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Abstract. Reverse engineering of the Gene Regulatory Networks
(GRNs) from high-throughput gene expression data is one of the most
pressing challenges of computational biology. In this paper a method
for parallelization of the Gene Regulatory Network inference algorithm,
GENIE3, based on GPU by exploiting the compute unified device ar-
chitecture (CUDA) programming model is designed and implemented.
GENIE3 solves regulatory network prediction by developing tree based
ensemble of Random forests. Our proposed method significantly improves
the computational efficiency of GENIE3 by constructing the forest on the
GPU in parallel. Our experiments on real and synthetic datasets show
that, CUDA implementation outperforms sequential implementation by
achieving a speed-up of 15 times (real data) and 14 to 18 times (synthetic
data) respectively.

Keywords: Gene regulatory network, Random forests, GPU, compute
unified device architecture (CUDA).

1 Introduction

A set of DNA portions which collaborate together and with other objects con-
trol RNA and proteins expression levels in a cell is called a Gene Regulatory
Network (GRN). Predicting GRN is critical for perceiving the functioning and
development of biological organisms [1]. Due to progresses in high-throughput
gene expression patterns profiling with DNA microarrays and prevalence of ex-
pression data, reverse engineering of GRN from biological data is now widely
used for understanding the underlying mechanisms. However it is still one of
the most challenging tasks in bioinformatics and systems biology. The ability of
GRN models to precisely predict gene expressions would help find interrelated
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genes in a biological process in addition to exploring how a system of genes is in-
fluenced by drugs. There are several different methods to predict GRN, including
relevance networks [2], empirical Bayesian networks [3], Boolean networks [4,5],
Bayesian networks [6,7], and neural network [8]. In spite of intense studies, GRN
inference approaches still suffer from low performance. The two main reasons
are their incapability of modelling inherent complexities of biological processes
and the difficulty to handle high dimensional data (which include expressions
of thousands of genes). On account of recent advancement in high-throughput
technologies, large datasets are frequently available, thus algorithms and soft-
ware of high-performance computing for GRN inference with high accuracy is
becoming more important for the current research in systems biology.

Within this context, Huynh et al. has applied Random forests to GRN in-
ference in order to tackle the above difficulties [9], because the Random forests
method has become popular in handling large datasets as well as high dimen-
sional data [10,11]. Their method, namely GENIE3, was one of the best perform-
ers in the DREAM4 in Silico challenge for GRN reverse engineering [12]. Even
though it infers GRN with a higher accuracy than other similar methods, it still
takes a significant amount of time even for a dataset of moderate size (e.g. less
than 50 genes).

In this paper, we present a novel method to accelerate the GENIE3 algorithm
based on the model of CUDA programming. In order to increase the speed of
GENIE3, for each forest, trees grow in parallel inside GPU. Also, for gaining
efficiency, shared memory for fast I/O is exploited. We evaluate our approach
for several simulated datasets and one real dataset. Our parallelized approach
(named CUDAGRN) is able to achieve a speed-up of 15 times on the real dataset
on NVidia Quadra 600 in comparison to the sequential algorithm of GENIE3.

Several methods in computational science and technology have been imple-
mented to run on a GPU in CUDA environment. For instance, GPU implementa-
tions have been reported for Smith-Waterman algorithm for sequence alignment
[13], robotic multisensory perception [14], structured Bayesian mixture [15], im-
age processing methods [16], mutual information estimation algorithm [17], a
PoissonBoltzmann equation solver [18] and biomolecules Del-Phi [19]. To our
knowledge, CUDAGRN is one of the first few attempts to parallelize a GRN
inference algorithm, which will find applications in many biological problems
involving high-throughput data and large regulatory networks.

2 Method

2.1 Sequential Algorithm of GRN Inference

There is an assumption of GENIE3, apart from random noises of the regulatory
network, that the gene expression of an individual gene is a function of the
expression levels of all other genes. It is assumed that the function defining the
expression of gene i can be written in the following formula:

Y i
j = fi(Y

i∗
j ) + εj , ∀j ∈ All experiments (1)
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where Y i∗
j = [(Y 1

j , ..., Y
i−1
j , Y i+1

j , ..., Y p
j ], is the list of input samples, containing

values of expression in the jth experiment of all genes excluding gene i and εj is a
random fluctuation with mean of 0. Moreover, GENIE3 algorithm assumes that
the function fi only uses the expression of the genes in Y i∗ that regulates gene
i directly. These are the genes with an edge linked to gene i in the final output
network. Constructing regulatory edges connecting to gene i will be finding genes
whose expression levels are predictive of the expression of gene i. In terminology
of machine learning, the problem is a feature selection problem in regression [20].

