic when the ratio between the number of jobs
to the number of organizations is higher. The results obtained with Brute-Force
are presented for the sake of comparison. For N = 10 and N = 20, our iterative
algorithm was able to obtain savings up to 11.87% and 15.64%, respectively.
Further investigation is needed for instances with higher number of jobs per
organizations. In this case, the organizations have a higher probability of have
similar dpyax. This fact hampers the ability of improving the solutions because
of MOSP-ENERGY selfish restriction.

Tables 3 and 4 summarizes the results obtained by our heuristics for the second
scenario. The results show a significant energy reduction — up to 27.45% — if
the notion of deadline is related only to the initial makespan.

Table 4. Performance results for N = 10 and 20 organizations on the second scenario

N # Jobs/Org Energy Saved (%) N # Jobs/Org Energy Saved (%)
10 5 17.99 20 5 20.08
10 10 19.10 20 10 25.50

10 15 19.13 20 15 27.45

Energy-Aware Multi-Organization Scheduling Problem 197

6 Concluding Remarks

In this work, we have studied the problem of scheduling on cooperative platforms
considering energy as a communal resource. The objective of the Energy-Aware
Multi-Organization Scheduling Problem (MOSP-ENERGY) is to minimize the
total energy consumption of the entire platform, while assuring that the energy
cost to execute jobs from a particular organization will not increase.

Balancing energy consumption is significantly different from the load balanc-
ing problem because of the convexity of the cost function. We have proved that
the MOSP-ENERGY problem is NP-hard and that the ratio between the best
solution respecting the organizations’ selfish restriction to the solution that min-
imized the total energy is equal to m®~!.

We have designed heuristics to show how one can redistribute the energy
between organizations respecting the selfish restriction. Our experimentals shows
that we can save as much as 27% energy of the total spent by the platform.

This study was a first step on a better understanding of the role of energy
costs on cooperative platforms. Further research will investigate approximation
algorithms for the problem and fairness issues on the distribution of the energy
costs between the organizations even if the jobs from different organizations
belong to the same maximum density interval.

References

1. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with mi-
gration. In: ACM Symposium on Parallelism in Algorithms and Architectures, pp.
279-288 (2011)

2. Albers, S., Miiller, F., Schmelzer, S.: Speed scaling on parallel processors. In: ACM
Symposium on Parallel Algorithms and Architectures, pp. 289-298 (2007)

3. Cohen, J., Cordeiro, D., Trystram, D., Wagner, F.: Coordination mechanisms for
selfish multi-organization scheduling. In: IEEE International Conference on High
Performance Computing, pp. 1-9 (December 2011)

4. Cohen, J., Cordeiro, D., Trystram, D., Wagner, F.: Analysis of multi-organization
scheduling algorithms. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010, Part II. LNCS, vol. 6272, pp. 367-379. Springer, Heidelberg (2010)

5. Dutot, P.F., Pascual, F., Rzadca, K., Trystram, D.: Approximation algorithms for
the multiorganization scheduling problem. IEEE Transactions on Parallel and Dis-
tributed Systems 22(11), 1888-1895 (2011)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (January 1979)

7. losup, A., Dumitrescu, C., Epema, D., Li, H., Wolters, L.: How are real grids used?
The analysis of four grid traces and its implications. In: 7th IEEE/ACM Interna-
tional Conference on Grid Computing, pp. 262-269 (September 2006)

8. Pascual, F., Rzadca, K., Trystram, D.: Cooperation in multi-organization schedul-
ing. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS,
vol. 4641, pp. 224-233. Springer, Heidelberg (2007)

9. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Symposium on Foundations of Computer Science, pp. 374-382. IEEE (1995)

	Energy-Aware Multi-Organization Scheduling Problem

	1 Introduction
	1.1 Related Work
	1.2 Contributions and Outline of this Paper

	2 Problem Description and Notations
	3 Complexity Analysis
	3.1 The Cost of Having Selfish Organizations
	3.2 Computational Complexity

	4 Heuristics
	4.1 Heuristics for N = 2 Organizations
	4.2 Heuristic for N Organizations

	5 Experimental Evaluation
	6 Concluding Remarks
	References

