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Abstract

High-density lipoprotein (HDL) is considered to be an anti-atherogenic lipopro-

tein moiety. Generation of genetically modified (total body and tissue-specific

knockout) mouse models has significantly contributed to our understanding of

HDL function. Here we will review data from knockout mouse studies on the

importance of HDL’s major alipoprotein apoA-I, the ABC transporters A1 and

G1, lecithin:cholesterol acyltransferase, phospholipid transfer protein, and scav-

enger receptor BI for HDL’s metabolism and its protection against atherosclero-

sis in mice. The initial generation and maturation of HDL particles as well as the

selective delivery of its cholesterol to the liver are essential parameters in the life

cycle of HDL. Detrimental atherosclerosis effects observed in response to HDL

deficiency in mice cannot be solely attributed to the low HDL levels per se, as
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the low HDL levels are in most models paralleled by changes in non-HDL-

cholesterol levels. However, the cholesterol efflux function of HDL is of critical

importance to overcome foam cell formation and the development of atheroscle-

rotic lesions in mice. Although HDL is predominantly studied for its

atheroprotective action, the mouse data also suggest an essential role for HDL

as cholesterol donor for steroidogenic tissues, including the adrenals and ovaries.

Furthermore, it appears that a relevant interaction exists between HDL-mediated

cellular cholesterol efflux and the susceptibility to inflammation, which

(1) provides strong support for the novel concept that inflammation and metabo-

lism are intertwining biological processes and (2) identifies the efflux function of

HDL as putative therapeutic target also in other inflammatory diseases than

atherosclerosis.
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apoA-II Apolipoprotein A-II
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apoB Apolipoprotein B

apoE Apolipoprotein E

CETP Cholesterol ester transfer protein

HDL High-density lipoprotein

LCAT Lecithin-cholesterol acyltransferase

LDL Low-density lipoprotein

LDLr Low-density lipoprotein receptor

LPS Lipopolysaccharide

PLTP Phospholipid transfer protein

SR-BI Scavenger receptor BI

VLDL Very-low-density lipoprotein
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1 Introduction

High levels of low-density lipoprotein (LDL) cholesterol are associated with an

increased risk for cardiovascular disease. In contrast, plasma levels of cholesterol

associated with high-density lipoprotein (HDL) are inversely correlated with the

risk of cardiovascular disease (Gordon et al. 1977). Since standard treatment with

statins to lower plasma levels of LDL cholesterol only reduces the risk of cardio-

vascular disease by ~30 % (Cholesterol Treatment Trialists’ (CTT) Collaboration

et al. 2010; Cholesterol Treatment Trialists’ (CTT) Collaborators et al. 2012),

raising plasma levels of HDL cholesterol has been considered a potential additional

therapeutic strategy to overcome disease.

The term HDL refers to a class of alpha-migrating protein/lipid complexes that

differ in size (5–12 nm), shape, and lipidation pattern. In order to be able to

effectively modulate plasma HDL-cholesterol levels, it is of critical importance

to understand the anti-atherogenic potential and metabolism of the different HDL

particles. Due to the large biological/genetic variation and lifestyle of people, it is

difficult to gain clear insight into the relation between the flux of cholesterol

through the HDL pathway and the development of atherosclerosis—the primary

underlying cause of cardiovascular disease—in the general human population.

Small animal models, in particular mice, have been proven valuable tools to

increase the understanding of the complexity of HDL metabolism and the

consequences of interfering in specific pathways or atherosclerosis susceptibility.

Here we will review data from several genetically modified (total body and tissue-

specific knockout) mouse models to (1) show the importance of specific gene

products in the life cycle of HDL and their contribution to HDL’s primary function,

reverse cholesterol transport, i.e., the flux of cholesterol from peripheral cells back

to the liver for subsequent excretion, and (2) highlight the potential of modulation

of HDL metabolism as an approach to lower atherosclerotic disease burden.

2 Apolipoprotein A-I

Apolipoprotein A-I (apoA-I) is produced by the liver (Zannis et al. 1983) and

intestine (Gordon et al. 1982) and represents the primary apolipoprotein constituent

of HDL particles (Scanu et al. 1969). Several mutations in the apoA-I gene have

been causally linked to HDL deficiency in humans (Tilly-Kiesi et al. 1995; Leren

et al. 1997; Matsunaga et al. 1999; Hovingh et al. 2004; Dastani et al. 2006; Wada

et al. 2009; Berge and Leren 2010; Lee et al. 2013).

The groups of Nobuyo Maeda (Williamson et al. 1992) and Jan Breslow (Plump

et al. 1997) both inactivated the apoA-I gene in mice using dedicated homologous

recombination strategies, leading to the absence of detectable amounts of apoA-I

protein in plasma. In accordance with an important function for apoA-I in the

formation and stability of HDL particles, genetic disruption of apoA-I in mice is

associated with an 83 % decrease in the level of HDL cholesterol, contributing to a

68 % decrease in plasma total cholesterol levels (Williamson et al. 1992). The
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limited amount of HDL cholesterol present in apoA-I knockout mice is carried by

particles that are enriched in triglycerides (Plump et al. 1997). However, HDL

particle size and shape are similar to that of wild-type controls. ApoA-I-deficient

HDL particles display increased levels of other apolipoprotein subspecies, includ-

ing apolipoprotein A-II (apoA-II), apolipoprotein E (apoE), and apolipoprotein

A-IV (apoA-IV) (Li et al. 1993; Plump et al. 1997; Moore et al. 2003). Homozy-

gous apoA-I deficiency in mice not only lowers plasma levels of HDL cholesterol,

but also decreases levels of cholesterol associated with apoB-containing very-low-

density lipoproteins (VLDL) (Plump et al. 1997). The cholesterol ester to

unesterified cholesterol ratio is lower in plasma of apoA-I-deficient mice, which

can be attributed to a reduced endogenous cholesterol esterification rate (Parks

et al. 1995). Furthermore, the cholesterol ester fatty acid composition of plasma is

markedly different between the different genotypes, with apoA-I knockout mice

displaying a higher degree of fatty acid saturation as compared to wild-type mice

(Parks et al. 1995). ApoA-I, in addition to its structural role, thus also serves as an

essential activator of the enzyme lecithin-cholesterol acyltransferase (LCAT) that

esterifies cholesterol.

ApoA-I deficiency in mice does, in general, not affect tissue cholesterol levels

(Plump et al. 1997). In the liver, decreased delivery of cholesterol esters to

hepatocytes is compensated by a concomitant decrease in bile acid formation as

judged from a decrease in hepatic mRNA expression levels of cholesterol 7alpha-

hydroxylase (CYP7A1) in apoA-I knockout mice (Plump et al. 1997). In contrast,

the adrenals are not able to cope with the diminished plasma cholesterol flux due to

the lack of apoA-I. Cortical cells located in the zona glomerulosa and zona

fasciculata from the adrenals of wild-type mice are filled with large lipid droplets

containing cholesterol esters, while adrenals from apoA-I-deficient mice

completely lack cholesterol esters and display a parallel decrease in microvillar

channel width (Plump et al. 1996). Importantly, apoA-I-deficient mice show a

diminished adrenal glucocorticoid output in response to steroidogenic triggers

(Plump et al. 1996), suggesting that a lack of apoA-I-containing HDL particles

impairs normal adrenal function in mice. Although the cholesterol ester content of

the testis is similar between apoA-I knockout and wild-type mice, interstitial and

theca cells within the ovaries of apoA-I knockout mice are similarly deprived of

cholesterol esters (Plump et al. 1996). Currently no evidence is present for an

altered female fertility, despite the clear ovarian cholesterol depletion phenotype.

Combined, these findings indicate that apoA-I-containing HDL particles act as

important cholesterol donors for several, but not all, steroidogenic tissues.

Human apoA-I mutation carriers may develop premature atherosclerosis

(Hovingh et al. 2004; Dastani et al. 2006). The formation of atherosclerotic lesions

in normolipidemic mice can be induced by feeding them a cholic acid-containing

diet enriched in cholesterol and fat that increases levels of pro-atherogenic apoB-

containing lipoproteins (Paigen et al. 1987; Ishida et al. 1991). Strikingly, deletion

of apoA-I in wild-type mice does not alter the incidence or extent of atherogenic

diet-induced lesion formation (Li et al. 1993). This may be explained by the fact

that, under cholic acid-containing diet feeding conditions, levels of anti-atherogenic
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HDL as well as levels of pro-atherogenic VLDL/LDL are lower in apoA-I knockout

mice as compared to wild-type controls (Li et al. 1993). To further determine the

impact of apoA-I deficiency on atherosclerosis susceptibility, apoA-I knockout

mice have been crossbred with genetically hyperlipidemic low-density lipoprotein

receptor (LDLr) knockout mice that spontaneously develop atherosclerotic lesions

on a chow diet, albeit at a slow rate (Ishibashi et al. 1994). Chow diet-fed apoA-I x

LDLr double knockout (DKO) mice as compared to LDLr single knockout controls

exhibit an increase in the plasma non-HDL-cholesterol to HDL-cholesterol ratio.

This can be attributed to a marked increase in VLDL-cholesterol levels and a

decrease in plasma HDL-cholesterol levels (Moore et al. 2003; Zabalawi

et al. 2003). In accordance with the more atherogenic lipoprotein profile (higher

VLDL cholesterol and lower HDL cholesterol), atherosclerotic lesion burden is

increased in chow diet-fed apoA-I x LDLr DKO mice, as measured by en face

analysis of the aorta, irrespective of the age of the mice (Moore et al. 2003).

Feeding a Western-type high fat/high cholesterol diet induces a rapid progression

of atherosclerotic lesion development in LDLr knockout mice (Ishibashi

et al. 1994). In great contrast with the chow diet findings, the extent of atheroscle-

rotic lesion formation was not significantly different between LDLr KO and apoA-I

x LDLr DKO mice upon feeding an atherogenic diet containing 10 % saturated fat

from palm oil and 0.1 % cholesterol for 16 weeks (Zabalawi et al. 2003). However,

it should be noted that apoA-I x LDLr DKO mice show a much lower diet-induced

increase in VLDL-cholesterol levels. Identical aortic cholesterol contents are thus

found in the context of a ~70 % lower plasma total cholesterol level (Zabalawi

et al. 2003). It therefore appears that ablation of apoA-I function and the concomi-

tant decrease in plasma HDL-cholesterol levels do predispose for atherosclerotic

lesion development in mice, but only after correcting for apoA-I genotype-

associated changes in VLDL-cholesterol levels.