Each function of fi is nonlinear [9] and it has to take into account the expres-
sion of a number of genes. Hence, it is required to be fast. Generally, tree-based
ensemble approaches, particularly Random forests, are methods of choice to ful-
fil this purpose. Random forests method is scalable, fast and does not assume
the nature of the functions. Also, it can cope with a higher number of features
and nonlinear functions [21].

In 2001, Brieman introduced the method of Random forests [22]. From the
same dataset, it constructs several decision trees using randomly sampled vari-
ables and bootstrapping to generate variant trees to work as an ensemble clas-
sifier. In bootstrapping, for each tree new datasets are created uniformly by
sampling with replacement cases from the training dataset. Then, these pro-
duced bootstraps are used for building trees which are finally aggregated into a
forest. It has been demonstrated to be efficacious for datasets which are large
and have missing attributes values [22,23]. Two parameters can be configured
during the Random Forest training. One is the number of trees which can be
adjusted by the user, and the other one is the number of attributes to consider
in each split (denoted by K). By tweaking the two parameters, the result can
be optimized. Building many decision trees is inefficacious when the trees need
to be constructed independently from each other. When the number of trees in
the forest is large, a parallel implementation of random forest has the potential
to achieve considerable speed-up. On the other hand, it might be an ineffective
approach only a small number of trees in the forest.

The GENIE3 algorithm uses the tree-based random forest method to predict
a regulatory network. The main idea of the random forest method for inferring
a network is to break the problem of constructing a network with p genes into
p independent sub-problems. Each sub-problem is defined by a unique learning
sample consisting of a pair of input-output sets of the ith gene (denoted by LS)
from which the network can be inferred. For instance, the learning sample of
gene i is as follows:

LSi
j = (Y i∗

j , Y i
j ), j = 1, 2, ..., N (2)

where N is total number of samples for each gene, Y i∗
j is the set of all samples of

input genes and Y i
j is the set of all samples of output gene i. Taking this learning

sample as input, the objective of a GRN inference algorithm is to predict the
regulatory links among genes such that it works by first ranking all possible
regulatory links from the most significant to the least significant links. Recovery
of a network is then achieved by pruning the ranked list of links using a threshold.
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In this paper, our focus is mainly on the first one. As such, inference algorithm
is introduced here as a process that uses LS to allocate weights to candidate
regulatory links from any gene to any other gene, such that edges corresponding
to real interactions in the regulatory network would be given higher weights.
Each sub-problem which is determined by LSi, is a regression problem which
tries to find a function of fi to minimize the error in (3):

ΣN
j=1 = (Y i

j − fi(Y
i∗
j ))2 (3)

In random forest, regression trees [24] solve the above problem. The main
idea is to split the learning sample iteratively with binary tests in accordance
with one input variable (Y i∗) and strive to deduct the output variable variance
(Y i) in the resulting subsets of samples. Candidates are split for variables by
comparing with the threshold which is defined as long as the tree grows with the
values of input variables. In the method, each tree is constructed on a bootstrap
learning sample from the original one, and at each test node, before defining the
best split, K attributes are chosen randomly from all attributes which become
candidates.

One of the key strengths of the Random forests method is its ability to calcu-
late a variables importance from a tree which allows to rank the input features
based on their pertinence for predicting the output [23]. In the Random Forest
technique several ways to measure the importance of variables have been rec-
ommended. Here, we adopt a measure such that in every test node Z, we can
calculate the whole reduction of the variance of the output variable because of
the split [25]

R(Z) = |S|σ2(S)− |St|σ2(St)− |Sf |σ2(Sf ) (4)

where S denotes the set of samples which reach node Z, St is its subset for
which the test is true, Sf is the subset for which the test is false, σ2 (S) is the
variance of the output variable in a subset, and |S| denotes the cardinality of
a set of samples. For an individual tree, the total importance of one variable
is calculated by adding resulting values of nodes in the entire tree where this
variable is used to split. Those attributes that are never chosen, receive a value
of 0 for their importance, and those attributes that are chosen near the root node
generally get high scores. Measures of attribute importance can be extended to
ensembles, simply by averaging importance scores over all trees in the ensemble.