ApoA-I x LDLr DKO mice develop severe (fatal) skin lesions containing lipid-

filled macrophages upon feeding the high cholesterol/high fat diet (Zabalawi

et al. 2003). In addition, B-cells, T-cells, and dendritic cells within lymph nodes

of apoA-I x LDLr DKO mice are enriched in cholesterol esters (Wilhelm

et al. 2009). This is associated with an autoimmune phenotype characterized by

relatively high autoantibody titers in plasma upon feeding an atherogenic high

fat/high cholesterol diet (Wilhelm et al. 2009). ApoA-I-containing HDL particles

thus also play an essential role in maintaining cholesterol homeostasis in the skin as

well as in cells from the lymphoid system.

3 ATP-Binding Cassette Transporter A1

The cholesterol used to transform pre-beta1HDL into discoidal alpha-migrating

HDL particles can be supplied through passive diffusion driven by a concentration

gradient. However, it has become clear that energy-dependent flux of cholesterol

and phospholipid across the membrane facilitated by members of the ATP-binding
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cassette (ABC) family of transporters contributes significantly to the lipidation of

apoA-I.

Human carriers of a mutation in the full size ABC transporter ABCA1 gene

suffer from familial HDL deficiency (Brooks-Wilson et al. 1999; Bodzioch

et al. 1999; Hong et al. 2002). In accordance with a prominent role for ABCA1 in

the control of HDL biogenesis, total body ABCA1-deficient mice are characterized

by an almost complete lack of HDL cholesterol (>90 % decrease) in the context of

similar levels of triglyceride-rich lipoproteins (Christiansen-Weber et al. 2000;

Orsó et al. 2000; Calpe-Berdiel et al. 2005; Brunham et al. 2006). Mature alpha-

migrating HDL particles are virtually absent in ABCA1 knockout mice. The

remaining HDL cholesterol is carried by pre-beta HDL particles that are relatively

enriched in triglycerides and exhibit an altered phospholipid species distribution

(Orsó et al. 2000; Francone et al. 2003). ABCA1 knockout mice display a dimin-

ished LCAT activity (Francone et al. 2003), which highlights that lipidation of

apoA-I via ABCA1 is required for LCAT activity and maturation of HDL.

Adrenocortical cells (Orsó et al. 2000) and testical Sertoli cells (Christiansen-

Weber et al. 2000) of mice lacking ABCA1 show distinct accumulation of choles-

terol esters. This can possibly be attributed to the observed increase in the activity

of the cholesterol synthesis gene HMG-CoA reductase (Drobnik et al. 2001). How-

ever, ABCA1 may also act as a local regulator of steroidogenic tissue cholesterol

homeostasis. In further support of a crucial role of ABCA1 in the control of normal

steroidogenesis and development, pregnant ABCA1-deficient females exhibit

lower plasma progesterone and estrogen levels (Christiansen-Weber et al. 2000).

Furthermore, placentas of ABCA1 knockout mice often show malformations,

which translates into a diminished birth and survival rate of ABCA1 knockout

pups (Christiansen-Weber et al. 2000).

Livers and intestines of ABCA1 knockout mice are depleted of cholesterol esters

(Orsó et al. 2000). Within the liver of wild-type mice, relatively high mRNA and

protein expression levels of ABCA1 are found in hepatocytes and tissue

macrophages (Kupffer cells) (Lawn et al. 2001; Hoekstra et al. 2003), while in

the intestine ABCA1 expression seems to be mostly restricted to macrophages in

the lamina propria of villi (Lawn et al. 2001). Dedicated gene targeting strategies

have been employed to delineate the contribution of the different cell compartments

to plasma HDL-cholesterol levels and total body cholesterol homeostasis. Condi-

tional disruption of ABCA1 function specifically in parenchymal liver cells with

the use of the Cre/Flox gene targeting system impairs the apoA-I-mediated efflux of

cholesterol and phospholipid from hepatocytes without altering the efflux of cho-

lesterol from macrophages to apoA-I (Timmins et al. 2005). Plasma

HDL-cholesterol levels are ~80 % lower as a result of liver-specific ABCA1

deficiency (Timmins et al. 2005). Liver-specific deletion of ABCA1 is also

associated with hypercatabolism of apoA-I by the kidneys resulting in an increased

turnover of HDL particles and a marked decrease in steady-state plasma apoA-I

levels (Timmins et al. 2005; Singaraja et al. 2006). Although no data on the effect of

general ABCA1 deficiency in mice on apoA-I flux have been described, it can be

assumed total body ABCA1 knockout mice similarly show an increased catabolism
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and clearance of apoA-I by the kidneys. ABCA1 deficiency in hepatocytes is

associated with a rise in plasma levels and size of triglyceride-rich VLDL particles,

which can be attributed to an increase in hepatic VLDL secretion and a parallel

decrease in lipoprotein lipase (LPL)-mediated catabolism of triglycerides (Sahoo

et al. 2004; Chung et al. 2010). ABCA1-mediated transport of cholesterol from

hepatocytes to the plasma compartment thus not only controls HDL biogenesis, but

also impacts on the synthesis and catabolism of non-HDL particles. Deletion of

ABCA1 specifically in intestinal epithelial cells is associated with an accumulation

of cholesterol esters in the intestine, a lower plasma apoA-I concentration, and a

~30 % decrease in plasma HDL-cholesterol levels (Brunham et al. 2006). In

contrast to total body and hepatocyte-specific knockout mice, intestinal-specific

ABCA1 knockout mice do not show major changes in non-HDL-cholesterol and

plasma triglyceride levels (Brunham et al. 2006), which further highlights the role

of hepatocyte ABCA1 in the control of plasma triglyceride levels. Importantly,

mice genetically lacking ABCA1 in both the liver and intestine show a greater

decrease in plasma HDL-cholesterol levels as compared to their single tissue

knockout controls, almost reaching similarly low levels as those found in total

body ABCA1 knockout mice (Brunham et al. 2006). Hepatocytes and the intestinal

epithelium can thus be considered the primary cellular sources of the cholesterol

that is used for lipidation of apoA-I and generation of HDL.

Loss-of-function mutations in the ABCA1 gene could not be associated with

increased coronary heart disease in the general population (Frikke-Schmidt

et al. 2008a). However, several studies have suggested that premature atheroscle-

rosis and cardiovascular disease are a common finding in human carriers of

functional mutations in the ABCA1 gene (Huang et al. 2001; Hong et al. 2002;

Frikke-Schmidt et al. 2008b). In contrast, total body ABCA1 deficiency does not

alter the susceptibility to atherosclerosis in hyperlipidemic apoE knockout and LDL

receptor (LDLr) knockout mice fed either regular chow or an atherogenic high

fat/high cholesterol diet (Aiello et al. 2002). However, deletion of ABCA1 function

in the context of genetic hyperlipidemia is not only associated with HDL deficiency

but also with a significant decrease in the plasma concentration of cholesterol

carried by pro-atherogenic VLDL/LDL (Aiello et al. 2002). As is also the case

for apoA-I, normal ABCA1 function in mice thus only protects against atheroscle-

rosis after correcting for ABCA1 genotype-associated confounding differences in

atherogenic lipoprotein levels. The atheroprotective effect of ABCA1 may be

attributed to its general impact on plasma HDL-cholesterol levels or specifically

due to its potential role in the efflux of cholesterol from macrophages. Lipid-filled

foam cells can be found in all macrophage-rich tissues of hyperlipidemic total body

ABCA1 knockout mice (Aiello et al. 2002), which already hints to an important

in vivo role for ABCA1 in macrophage cholesterol efflux. The capacity of ABCA1

knockout mice to facilitate reverse cholesterol transport, the transport from periph-

eral cells—i.e., macrophages—back to the liver for subsequent excretion, has been

validated by measuring the recovery in the plasma compartment and feces of

radiolabeled cholesterol from intraperitoneal administered macrophages. In line

with the hypothesis that ABCA1-mediated cholesterol efflux is an important
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determinant of reverse cholesterol transport, a lower amount of radiolabeled cho-

lesterol is excreted under the condition of both total body and macrophage-specific

ABCA1 deficiency (Calpe-Berdiel et al. 2005; Wang et al. 2007).

Aiello et al. (2002) and Van Eck et al. (2002) utilized bone marrow transplanta-

tion to explore the specific effect of ABCA1-dependent macrophage cholesterol

efflux on atherosclerosis susceptibility. In accordance with a negligible impact of

macrophage ABCA1 on total HDL biogenesis, bone marrow ABCA1 deficiency

does not alter plasma HDL-cholesterol levels (Haghpassand et al. 2001; Aiello

et al. 2002; Van Eck et al. 2002). Atherosclerotic lesion development in apoE

knockout mice is markedly enhanced—at multiple sites—in response to disruption

of ABCA1 expression in bone marrow (Aiello et al. 2002). Transplantation of

ABCA1 knockout bone marrow into lethally irradiated LDLr knockout mice

similarly stimulates atherosclerotic lesion development (Van Eck et al. 2002).

ABCA1-mediated efflux of cholesterol from leukocytes is thus an important pro-

tective mechanism to inhibit macrophage foam cell formation and atherosclerosis

in mice. Remarkably, macrophage-specific ABCA1 deficiency does not affect the

extent of atherosclerosis in LDLr knockout mice (Brunham et al. 2009). It can

therefore be concluded that ABCA1’s function in macrophages does not confer

protection against atherosclerosis, but that rather an efficient efflux of cholesterol

from lymphocytes or other immune cells is essential to overcome disease.