The computational complexity of the Random Forests is O(TKN log(N)),
where N is the size of the learning sample, K is the number of attributes
and T is the number of trees. Therefore, our method has a time complexity
of O(pTKN log(N)) as it needs to recover trees in the forest for every p genes.
Thus, the computational complexity is log-linear with reference to the number
of measurements. In the worst case scenario, it is quadratic in reference to the
number of genes since K = p− 1. In the next section we will describe how the
approach can be parallelized since the p problems, and the generation of T trees,
in Random Forest are executed independently from each other.
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The final results are directed graphs (i.e. networks) each with p nodes and
each node indicates a gene. In each graph, a directed edge from one gene i to
another gene j represents that gene i regulates, i.e. represses or activates, the
expression of gene j. The objective of inferring the GRN is to find a graph only
by analysis of the genes expression in diverse situations. By taking into account
the dynamic and combinatorial regulatory relations among genes, the expression
levels of individual genes can be predicted. Since the overall procedure of the
inference tends to be time-consuming, sometimes taking several days even for
datasets of moderate sizes, our goal is to implement parallel versions of GRN
inference using CPU cluster and GPU.

2.2 CUDA Programming Model

The general architecture of NVIDIA GPUs with the support of CUDA is illus-
trated in Figure 1. The GPU has a number of CUDA cores known as shader
processors (SP). Each SP has an immense number of registers and a private
local memory (LM). Eight SPs together form a streaming multiprocessor (SM).
Each SM also contains a particular memory region that is shared among the SPs
within the same SM. By combining a number of SMs the GPU is constructed.
GPUs also have some additional memories, for instance the global device mem-
ory which is accessible from all SPs. The GPU used for the development of our
approach and experimental evaluation is the NVidia Quadra 600.

Fig. 1. The GPU architecture assumed by CUDA
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The important features of utilized GPU are described in Table 1. For com-
putation in GPU, all data need to be transferred to the GPU memory from the
host memory. Therefore the bottleneck of the system is the latency between the
CPU and the GPU.

Table 1. The main characteristics for the NVIDIA Quadro 600 graphics card

GPU Property Values

CUDA cores 98
Compute capability 2.1
GPU / Memory clock rate 1280 Mhz / 800 Mhz
Total amount of memory 1024 MB
Memory interface 128-bit DDR3, 25.6 GB/s

2.3 CUDAGRN Inference Algorithm

All CUDA programs are separated into two sections: (1) sequential codes which
are executed on the host CPU and (2) CUDA functions, or kernels, which are
launched from the host and executed on the GPU. Before launching a kernel,
required data must be transferred to the device memory from the host memory.
Since there are several different memories with different sizes accessible by GPU,
data transferred into GPU need to be managed, which also can be a bottleneck.
In our algorithm, data are arranged based on usage frequency. If data are regu-
larly used, they are moved to the fastest accessible memory, i.e. shared memory.
Otherwise, they are stored in the global memory. By placing data in the GPU
memory, in a similar way as calling a regular C function, the CUDA kernel is
launched. During the execution of a kernel, several CUDA threads are generated
and each thread executes an instance of it. Threads are arranged systematically
into blocks, and blocks are arranged into grids.

In this paper, we address the problem of parallel constructing Gene Regulatory
Networks from gene expression data using the computational power of the GPU.
To parallelize the described method in the CUDA environment, some algorithm
sections are sent to GPU and executed by GPU threads. The proposed algorithm
is highly parallelizable, since all of the p problems of feature selection, solvable
by Random Forest, are independent of each other. In addition, different trees in
a forest grow independently. Thus, to implement the program in CUDA, forests
construction of feature selection problems is achieved in GPU. Because of the
memory constraints of device, our approach computes only one problem at a
time and for each problem, all of the trees in the forest grow in parallel. As such,
it needs a loop of p iterations to accomplish the calculation and come up with
the final network. Figure 2 depicts the overall procedure.

As the figure illustrates, we divide the network recovery problem into p iso-
lated sub-problems and iterate p times, where the p is the number of genes, to
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solve the overall problem. In each loop, constructions of all T trees are paral-
lelized. Furthermore, there is not any straightforward way to recover each single
tree in parallel, so we exploit one thread of CUDA to construct a complete tree
in the forest. Therefore, our algorithm performs better with a larger number of
trees.

Fig. 2. Parallel procedure for execution of Random Forest algorithm for GRN inference
on GPU

Several algorithms for decision tree are developed by recursion. However, using
a recursion is not possible for algorithms implemented in CUDA since kernels
running on graphic device do not support recursion. Hence, it was necessary
to design an algorithm which generates trees iteratively. Algorithm 1 shows the
pseudo-code of GENIE3 and algorithm 2 describes the steps in our parallelization
of the random forest algorithm for GRN inference.