Relative HDL deficiency in liver-specific ABCA1 knockout mice on a

hyperlipidemic LDLr knockout background is not associated with any enhanced

susceptibility for the initial development of macrophage-rich atherosclerotic

lesions, while the development of more advanced (collagen-containing) plaques

is inhibited (Bi et al. 2013). In accordance with a prominent role for macrophage

ABCA1 in reverse cholesterol transport, no change is observed in the flux of

cholesterol from macrophages to the feces in LDLr knockout mice lacking

ABCA1 function only in hepatocytes (Bi et al. 2013). Strikingly, apoE knockout

mice that contain hepatocyte-specific ABCA1 deficiency do show an increased

susceptibility to atherosclerosis, despite lowered plasma VLDL/LDL-cholesterol

levels (Brunham et al. 2009). A critical review of these data has suggested that the

discrepancy in the atherosclerosis findings from liver-specific ABCA1 knockout

mice may be attributed to differences in inflammatory status of the two

hyperlipidemic mouse models (Van Eck and Van Berkel 2013), which makes

proper interpretation of the findings difficult. However, due to the inconsistency

of the aforementioned results, it seems clear that the decrease in plasma

HDL-cholesterol levels due to deletion of ABCA1 function should not be consid-

ered the driving force for the increase in atherosclerosis in total body ABCA1

knockout mice.

A consistent decrease in plasma VLDL-cholesterol levels is observed in LDLr

knockout mice that have been transplanted with ABCA1-deficient bone marrow

upon feeding an atherogenic Western-type diet (Van Eck et al. 2002; Lammers

et al. 2011, 2012). This finding suggests that modulation of the leukocyte choles-

terol efflux rate can directly impact on the metabolism of VLDL particles in vivo.

However, to date, the mechanism underlying this effect remains to be resolved. It is
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becoming more and more evident that immunology and metabolism are not just two

separate disciplines, but that they intervene and impact each other at multiple levels

(Mathis and Shoelson 2011). ABCA1-deficient macrophages display a higher

sensitivity to the bacterial membrane component lipopolysaccharide (LPS) (Zhu

et al. 2008; Yvan-Charvet et al. 2008) and myeloid cell-specific ABCA1 knockout

mice are protected against bacterial infection (Zhu et al. 2012). Furthermore,

ABCA1 deficiency in bone marrow is associated with an increase in blood leuko-

cyte counts (Van Eck et al. 2002). Given the apparent link between ABCA1 and

immune function in vivo, future research should be aimed at uncovering to what

extent ABCA1 contributes to the interplay between inflammation and cholesterol

metabolism.

4 ATP-Binding Cassette Transporter G1

ABCG1, formerly known as the ABC8/white gene, belongs to the family of ABC

half transporters that need to dimerize to execute their function. ABCG1 expression

is mostly restricted to macrophage-rich tissues, including liver, spleen, and lung

(Klucken et al. 2000), where it acts as an intracellular sterol transporter (Tarling and

Edwards 2011). ABCG1 mRNA expression can actually be used as a measure for

the hepatic macrophage content in rodent livers, despite detectable levels of

ABCG1 expression in hepatocytes (Hoekstra et al. 2003; Ye et al. 2008; Li

et al. 2012). The capacity to efflux cholesterol to HDL is diminished in ABCG1-

deficient macrophages, while the apoA-I-mediated cholesterol efflux rate is similar

as compared to wild-type macrophages (Out et al. 2006). ABCG1 and ABCA1 thus

interact with different HDL subspecies (mature HDL vs. pre-beta HDL) to facilitate

their cholesterol efflux function. To date, no association between ABCG1

mutations and HDL-cholesterol levels has been described in humans, suggesting

that ABCG1 does not significantly contribute to HDL biogenesis. In accordance,

under basal chow diet feeding conditions, ABCG1 knockout mice do not exhibit a

change in plasma total or HDL-cholesterol levels (Out et al. 2007; Wiersma

et al. 2009).

Chow-fed ABCG1-deficient mice exhibit a severe pulmonary lipidosis pheno-

type, starting from the age of ~6 months, which is characterized by accumulation of

phospholipids, cholesterol crystals, and inflammatory infiltrates in sub-pleural areas

of the lung (Baldán et al. 2006a, 2008; Wojcik et al. 2008). The distinct lung

phenotype in total body ABCG1 knockout mice can be specifically attributed to the

lack of ABCG1 in bone marrow-derived cells, presumably macrophages. Lethally

irradiated normolipidemic mice transplanted with ABCG1-deficient bone marrow

also show inflammatory cell infiltrates in their lungs, while normalization of

macrophage ABCG1 function prevents the occurrence of pulmonary lipidosis in

total body ABCG1 knockout mice (Wojcik et al. 2008). Alveolar macrophages

from ABCG1 knockout mice have a foamy appearance and display compensatory

upregulation of the cholesterol efflux gene ABCA1 (Baldán et al. 2006a). In vitro

cultured macrophages lacking ABCG1 are more susceptible to surfactant-induced
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cholesterol accumulation (Baldán et al. 2006a). ABCG1-mediated cholesterol

efflux to HDL is thus essential for the protection against specifically surfactant-

induced foam cell formation under normolipidemic conditions, since no accumula-

tion of lipid has been noted in other macrophage-rich tissues in chow-fed ABCG1-

deficient mice (Out et al. 2008a). The pulmonary lipidosis phenotype is exacerbated

upon challenging the mice with a cholic acid-containing atherogenic diet (Out

et al. 2007). Under atherogenic diet feeding conditions, ABCG1 knockout mice

also show marked lipid accumulation in cells within and surrounding the germinal

centers of the spleen (Out et al. 2007). This finding highlights that ABCG1 is not

solely involved in maintaining cholesterol homeostasis locally within the lungs.

Variations in the human ABCG1 gene have been linked to an altered risk for

atherosclerotic disease that cannot be explained by changes in lipoprotein levels

(Furuyama et al. 2009). In accordance with a role for murine ABCG1 in the

protection against atherosclerosis, a higher extent of lesion formation, in the context

of similar plasma lipoprotein levels, is detected in ABCG1 knockout mice as

compared to wild-type littermate controls upon feeding atherogenic diet (Out

et al. 2007). The bone marrow transplantation technique has been applied to

elucidate the specific contribution of macrophages in the atheroprotective effect

of ABCG1. In line with the prominent role of macrophage ABCG1 in the preven-

tion of pulmonary lipidosis, extensive lipid accumulation is observed also in lungs

of hyperlipidemic mice transplanted with ABCG1 knockout bone marrow (Out

et al. 2006; Baldán et al. 2006b). However, contrasting effects on atherosclerosis

outcome have been noted upon bone marrow-specific ABCG1 deletion. Macro-

phage ABCG1 appears to protect against atherosclerosis in LDLr knockout mice as

evident from the initial studies by Out et al. (2006). In marked contrast, similar

studies by Baldán et al. in LDLr and apoE knockout mice (Baldán et al. 2006b) and

Ranalletta et al. in LDLr-deficient mice (Ranalletta et al. 2006) have identified

macrophage ABCG1 as being a pro-atherogenic factor. Importantly, following

critical review of all the present data and additional bone marrow transplantation

studies, Meurs et al. have been able to clarify the evident discrepancy in the findings

regarding the role of macrophage ABCG1 in atherosclerosis. The effect of disrup-

tion of ABCG1 function in macrophages on atherogenesis appears to be highly

dependent on the stage of lesion development (Meurs et al. 2012). Diminished

ABCG1-mediated efflux of cholesterol to HDL stimulates the formation of foam

cells and accelerates lesion development in initial plaques that primarily contain

macrophages. During later stages of the disease, macrophage ABCG1 deficiency

inhibits plaque progression as a result of activation of compensatory

atheroprotective mechanisms, i.e., hypersecretion of apoE from macrophages

(Ranalletta et al. 2006), and/or an increased apoptosis rate of lipid-laden macro-

phage foam cells (Baldán et al. 2006b).
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5 Lecithin-Cholesterol Acyltransferase

Discoidal small HDL particles are able to carry a relatively limited load of choles-

terol. In order for nascent HDL species to become fully enriched in cholesterol, the

unesterified cholesterol acquired upon cellular efflux has to be esterified for

subsequent storage in the core of more mature spherical HDL particles. The

hepatocyte-derived enzyme lecithin-cholesterol acyltransferase (LCAT) is consid-

ered to be the sole mediator of cholesterol esterification in HDL in humans, since

familial LCAT deficiency is characterized by a >95 % decrease in plasma

HDL-cholesterol ester levels (Glomset et al. 1970). As such, homozygous carriers

of loss-of-function mutations in LCAT present with HDL deficiency, while half of

normal HDL-cholesterol values are observed in heterozygous carriers

(Santamarina-Fojo et al. 2000; Hovingh et al. 2005). Two different strains of

LCAT knockout mice have been generated through genetic deletion of respectively

exon 1 or exons 2–5. In accordance with a major role for LCAT in the maturation of

HDL, both types of LCAT-deficient mice show severe HDL-cholesterol deficiency

(>90 % decreased; Ng et al. 1997; Sakai et al. 1997). This coincides with a

significant decrease in plasma apoA-I levels (Ng et al. 1997), probably as a result

of apoA-I hypercatabolism by the kidneys. The remaining plasma HDL cholesterol

in LCAT knockout mice is contained in its unesterified form (Ng et al. 1997; Sakai

et al. 1997).

Besides the clear HDL deficiency phenotype, LCAT knockout mice display

significant changes in the metabolism of triglyceride-rich lipoproteins. Homozy-

gous LCAT-deficient mice show hypertriglyceridemia and an increase in plasma

VLDL-cholesterol levels on a chow diet (Sakai et al. 1997; Lambert et al. 2001; Ng

et al. 2002). This phenotype is preserved when mice are fed a Western-type diet

enriched in fat (Li et al. 2007). Furthermore, extensive triglyceride deposition can

be observed within livers of LCAT knockout mice upon Western-type diet feeding

(Li et al. 2007). Mechanistic studies in LCAT x LDLr double knockout mice have

indicated that the hypertriglyceridemia can be attributed to an increase in secretion

of triglyceride-rich VLDL particles and a decrease in the LPL-mediated lipolysis

rate (Ng et al. 2004). As evidenced by lower fasting glucose and insulin levels,

LCAT knockout mice exhibit an improved glucose tolerance and insulin sensitivity

when crossbred onto the hyperlipidemic LDLr knockout background

(Ng et al. 2004; Li et al. 2007). LCAT-mediated cholesterol ester formation thus

not only contributes to the formation of mature HDL particles, but also (indirectly)

impacts on fatty acid and glucose metabolism.

A genetic defect in LCAT does, in general, not affect the tissue cholesterol

balance in mice (Ng et al. 1997). However, adrenals of LCAT knockout mice show

gross morphological changes associated with neutral lipid depletion, i.e., they have

a more red/brownish color instead of the normal white appearance after perfusion

(Ng et al. 1997). Specifically adrenocortical cells within the zona fasciculata, but

not zona glomerulosa, are deprived from neutral lipid stores (Hoekstra et al. 2013a).

This results in an overall ~80 % decrease in adrenal cholesterol ester content

(Ng et al. 1997). Probably as a compensatory response to overcome cholesterol
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insufficiency, marked increases in the expression of genes involved in the de novo

synthesis and extracellular acquisition of cholesterol can be detected in LCAT

knockout adrenals (Ng et al. 1997). Importantly, in support of the notion that

HDL act as cholesterol donors for the synthesis of glucocorticoids by the adrenals,

LCAT knockout mice display a 40–50 % reduction in the maximal glucocorticoid

output (Hoekstra et al. 2013a). A minor decrease in tissue cholesterol content is also

noted in ovaries, but not testis, in response to LCAT deficiency in mice (Tomimoto

et al. 2001), which does not translate into apparent changes in female fertility.

LCAT knockout mice on a normolipidemic background are virtually protected

against cholic acid containing diet-induced formation of atherosclerotic lesions

(Lambert et al. 2001). Chow diet-fed LCAT x apoE double knockout mice also

display a decrease in atherosclerotic lesion formation, as compared with apoE

single knockout controls (Lambert et al. 2001; Ng et al. 2002). Ablation of LCAT

function is associated with marked HDL deficiency under all hyperlipidemic

conditions. Strikingly, mixed results on the effect of LCAT deficiency on athero-

sclerosis susceptibility, however, have been noted in hyperlipidemic mice upon

feeding diets enriched in fat. LCAT x LDLr double knockout mice display a lower

atherosclerotic lesion burden upon feeding a cholic acid-containing diet (Lambert

et al. 2001). In contrast, LCAT deficiency stimulates the formation of atheroscle-

rotic lesions feeding in LDLr knockout mice upon feeding a Western-type diet

devoid of cholic acid, as judged by the aortic cholesterol content (Furbee

et al. 2002; Lee et al. 2004). Furthermore, LCAT x apoE double knockout mice

also exhibit an increase in their aortic cholesterol content upon feeding the

Western-type high fat diet (Furbee et al. 2002). Importantly, lower plasma levels

of non-HDL cholesterol are found in the hyperlipidemic LCAT knockout mice

under cholic acid-containing diet feeding conditions (Lambert et al. 2001), while

non-HDL-cholesterol levels are actually increased in response to LCAT deficiency

upon Western-type diet feeding (Furbee et al. 2002; Lee et al. 2004). It thus seems

that the diverse effects of LCAT deficiency on atherosclerosis outcome in the

different mouse models cannot be attributed to the HDL deficiency, but are rather

a consequence of the genotype-associated changes in plasma levels of apoB-

containing lipoproteins (Kunnen and Van Eck 2012).

6 Phospholipid Transfer Protein

Transfer of cholesterol esters generated by LCAT to the core of the HDL particles

and the subsequent maturation of the HDL particles require the action of phospho-

lipid transfer protein (PLTP), which supplies phospholipids allowing surface

expansion of the shell of the particles. The phospholipids are liberated during the

lipolysis of triglycerides in the core of apoB-containing lipoproteins by the action of

lipoprotein lipase (Tall et al. 1985). In addition, PLTP facilitates the fusion of

HDL3 particles to enlarged particles (Lusa et al. 1996). During this process lipid-

poor apoA-I particles are released that can act as substrate for ABCA1-mediated

cholesterol efflux from macrophages. In humans, common variants of PLTP have
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been identified that are associated with alterations in serum HDL cholesterol and

the accumulation of small HDL particles (Albers et al. 2012). Furthermore, PLTP

expression and activity is regulated during several diseases, including sepsis,

multiple sclerosis, cancer, and cardiovascular disease (Albers et al. 2012), but it

is largely unknown if the regulation of PLTP is a causative factor or simply a

consequence of the processes underlying the diseases. The generation of PLTP

knockout mice by the group of Alan Tall 15 years ago has greatly contributed to the

general understanding of the role of PLTP in HDL metabolism. PLTP was

inactivated in mice by replacing exon 2 containing the translation initiation

codon, the signal peptide, and the first 16 amino acids of mature PLTP with a

neomycin-resistant gene (Jiang et al. 1999). The plasma transfer activity of the

major phospholipids, including phosphatidylcholine, phosphatidylethanolamine,

phosphatidylinositol, and sphingomyelin into HDL, was completely blocked,

while also the transfer of free cholesterol was impaired in PLTP knockout mice.

Deletion of PLTP in mice led to markedly decreased levels of HDL phospholipids

and cholesterol (65–70 %), illustrating the importance of transfer of surface

phospholipids from apoB-containing lipoproteins by PLTP for maintaining HDL

levels (Jiang et al. 1999). Furthermore, similarly as described for LCAT knockout

mice the decrease in HDL cholesterol coincided with a significant decrease in

plasma apoA-I levels. Hepatocytes isolated from PLTP knockout mice synthesized

normal amounts of apoA-I, albeit with reduced amounts of phosphatidylcholine

(Siggins et al. 2007), indicating that the reduced plasma apoA-I levels were not due

to impaired production. Qin et al. showed by in vivo turnover studies using

autologous HDL that the reduced apoA-I levels are likely the consequence of

increased catabolism of HDL in the PLTP knockout mice (Qin et al. 2000).

On regular chow diet, PLTP-deficient mice absorb less cholesterol in the intes-

tine (Liu et al. 2007), while hepatic phospholipids are increased and triglycerides

are reduced in mice lacking PLTP (Siggins et al. 2007).

Feeding the mice a high saturated fat diet, containing 20 % hydrogenated

coconut oil and 0.15 % cholesterol, led to the accumulation of surface components

of apoB-containing lipoproteins as evidenced by a massive increase in VLDL and

LDL phospholipids and cholesterol in the absence of changes in apoB (Jiang

et al. 1999). Subsequent studies showed that the animals accumulated phospholipid

and free cholesterol-rich lamellar particles containing apoA-IV and apoE (Qin

et al. 2000). The accumulation of the lamellar particles specifically in coconut

oil-fed PLTP knockout mice has been attributed to markedly reduced removal of

these particles via scavenger receptor BI (SR-BI) by parenchymal liver cells

(Kawano et al. 2002) and impaired secretion of biliary cholesterol and phospholipid

(Yeang et al. 2010). Interestingly, these particles did not accumulate in the circula-

tion when the mice were fed regular chow diet or a Western diet, containing 20 %

milk fat and 0.15 % cholesterol (Kawano et al. 2002). In contrast, while feeding a

Western diet, containing milk fat and 0.15 % cholesterol, PLTP deficiency was

associated with an attenuated diet-induced hypercholesterolemia due to twofold

lower concentrations of cholesterol transported by apoB-containing lipoproteins

and HDL. Hepatic and intestinal lipid levels were not affected under these

Mouse Models of Disturbed HDL Metabolism 313



conditions, but cholesterol absorption in the intestine was reduced (Shelly

et al. 2008).

Both on chow and while feeding the milk fat Western diet, PLTP knockout mice

display reduced systemic inflammation as evidenced by lower levels of interleukin

6 and reduced expression of intercellular adhesion molecule 1 (ICAM1) and

vascular adhesion molecule 1 (VCAM1) in aorta, indicating that mice lacking

PLTP might have a reduced atherosclerosis susceptibility (Shelly et al. 2008).

To study the effect of PLTP deficiency on atherosclerotic lesion development,

PLTP knockout mice were crossbred with human apoB transgenic mice, apoE

knockout mice, and LDLr knockout mice (Jiang et al. 2001). Both in the apoB

transgenic and the apoE knockout background, PLTP deficiency led, on top of the

reduction in HDL lipids, to substantially lower VLDL lipid levels. Interestingly,

this effect on VLDL lipids was not found in the LDLr knockout background,

indicating the involvement of the LDLr in the lowering of VLDL lipids. In line,

apoB production was reduced in the apoB transgenic and apoE knockout back-

ground, but not in the LDLr knockout background (Jiang et al. 2001). The content

of the antioxidant vitamin E was significantly increased in all three backgrounds in

the absence of PLTP, while autoantibodies to oxidized LDL were largely decreased

(Jiang et al. 2002). HDL isolated from PLTP knockout mice crossbred to both the

apoB transgenic and the LDLr knockout background displayed improved anti-

inflammatory properties and reduced the ability of LDL to induce monocyte

chemotaxis (Yan et al. 2004). After 6 months of feeding apoB transgenic mice

Western diet and after feeding apoE knockout mice chow for 3 months, atheroscle-

rotic lesion size was reduced fivefold in mice lacking PLTP. In contrast, in LDLr

knockout mice PLTP deficiency led to a twofold reduction in atherosclerotic lesion

size after 8 weeks Western diet, whereas no significant effects were observed after

12 weeks Western diet feeding (Jiang et al. 2001). Thus, while PLTP deficiency can

reduce early atherosclerotic lesion development in mice lacking the LDLr, the

pro-atherogenic effects of PLTP should be primarily attributed to its effects on

the production of apoB-containing lipoproteins in mice fed regular chow or a

Western diet. Notably, when apoE knockout mice lacking PLTP were challenged

with a coconut oil-enriched, high fat diet for 7 weeks plasma levels of free

cholesterol were 23 % higher due to the accumulation of the lamellar free choles-

terol and phospholipid-rich particles. Under these conditions no effects on athero-

sclerotic lesion development were found (Yeang et al. 2010).

PLTP is widely distributed with expression in placenta > pancreas > lung >
kidney > heart > liver > skeletal muscle > brain (Day et al. 1994). In addition,

PLTP is found in endothelial cells (Day et al. 1994) and in smooth muscle cell and

macrophage foam cells in atherosclerotic lesions (Desrumaux et al. 2003; Laffitte

et al. 2003; O’Brien et al. 2003). Interestingly, Vikstedt and colleagues showed that

the expression of PLTP is sixfold higher in Kupffer cells, macrophages of the liver

as compared to hepatocytes (Vikstedt et al. 2007). Mice with a hepatocyte-specific

deletion of PLTP were generated by injection of PLTP-flox/flippase animals with

adenovirus-associated virus expressing Cre-recombinase under control of the thy-

roxine binding globulin promoter (Yazdanyar et al. 2013). PLTP activity was
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reduced by approximately 25 % in these animals with a hepatocyte-specific deletion

of PLTP, leading to a 20 % reduction of HDL cholesterol. In addition, non-HDL

cholesterol was 29 % lower due to an impaired production of apoB-containing

lipoproteins (Yazdanyar et al. 2013). Conversely, liver-specific expression of PLTP

in a PLTP knockout background promoted the secretion of apoB-containing

lipoproteins by the liver (Yazdanyar and Jiang 2012). The contribution of macro-

phage PLTP to plasma PLTP activity was determined by bone marrow transplanta-

tion studies in LDLr knockout mice. Selective deletion of PLTP in bone marrow-

derived cells led to a decrease in plasma PLTP activity on chow and Western diet

(Vikstedt et al. 2007). Vikstedt et al. showed that after 9 weeksWestern diet feeding

atherosclerotic lesion size was 29 % smaller in LDLr knockout mice transplanted

with PLTP-deficient bone marrow, which coincided with decreased serum VLDL-

cholesterol and phospholipid levels, while HDL phospholipid and apoA-I were

increased (Vikstedt et al. 2007). In contrast, Valenta et al. also found lower levels of

cholesterol in apoB-containing lipoproteins upon disruption of PLTP in bone

marrow-derived cells of LDLr knockout mice, but surprisingly atherosclerotic

lesion development was increased (Valenta et al. 2006). No effect on atherosclero-

sis was observed upon transplantation of PLTP-deficient bone marrow into LDLr

knockout mice overexpressing human apoA-I (Valenta et al. 2006). The studies by

Valenta et al. suggest that locally in the arterial wall PLTP produced by

macrophages can be anti-atherogenic. A possible explanation is that PLTP produc-

tion by macrophages promotes ABCA1-mediated cholesterol efflux, as evidenced

by decreased efflux to apoA-I from PLTP-deficient macrophages (Lee-Rueckert

et al. 2006). In agreement, macrophages isolated from PLTP knockout mice were

shown to accumulate more cholesterol upon incubation with native or acetylated

LDL (Ogier et al. 2007). Importantly, the higher levels of lipid-poor apoA-I in

LDLr knockout mice overexpressing human apoA-I can overcome the

pro-atherogenic effects of deletion of PLTP in macrophages, probably by

stimulating the cholesterol efflux capacity of the macrophages.

In summary, the effects of PLTP on atherosclerotic lesion development are

determined by a balance between systemic effects influencing the levels of anti-

atherogenic HDL and pro-atherogenic apoB-containing lipoproteins and the anti-

oxidant vitamin E and local effects of PLTP produced by macrophages in the

arterial wall influencing macrophage apoE production and ABCA1-mediated cho-

lesterol efflux.

7 Scavenger Receptor BI

During the final step of the reverse cholesterol transport process, mature HDL

particles deliver their cholesterol load to the liver for subsequent excretion via the

bile. The transmembrane glycoprotein scavenger receptor BI (SR-BI) is considered

to be the sole mediator of selective uptake of cholesterol esters from HDL by

hepatocytes in mice (Out et al. 2004). Several genetic variations at the SR-BI

locus—either translating in an altered SR-BI protein expression or
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functionality—have been associated with a change in plasma HDL-cholesterol

levels (Hsu et al. 2003; West et al. 2009; Vergeer et al. 2011; Brunham

et al. 2011; Chadwick and Sahoo 2012), which highlights the crucial role for

SR-BI in human HDL metabolism. To uncover the role of SR-BI in lipoprotein

metabolism, the group of Monty Krieger developed a mouse model carrying a

targeted mutation in the SR-BI gene that leads to complete absence of functional

SR-BI protein in all tissues (Rigotti et al. 1997). In addition, a strain of SR-BIatt

mice has been generated by the group of Dennis Huszar in which the SR-BI

promoter is mutated, resulting in a lowered protein expression of SR-BI in liver,

testis, and adrenals (Varban et al. 1998). Furthermore, hypomorphic SR-BI knock-

out mice have been constructed that do not suffer from complete SR-BI deficiency,

but show a restricted expression pattern of the protein in liver, kidney, aorta, and

steroidogenic tissues (Huby et al. 2006).

Total body SR-BI knockout mice are characterized by a diet-independent hyper-

cholesterolemia, which can be primarily attributed to a marked rise in plasma

HDL-cholesterol levels (Rigotti et al. 1997; Van Eck et al. 2003, 2008). The

fractional catabolic rate, plasma decay, and subsequent uptake of

HDL-cholesterol esters by the liver are diminished in SR-BI knockout mice (Out

et al. 2004). SR-BIatt mice similarly show a diminished fractional catabolic rate

and hepatic selective uptake of HDL-associated cholesterol, also leading to a higher

steady-state level of HDL cholesterol in the plasma of these mice (Varban

et al. 1998; Ji et al. 1999). In accordance with a role for hepatic SR-BI in the

regulation of plasma HDL-cholesterol levels, both total body and hepatocyte-

specific restriction of SR-BI expression in hypomorphic SR-BI knockout mice is

also associated with an increase in plasma HDL-cholesterol levels (Huby

et al. 2006). Although SR-BI is thought to primarily mediate the uptake

HDL-cholesterol esters, in particular free cholesterol levels are higher in plasma

in the different SR-BI-deficient mice (Van Eck et al. 2003; Huby et al. 2006; El

Bouhassani et al. 2011). The increase in plasma free cholesterol to cholesterol ester

ratio underlies anemia and thrombocytopenia phenotypes in SR-BI knockout mice

(Holm et al. 2002; Meurs et al. 2005; Dole et al. 2008; Korporaal et al. 2011) and

can be attributed to a reduction in the LCAT activity (El Bouhassani et al. 2011). As

judged by the unchanged plasma apoA-I levels in total body SR-BI knockout mice,

only the size and cholesterol content but not the absolute number of HDL particles

is increased in response to SR-BI deficiency (Rigotti et al. 1997). The enlarged

HDL particles observed in plasma of SR-BI knockout mice are highly enriched in

apoE. In contrast, apoA-II cannot be detected in the HDL fraction of SR-BI-

deficient mice, which suggests a generally altered apolipoprotein composition

(Rigotti et al. 1997). In line with the notion that SR-BI facilitates HDL-mediated

reverse cholesterol transport, the recovery of radiolabeled cholesterol in feces upon

injection of either peritoneal or J774 macrophages is lower in SR-BI knockout mice

as compared to their wild-type littermate controls, despite an increased appearance

of radioactivity in the plasma (HDL) compartment (Zhang et al. 2005a; Zhao

et al. 2011).
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SR-BI knockout mice also display a significant increase in non-HDL-cholesterol

levels (Rigotti et al. 1997; Van Eck et al. 2003, 2008). Hepatic VLDL secretion and

LPL-mediated lipolysis rates are not affected by SR-BI deficiency (Van Eck

et al. 2008). SR-BI has been shown to be directly involved in the selective uptake

of cholesterol esters from LDL and VLDL particles by hepatocytes (Rhainds

et al. 2003; Van Eck et al. 2008). It can therefore be anticipated that the increase

in the level of cholesterol associated with apoB-containing lipoproteins in SR-BI

knockout mice is directly resulting from a diminished clearance by the liver.

Two variations in the SR-BI gene have been linked to changes in fertility in

humans (Yates et al. 2011). Without dietary addition of the lipid-lowering drug

probucol, SR-BI knockout female mice are virtually sterile, with a ~90 % reduction

in fertility and pup yield as compared to wild-type controls (Miettinen et al. 2001).

The development of SR-BI knockout embryos is impaired in ex vivo cultures

(Trigatti et al. 1999). Furthermore, developmental abnormalities are also observed

in SR-BI knockout embryos in vivo (Santander et al. 2013). Although steroidogenic

tissues, i.e., ovaries and adrenals, from SR-BI knockout mice exhibit an apparent

decrease in their cholesterol ester stores (Rigotti et al. 1997; Trigatti et al. 1999),

levels of the steroid hormone progesterone as well as the number of oocytes and

cyclic activity are unaffected by murine SR-BI deficiency (Trigatti et al. 1999). The

lack of pups generated from SR-BI-deficient breedings can thus rather be attributed

to embryonic defects than to infertility of the mothers.

Human carriers of functional mutations in the SR-BI gene exhibit a decrease in

their adrenal steroidogenesis rate (Vergeer et al. 2011). Similarly, depletion of

adrenocortical cholesterol stores due to SR-BI deficiency translates into a signifi-

cant change of the adrenal steroid function in mice. Basal glucocorticoid levels in

plasma are similar between SR-BI knockout and wild-type mice (Hoekstra

et al. 2008). However, total body SR-BI deficiency is associated with primary

glucocorticoid insufficiency. Total body SR-BI knockout mice display increased

plasma ACTH levels and are unable to increase their adrenal glucocorticoid output

in response to established steroidogenic triggers (Cai et al. 2008; Hoekstra

et al. 2008, 2009). It appears that SR-BI-mediated uptake of HDL-cholesterol esters

by the adrenals is necessary for a proper steroid output, since the glucocorticoid

function is also impaired in adrenocortical cell-specific SR-BI knockout mice

(Hoekstra et al. 2013b). In further support, hepatocyte-specific SR-BI deficiency

does not lower adrenal cholesterol levels or impair the adrenal corticosterone

response to fasting (El Bouhassani et al. 2011).

No atherosclerotic lesion development is normally observed in normolipidemic

wild-type mice upon feeding a regular chow diet or a high cholesterol high fat

Western-type diet that does not contain cholic acid. No atherosclerotic plaques can

also be detected in the aortic root of chow-fed SR-BI knockout mice (Zhao

et al. 2011). In contrast, SR-BI knockout mice with increased HDL-cholesterol

levels do readily develop macrophage-rich fatty streak lesions after 20 weeks of

Western-type diet feeding (Van Eck et al. 2003). SR-BI knockout mice display an

increase in non-HDL cholesterol under these feeding conditions (Van Eck

et al. 2003). However, the measured levels of apoB-containing lipoproteins upon
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Western-type diet feeding are still considered to be too low to stimulate the

formation of atherosclerotic lesions. This suggests that other SR-BI-related

mechanisms may underlie the susceptibility for Western-type diet-induced athero-

genesis in SR-BI knockout mice. Follow-up studies in liver-specific hypomorphic

SR-BI knockout mice have indicated that the SR-BI-mediated atheroprotection

originates from both hepatic and peripheral cell sources (Huby et al. 2006; El

Bouhassani et al. 2011). A similarly increased susceptibility for atherosclerosis

upon ablation of total body SR-BI function has been noted in response to feeding a

cholic acid-containing atherogenic diet (Zhang et al. 2005b). In accordance with a

role for SR-BI in the clearance of apoB-containing lipoproteins, high fat diet-fed

SR-BIatt x LDLr knockout mice exhibit higher plasma LDL-cholesterol levels and

an increased extent of atherosclerosis as compared to LDLr knockout controls

(Huszar et al. 2000). In contrast, total body SR-BI deficiency in high fat diet-fed

LDLr knockout mice is associated with lower VLDL/LDL levels, but a similarly

enhanced formation of atherosclerotic lesions in the context of a higher plasma

HDL-cholesterol concentration (Covey et al. 2003). Loss of total body SR-BI

function in chow diet-fed hyperlipidemic apoE knockout mice is associated with

severe cardiac dysfunction, i.e., a reduced contractility and ejection fraction, and

occlusion of the coronary arteries, leading to premature death of these animals at

the age of 6–8 weeks (Braun et al. 2002). Occlusive coronary atherosclerosis and an

increased extent of atherosclerosis in the aortic root are also seen upon genetic

deletion of SR-BI in atherogenic diet-fed hypomorphic APOER61h/h mice (Zhang

et al. 2005b). An optimal total body SR-BI function thus protects against athero-

sclerosis and myocardial infarction, through (1) its role in hepatic uptake of

lipoprotein-derived cholesterol and (2) via its action extrahepatic/peripheral cells.

In rodents, high expression of SR-BI is not only found in liver and steroidogenic

tissues (Acton et al. 1996), but also in tissue macrophages such as liver Kupffer

cells (Fluiter et al. 1998; Malerød et al. 2002; Hoekstra et al. 2003), which suggests

that SR-BI can also contribute to macrophage cholesterol homeostasis locally

within atherosclerotic lesions. Studies using isolated SR-BI-deficient peritoneal

macrophages have suggested that SR-BI may facilitate cholesterol efflux to mature

HDL (Van Eck et al. 2004). However, macrophage SR-BI does not contribute to

reverse cholesterol in vivo, based upon radiolabeled cholesterol recovery studies

(Wang et al. 2007). Bone marrow transplantation studies have been executed to

delineate the specific role of macrophage SR-BI in the protection against athero-

sclerosis. Transplantation of SR-BI knockout bone marrow into LDLr knockout

mice stimulates atherogenesis without altering plasma lipoprotein cholesterol levels

(Covey et al. 2003; Van Eck et al. 2004). Inactivation of macrophage SR-BI also

promotes the development of atherosclerotic plaques in the context of unchanged

lipid levels in apoE knockout mice (Zhang et al. 2003). In addition, the cardiac

hypertrophy and dysfunction and coronary atherosclerosis development are

attenuated upon restoration of macrophage SR-BI function in apoE x SR-BI double

knockout mice (Pei et al. 2013). Strikingly, in marked contrast to the findings from

hyperlipidemic mice, disruption of macrophage SR-BI expression in

normolipidemic C57BL/6 mice results in a lower susceptibility for atherosclerosis
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upon feeding a cholic acid-containing atherogenic diet (Van Eck et al. 2004).

C57Bl/6 mice fed a cholic acid-containing atherogenic diet develop small initial

atherosclerotic lesions, suggesting that SR-BI might be pro-atherogenic in this early

stage of lesion development. In line, early atherosclerotic lesion development in

LDLr knockout mice challenged with Western diet for only 4 weeks was reduced

upon disruption of SR-BI in bone marrow-derived cells. These combined studies

suggest that macrophage SR-BI plays a dual role in foam cell formation and

atherogenesis, which may be dependent on the stage of atherosclerotic lesion

development.

8 Insights from Intercrossing of the Different Knockout Mice

Since some of the aforementioned proteins execute both different and overlapping

functions in the formation of HDL particles and reverse cholesterol transport, it is

conceivable that they may act synergistically and/or be able to compensate for each

other’s loss. To uncover interactions between specific gene products several double

knockout mice have been generated via intercrossing. In line with a differential role

in HDL formation and maturation, studies in mice lacking both ABCA1 and LCAT

function have suggested that these two proteins act synergistically. Hepatic choles-

terol accumulation is higher, while peripheral tissue cholesterol levels are lower in

ABCA1 x LCAT double knockout mice as compared to the respective single

knockout mice, despite an even higher HDL fractional catabolic rate (Hossain

et al. 2009). In parallel, probucol-induced inhibition of ABCA1 function further

lowers adrenal cholesterol levels in LCAT knockout mice (Tomimoto et al. 2001).

The ABCA1-mediated formation of HDL particles rather than the SR-BI-mediated

cholesterol uptake is the driving force in the maintenance of plasma

HDL-cholesterol levels, as HDL-cholesterol levels in ABCA1 x SR-BI double

knockout mice are still close to zero (Zhao et al. 2011). In contrast, ablation of

either ABCA1 or SR-BI function is equally effective in lowering the rate of in vivo

macrophage reverse cholesterol transport (Zhao et al. 2011). The mild pulmonary

lipidosis phenotype of ABCA1 knockout mice is severely aggravated in response to

deletion of SR-BI function, which suggests that macrophage SR-BI is able to

partially compensate for the inability of ABCA1 to mediate cholesterol efflux

(Zhao et al. 2011). In accordance, specific disruption of both ABCA1 and SR-BI

in bone marrow-derived cells of LDLr knockout mice leads to an added increase in

(tissue) macrophage foam cell formation and Western-type diet-induced athero-

sclerotic lesion development, in the context of lower plasma cholesterol levels,

when compared to both single knockout bone marrow transplanted controls (Zhao

et al. 2010). Importantly, ABCG1 seems to play a more essential role in the

compensatory response to macrophage ABCA1 deficiency. Mass efflux of choles-

terol from macrophages to both apoA-I and HDL is virtually absent as a result of

combined deletion of ABCA1 and ABCG1 (Out et al. 2008a). Already on a chow

diet ABCA1 x ABCG1 double knockout mice display marked accumulation of

cholesterol not only within the lungs (reminiscent of the ABCG1 knockout

Mouse Models of Disturbed HDL Metabolism 319



phenotype), but also in primary and secondary lymphoid organs and macrophage-

rich areas of the liver and intestine (Out et al. 2008a). Furthermore, the double

deletion exacerbates high fat diet-induced lymphocytosis (Yvan-Charvet

et al. 2008). Transplantation of bone marrow from ABCA1 x ABCG1 double

knockout mice into LDLr knockout mice is associated with resistance to

Western-type diet-induced hyperlipidemia (Out et al. 2008b). However, despite

the rather low plasma cholesterol levels under Western-type diet feeding

conditions, ABCA1 x ABCG1 double knockout bone marrow recipient mice

show significant plaque development and exhibit distinct lipid deposition in

macrophage-rich tissues (Out et al. 2008b). This highlights the necessity for these

transporters to overcome macrophage foam cell formation and atherosclerosis.

Subsequent bone marrow transplantations into mice with a heterozygous mutation

in the LDLr gene (LDLr+/�) have validated the increased susceptibility to macro-

phage cholesterol accumulation and atherosclerosis in response to the combined

deficiency in macrophage ABCA1 and ABCG1 upon challenge with a cholate-

containing diet (Yvan-Charvet et al. 2007). Furthermore, these studies have

suggested that the combined deficiency of these ABC transporters in bone marrow

also impacts on the inflammatory function and susceptibility to apoptosis of

macrophages as well as the cyclic activity of hematopoietic stem cells (Yvan-

Charvet et al. 2008, 2010a).

9 Conclusions from the Gene Knockout Mouse Studies

Generation of the different knockout mice has significantly contributed to our

understanding of HDL’s metabolism and function (see Fig. 1 for overview). It

has become clear that the initial generation and maturation of HDL particles as well

as the selective uptake of its cholesterol by the liver are important parameters in the

life cycle of HDL. In line with the proposed atheroprotective function of HDL,

murine HDL deficiency consistently predisposes to the development of atheroscle-

rotic lesions. However, it should be noted that many of the detrimental atheroscle-

rosis effects observed in response to HDL deficiency in mice cannot be solely

attributed to the low HDL levels per se, as the low HDL levels are in most models

paralleled by changes in non-HDL-cholesterol levels. Although in the human

setting, low HDL-cholesterol levels predict increased cardiovascular risk at all

plasma non-HDL-cholesterol levels, the mouse data firmly establish that HDL

and non-HDL metabolism are heavily intertwined.

Based upon the bone marrow transplantation studies in hyperlipidemic mice, it

appears that the cholesterol efflux function of HDL is of critical importance to

overcome foam cell formation and the development of atherosclerotic lesions. We

therefore consider it therapeutically highly relevant to increase the expression

and/or activity of the cholesterol transporters in macrophages. In this regard, special

focus should be given to macrophage ABCA1 as this transporter seems to be the

driving force in the atheroprotection.
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Although HDL is predominantly studied for its atheroprotective action, it can be

appreciated that the mouse data suggest an essential role for HDL as cholesterol

donor for steroidogenic tissues, including the adrenals and ovaries. Furthermore, it

appears that a relevant interaction exists between HDL-mediated cellular choles-

terol efflux and the susceptibility to inflammation, which (1) provides strong

support for the novel concept that inflammation and metabolism are intertwining

biological processes and (2) identifies the efflux function of HDL as putative

therapeutic target also in other inflammatory diseases than atherosclerosis, includ-

ing sepsis and diabetes.

10 Cholesterol Ester Transfer Protein Transgenic Mice

Despite the fact that a great deal regarding the function of specific gene products

has been learned from the murine transgenic studies it should be acknowledged that

one should take care when directly translating the data to the human situation.

Humans, in contrast to mice, naturally express cholesterol ester transfer protein

(CETP) that plays a major role in total body cholesterol homeostasis as it is able to

exchange cholesterol esters and triglycerides between cholesterol-rich HDL and

ApoA-I knockout
- Plasma HDL-C ↓↓↓
- Adrenal cholesterol ↓;  adrenal func�on ↓
- Ovarian cholesterol ↓;  female fer�lity =
- Atherosclerosis  ↑ (LDLr  KO on chow); plasma VLDL-C ↑ 
- Atherosclerosis  =  (LDLr KO on Western diet); plasma VLDL-C ↓
- Development of skin lesions containing lipid-filled macrophages
- Cholesterol in B and T cells of lymph nodes ↑

ABCG1 knockout
- Plasma HDL-C =
- Adrenal func�on ?
- Female fer�lity =
- Pulmonary lipidosis
- Ini�al atherosclerosis↑
- Advanced atherosclerosis ↓
- Similar effects in general KO’s

and bone marrow dele�on

ABCA1 knockout
- Plasma HDL-C ↓↓↓
- Adrenal cortex cholesterol esters  ↑
- Female fer�lity  ↓;  steroid hormones ↓ ;  placenta malforma�ons
- Atherosclerosis =;  plasma VLDL-C  ↓
- Bone marrow dele�on: atherosclerosis ↑,  blood leukocytes  ↑
- Macrophage/Neutrophil dele�on: atherosclerosis  =
- Liver dele�on:  atherosclerosis  =  (LDLr KO), atherosclerosis  ↑ (apoE KO)

LCAT knockout
- Plasma HDL-C ↓↓↓ 
- Adrenal cholesterol ↓;  adrenal func�on ↓ 
- Female fer�lity  =
- Plasma TG ↑ and VLDL-C ↑
- Atherosclerosis  =↓↑ (depending on the

gene�c background, diet and effects on
plasma VLDL-C)

PLTP knockout
- Plasma HDL-C ↓↓
- Adrenal func�on ?
- Female fer�lity  =
- PL and FC-rich lamellar par�cles  ↑ (saturated fat-rich diet)
- Atherosclerosis ↓=  (depending on the gene�c background, diet

and effects on plasma VLDL-C)
- Bone marrow dele�on:  atherosclerosis ↓↑;  plasma VLDL-C ↓

SR-BI knockout
- Plasma HDL-C ↑↑
- Plasma VLDL-C ↑
- Adrenal cholesterol ↓;  adrenal func�on ↓ 
- Female fer�lity ↓; abnormal embryo development
- Atherosclerosis  ↑
- Severe cardiac dysfunc�on and premature death in apoE KO’s
- Bone marrow dele�on: ini�al lesions ↓,  advanced lesions  ↑

Fig. 1 Major phenotypic changes in mouse models of disturbed HDLmetabolism. An overview is

given of the effects of deletion of apolipoprotein A-I (apoA-I), the ABC transporters A1 (ABCA1)

and G1 (ABCG1), lecithin-cholesterol acyltransferase (LCAT), phospholipid transfer protein

(PLTP), and scavenger receptor BI (SR-BI) for HDL’s metabolism, adrenal function, female

fertility, and its protection against atherosclerosis in mice. ¼ no effect, # decreased, " increased,

C cholesterol, PL phospholipids, TG triglycerides, KO knockout
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triglyceride-rich VLDL/LDL particles. In agreement with a major role for CETP in

the modulation of plasma HDL-cholesterol levels, genetic CETP deficiency is

associated with marked hyperalphalipoproteinemia, i.e., relatively high

HDL-cholesterol levels, in humans (Rhyne et al. 2006; Calabresi et al. 2009). To

overcome this apparent discrepancy between mice and humans in studies dealing

with lipoprotein metabolism, the group of Alan Tall generated a mouse line

(NFR-CETP) expressing the human CETP transgene under the control of its natural

flanking regulatory elements (Jiang et al. 1992). Initial cloning studies (Drayna

et al. 1987) indicated that CETP is primarily derived from liver, small intestine,

adrenals, and spleen in humans. In accordance, relatively high CETP mRNA levels

are found in liver, spleen, and small intestine of human NFR-CETP transgenic mice

(Jiang et al. 1992). Of note, the Tall group also generated a transgenic mouse line

expressing CETP under control of the methallothionein-I (MT) gene (Jiang

et al. 1992). In MT-CETP transgenic mice, additional high expression of CETP

can be detected in kidney, adipose tissue, and heart. Importantly, the expression of

CETP in MT-CETP transgenic is not responsive to high cholesterol/high fat diet

feeding, which contrasts the findings from NFR-CETP transgenic mice (Jiang

et al. 1992) and species naturally expressing CETP, i.e., monkeys and rabbits

(Quinet et al. 1990; Pape et al. 1991). Given the apparent limitations of

MT-CETP transgenic mice, in our opinion the NFR-CETP mouse model should

preferentially be used in studies aimed at translation to the human situation.

Therefore, findings from NFR-CETP transgenic mice will only be reviewed in

the next part.

Chow-fed CETP transgenic mice exhibit a ~15 % lower plasma total cholesterol

level as compared to non-transgenic controls (Masucci-Magoulas et al. 1996;

Harada et al. 2007). In contrast, plasma triglyceride levels are marginally increased

in CETP carrying mice upon feeding chow diet (Zhou et al. 2006; Harada

et al. 2007) due to a slightly diminished clearance of triglyceride-rich lipoproteins

(Salerno et al. 2009). The decrease in total cholesterol in CETP transgenic mice can

primarily be attributed to lower levels of cholesterol associated with HDL (Zhou

et al. 2006). The fractional catabolic rate and uptake of HDL-cholesterol esters by

the liver, adrenals, and adipose tissue are increased in CETP transgenic mice, which

is associated with an increase in hepatic cholesterol stores (Harada et al. 2007). As a

result, CETP transgenic mice exhibit a rise in the plasma total cholesterol over

HDL-cholesterol ratio (Clee et al. 1997). The decrease in HDL-cholesterol levels

cannot be attributed to a change in LCAT levels. Intriguingly, the presence of CETP

actually enhances the saturation level of the LCAT-mediated cholesterol esterifica-

tion reaction (Oliveira et al. 1997). This suggests that CETP generates particles that

can serve as optimal substrates for LCAT.

Despite the marked increase in plasma HDL-cholesterol levels associated with

complete CETP deficiency, variable effects on atherosclerosis and cardiovascular

disease risk in response to genetic variations in the CETP gene have been noted in

the human setting (Zhong et al. 1996; Agerholm-Larsen et al. 2000; Curb

et al. 2004; Zheng et al. 2004; Rhyne et al. 2006). To provide clear insight into

the contribution of CETP to atherosclerotic lesion development, NFR-CETP
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transgenic mice have been bred onto several different atherosclerosis-susceptible

mouse backgrounds. CETP expression in heterozygous LDLr knockout mice on a

cholic acid-containing atherogenic diet does not significantly alter plasma HDL- or

non-HDL-cholesterol levels. As a result, CETP does not impact on the susceptibil-

ity to atherosclerosis in heterozygous LDLr knockout mice (Casquero et al. 2006).

In contrast, CETP executes a clear pro-atherogenic effect in hyperlipidemic apoE

knockout and homozygous LDLr knockout mice (Plump et al. 1999). CETP lowers

plasma HDL-cholesterol levels in chow-fed apoE knockout mice without changing

levels of cholesterol associated with non-HDL particles. In addition, triglyceride

levels are increased in the plasma of CETP-expressing apoE knockout mice. CETP

expression does not alter plasma HDL-cholesterol levels in LDLr knockout mice

challenged with a Western-type high fat/high cholesterol diet. However, levels of

cholesterol associated with pro-atherogenic apoB-containing lipoproteins are mark-

edly increased in response to CETP expression in LDLr knockout mice. It thus

appears that the increased atherosclerotic lesion development in apoE and LDLr

knockout mice upon CETP expression can be directly related to an increased

atherogenic index of the plasma compartment (higher non-HDL/HDL ratio) in

both types of hyperlipidemic mice. In further support, a marked increase in plasma

non-HDL-cholesterol levels and atherosclerotic lesion development—in the con-

text of a marginal but significant decrease in HDL-cholesterol levels—was noted

when we expressed CETP only in bone marrow-derived cells of LDLr knockout

mice through bone marrow transplantation (Van Eck et al. 2007).

A clear drawback of using LDLr and apoE knockout mice for studies regarding

lipoprotein metabolism is that they do not exhibit a normal clearance of apoE-

containing VLDL/LDL particles. To determine the effect of CETP expression on

lipoprotein metabolism and atherosclerosis development in a more relevant

“humanized” setting, CETP transgenic mice have also been crossbred with

hyperlipidemic apoE*3-Leiden mice. Transgenic apoE*3-Leiden mice express a

mutation of the human apoE3 gene resulting in a slightly attenuated clearance of

apoB-containing particles via the LDLr pathway (van den Maagdenberg

et al. 1993). As a result, these mice (1) exhibit a lipoprotein cholesterol distribution

profile that is highly similar to that found in humans (van den Maagdenberg

et al. 1993; van Vlijmen et al. 1994), (2) are susceptible to atherosclerotic lesion

development when fed a high fat/high cholesterol Western-type diet devoid of

cholic acid (van Vlijmen et al. 1994), and (3) show a similar plasma lipid response

as human subjects to several drug interventions (van der Hoogt et al. 2007; de Haan

et al. 2008a; van der Hoorn et al. 2008). ApoE*3-Leiden x CETP double transgenic

mice as compared to apoE*3-Leiden controls display a significant increase in

plasma total cholesterol levels on both chow and under Western-type diet feeding

conditions (Westerterp et al. 2006). Under these dietary conditions, VLDL-

cholesterol levels are increased twofold, while HDL-cholesterol levels as well as

plasma apoA-I levels are 25 % lower in apoE*3-Leiden x CETP transgenic mice

(Westerterp et al. 2006). Importantly, apoE*3-Leiden x CETP transgenic mice

exhibit increased atherosclerotic lesion development in the aortic root as compared
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to apoE*3-Leiden controls (Westerterp et al. 2006). Based upon these combined

findings, CETP should clearly be considered a pro-atherogenic protein moiety.

In the last decade, therapeutic strategies have focused on inhibiting CETP

activity through the use of a variety of CETP-binding drugs, i.e., torcetrapib, that

form an inactive complex between CETP and HDL. Studies in apoE*3-Leiden x

CETP transgenic mice have suggested that the HDL increase associated with

torcetrapib treatment does not add to the beneficial impact of statin-induced lipid-

lowering on atherosclerosis (de Haan et al. 2008b). Importantly, the ILLUMINATE

and dal-OUTCOMES trials also failed to show the beneficial effect of CETP

inhibition in statin-treated cardiovascular disease patients (Barter et al. 2007;

Schwartz et al. 2012). Combination treatment with torcetrapib and statin increases

the macrophage content in atherosclerotic lesions in apoE*3-Leiden x CETP

transgenic mice as compared to statin treatment alone (de Haan et al. 2008b). A

higher lesional macrophage content is generally associated with an increased

susceptibility for plaque rupture and future cardiovascular events in the human

situation (Redgrave et al. 2006; Marnane et al. 2014). An effect of CETP inhibition

on plaque stability may therefore possibly have contributed to the negative outcome

of the aforementioned torcetrapib and dalcetrapib trials.

Concluding Remark

The use of dedicated knockout and transgenic mouse models has significantly

increased our knowledge on the different functions and metabolism of HDL.

However, as evident from the recent failures of the CETP inhibition-based

clinical trials, more research is clearly needed to better understand how we can

use HDL as target in the treatment of patients at risk of cardiovascular disease

and other immune-related disorders. The generation of “humanized” mouse

models such as the apoE*3-Leiden x CETP transgenic mice will hopefully aid

in the development of novel therapeutic approaches beneficially impacting on

HDL functionality and atherosclerosis outcome also in the clinical setting.
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JW, Van Berkel TJ, Kuiper J, Van Eck M (2011) Deletion of the high-density lipoprotein

receptor scavenger receptor BI in mice modulates thrombosis susceptibility and indirectly

affects platelet function by elevation of plasma free cholesterol. Arterioscler Thromb Vasc Biol

31:34–42

Kunnen S, Van Eck M (2012) Lecithin:cholesterol acyltransferase: old friend or foe in atheroscle-

rosis? J Lipid Res 53:1783–1799

Laffitte BA, Joseph SB, Chen M, Castrillo A, Repa J, Wilpitz D, Mangelsdorf D, Tontonoz P

(2003) The phospholipid transfer protein gene is a liver X receptor target expressed by

macrophages in atherosclerotic lesions. Mol Cell Biol 23:2182–2191

Lambert G, Sakai N, Vaisman BL, Neufeld EB, Marteyn B, Chan CC, Paigen B, Lupia E,

Thomas A, Striker LJ, Blanchette-Mackie J, Csako G, Brady JN, Costello R, Striker GE,

Remaley AT, Brewer HB Jr, Santamarina-Fojo S (2001) Analysis of glomerulosclerosis and

atherosclerosis in lecithin cholesterol acyltransferase-deficient mice. J Biol Chem

276:15090–15098

Lammers B, Zhao Y, Hoekstra M, Hildebrand RB, Ye D, Meurs I, Van Berkel TJ, Van Eck M

(2011) Augmented atherogenesis in LDL receptor deficient mice lacking both macrophage

ABCA1 and ApoE. PLoS ONE 6:e26095

Lammers B, Zhao Y, Foks AC, Hildebrand RB, Kuiper J, Van Berkel TJ, Van Eck M (2012)

Leukocyte ABCA1 remains atheroprotective in splenectomized LDL receptor knockout mice.

PLoS ONE 7:e48080

Lawn RM, Wade DP, Couse TL, Wilcox JN (2001) Localization of human ATP-binding cassette

transporter 1 (ABC1) in normal and atherosclerotic tissues. Arterioscler Thromb Vasc Biol

21:378–385

Lee RG, Kelley KL, Sawyer JK, Farese RV Jr, Parks JS, Rudel LL (2004) Plasma cholesteryl

esters provided by lecithin: cholesterol acyltransferase and acyl-coenzyme a:cholesterol

acyltransferase 2 have opposite atherosclerotic potential. Circ Res 95:998–1004

Lee EY, Klementowicz PT, Hegele RA, Asztalos BF, Schaefer EJ (2013) HDL deficiency due to a

new insertion mutation (ApoA-INashua) and review of the literature. J Clin Lipidol 7:169–173

Lee-Rueckert M, Vikstedt R, Metso J, Ehnholm C, Kovanen PT, Jauhiainen M (2006) Absence of

endogenous phospholipid transfer protein impairs ABCA1-dependent efflux of cholesterol

from macrophage foam cells. J Lipid Res 47:1725–1732

Leren TP, Bakken KS, Daum U, Ose L, Berg K, Assmann G, von Eckardstein A (1997)

Heterozygosity for apolipoprotein A-I(R160L)Oslo is associated with low levels of high

density lipoprotein cholesterol and HDL-subclass LpA-I/A-II but normal levels of

HDL-subclass LpA-I. J Lipid Res 38:121–131

Mouse Models of Disturbed HDL Metabolism 329



Li H, Reddick RL, Maeda N (1993) Lack of apoA-I is not associated with increased susceptibility

to atherosclerosis in mice. Arterioscler Thromb 13:1814–1821

Li L, Naples M, Song H, Yuan R, Ye F, Shafi S, Adeli K, Ng DS (2007) LCAT-null mice develop

improved hepatic insulin sensitivity through altered regulation of transcription factors and

suppressors of cytokine signaling. Am J Physiol Endocrinol Metab 293:E587–E594

Li Z, Wang Y, van der Sluis RJ, van der Hoorn JW, Princen HM, Van Eck M, Van Berkel TJ,

Rensen PC, Hoekstra M (2012) Niacin reduces plasma CETP levels by diminishing liver

macrophage content in CETP transgenic mice. Biochem Pharmacol 84:821–829

Liu R, Iqbal J, Yeang C, Wang DQ, Hussain MM, Jiang XC (2007) Phospholipid transfer protein-

deficient mice absorb less cholesterol. Arterioscler Thromb Vasc Biol 27:2014–2021

Lusa S, Jauhiainen M, Metso J, Somerharju P, Ehnholm C (1996) The mechanism of human

plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein

particles: evidence for particle fusion. Biochem J 313:275–282

Malerød L, Juvet K, Gjøen T, Berg T (2002) The expression of scavenger receptor class B, type I

(SR-BI) and caveolin-1 in parenchymal and nonparenchymal liver cells. Cell Tissue Res

307:173–180

Marnane M, Prendeville S, McDonnell C, Noone I, Barry M, Crowe M, Mulligan N, Kelly PJ

(2014) Plaque inflammation and unstable morphology are associated with early stroke recur-

rence in symptomatic carotid stenosis. Stroke 45:801–806

Masucci-Magoulas L, Plump A, Jiang XC, Walsh A, Breslow JL, Tall AR (1996) Profound

induction of hepatic cholesteryl ester transfer protein transgene expression in apolipoprotein

E and low density lipoprotein receptor gene knockout mice. A novel mechanism signals

changes in plasma cholesterol levels. J Clin Invest 97:154–161

Mathis D, Shoelson SE (2011) Immunometabolism: an emerging frontier. Nat Rev Immunol 11:81

Matsunaga A, Sasaki J, Han H, Huang W, Kugi M, Koga T, Ichiki S, Shinkawa T, Arakawa K

(1999) Compound heterozygosity for an apolipoprotein A1 gene promoter mutation and a

structural nonsense mutation with apolipoprotein A1 deficiency. Arterioscler Thromb Vasc

Biol 19:348–355

Meurs I, Hoekstra M, van Wanrooij EJ, Hildebrand RB, Kuiper J, Kuipers F, Hardeman MR, Van

Berkel TJ, Van Eck M (2005) HDL cholesterol levels are an important factor for determining

the lifespan of erythrocytes. Exp Hematol 33:1309–1319

Meurs I, Lammers B, Zhao Y, Out R, Hildebrand RB, Hoekstra M, Van Berkel TJ, Van Eck M

(2012) The effect of ABCG1 deficiency on atherosclerotic lesion development in LDL receptor

knockout mice depends on the stage of atherogenesis. Atherosclerosis 221:41–47

Miettinen HE, Rayburn H, Krieger M (2001) Abnormal lipoprotein metabolism and reversible

female infertility in HDL receptor (SR-BI)-deficient mice. J Clin Invest 108:1717–1722

Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, Voysey M, Gray A,

Collins R, Baigent C, Cholesterol Treatment Trialists’ (CTT) Collaborators (2012) The effects

of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-

analysis of individual data from 27 randomised trials. Lancet 380:581–590

Moore RE, Kawashiri MA, Kitajima K, Secreto A, Millar JS, Pratico D, Rader DJ (2003)

Apolipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking

the LDL receptor. Arterioscler Thromb Vasc Biol 23:1914–1920

Ng DS, Francone OL, Forte TM, Zhang J, Haghpassand M, Rubin EM (1997) Disruption of the

murine lecithin: cholesterol acyltransferase gene causes impairment of adrenal lipid delivery

and up-regulation of scavenger receptor class B type I. J Biol Chem 272:15777–15781

Ng DS, Maguire GF, Wylie J, Ravandi A, XuanW, Ahmed Z, Eskandarian M, Kuksis A, Connelly

PW (2002) Oxidative stress is markedly elevated in lecithin: cholesterol acyltransferase-

deficient mice and is paradoxically reversed in the apolipoprotein E knockout background in

association with a reduction in atherosclerosis. J Biol Chem 277:11715–11720

Ng DS, Xie C, Maguire GF, Zhu X, Ugwu F, Lam E, Connelly PW (2004) Hypertriglyceridemia in

lecithin-cholesterol acyltransferase-deficient mice is associated with hepatic overproduction of

330 M. Hoekstra and M. Van Eck



triglycerides, increased lipogenesis, and improved glucose tolerance. J Biol Chem

279:7636–7642

O’Brien KD, Vuletic S, McDonald TO, Wolfbauer G, Lewis K, Tu AY, Marcovina S, Wight TN,

Chait A, Albers JJ (2003) Cell-associated and extracellular phospholipid transfer protein in

human coronary atherosclerosis. Circulation 108:270–274
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