We have described the details of how trees are built during the training phase.
The rest of our approach is similar to the sequential implementation. That is,
each tree in the forest is sequentially built by using one thread per tree during
the training phase. If N threads are run, then N trees are generated in parallel.
Thus, our system works best for an immense number of trees. At each level in
a tree, the best attribute to use in order to split a node is picked from a pool of
K attributes that are randomly chosen. While all trees are built, they are sent
to the host memory for use during the phase of computing variable importance.
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Algorithm 1. GENIE3 [9] Pseudo Code

1: procedure GRN-Inference Sequentially
2: Data← DataReader()
3: For each sub problem (i = 1 to p):
4: LearningSamplesGenerator(Data)
5: FeatureSelectionApproach()
6: Result← CalculateLevelOfConfidence()
7: Normalization(Result)
8: End For
9: RankResult(Result)
10: end procedure

Algorithm 2. CUDAGRN Pseudo Code

1: procedure GRN-Inference In Parallel Using GPU
2: HostMemory← DataReader()
3: For each sub problem (i = 1 to p):
4: LearningSamplesGenerator()
5: DeviceMemory← CUDAMemCpy(HostMemory)
6: KernelLaunch()
7: For each Tree (j=0 to NumberOfTreesInForest)
8: OpenNodeInStack← FirstNodeOfATreeGeneration()
9: While(OpenNodeInStack)
10: Node← OpenNodeInStack[head]
11: If(StopSplitFunction(Node))
12: Leaf(Node)
13: Else
14: FindSplit(Node)
15: Split(Node)
16: End While
17: Trees← SaveTree()
18: End For
19: HostMemory← CUDAMemCpy(Trees)
20: GPUMemoryCleanUp()
21: Result← VariableImportanceCalculator(Trees)
22: Normalization(Result)
23: End For
24: RankResult(Result)
25: end procedure
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2.4 Parallel GRN Inference on CPU

Message Passing Interface (MPI) is a portable and standardized message-passing
system designed to run on a diverse range of parallel computers [26]. Further-
more, OpenMP is an API which supports multi-platform shared memory multi-
processing programming on most processor architectures and operating systems
[27]. In this section the CPU parallelization of GENIE3, using MPI and OpenMP
are presented. Assuming there is enough memory, there are two ways to paral-
lelize GENIE3. In the first way, the algorithm can be parallelized at the tree
construction level. For each sub-problem, each CPU thread corresponds to con-
structing a tree since trees grow independently. Thus, for each sub-problem, a
loop with W interactions is executed, where W = T/thr, T is the number of
trees and thr is the number of active threads. Overall W ∗p iterations are needed
to solve the whole problem. In the second way of parallelizing, each sub-problem
must be dealt with in one CPU thread. Therefore, in order to find an answer for
a sub-problem, a loop with T iterations is required, and T ∗V , where V = p/thr,
iterations are required to find a result for all sub-problems.

Since there are overhead costs each time we start OpenMP and MPI, and
this can slow down the method, we chose the second way of CPU parallelizing.
As such, each CPU thread corresponds to one sub-problem and threads run the
problems independently. Eventually, at the end of execution, the main thread ac-
cumulates the intermediate results which have been produced by all the threads
and provides the final result.

3 Result

In this section, we compare the execution times of the proposed CUDAGRN
(described in details in the Methods section) with its sequential and parallel
CPU counterparts. The platform for our development was Microsoft Windows 7
along with CUDA version 2.3. Our software also used Core i7 Intel CPU, RAM
DDR3 of 8GB as the hardware platform. The GPU was a Quadra 600 NVIDIA
with memory of 1GB. Note that we have used a low end GPU versus a high
end CPU, which suggests that the observed speedups achieved by CUDAGRN
were mainly through the parallelization. Both real and synthetic datasets have
been used in our experiments. The real dataset, with 130 experiments and over
6000 genes, was downloaded from http://rana.lbl.gov/EisenData.htm. To further
test the scalability of CUDAGRN, we have additionally generated simulated
datasets with various parameters, e.g. the numbers of experiments, genes, and
trees in the Random forests. Simulated datasets were produced by the software
of GeneNetWeaver [28].

Three different versions of the GENIE3 algorithm are implemented and com-
pared in our evaluation, i.e. the sequential C++program, the CPU-parallelization
(by MPI and OpenMP), and the GPU-based version (CUDAGRN). In our ex-
perimental evaluation, we studied how the execution time would be influenced
by varying different parameters, which include the number of trees to generate
(T ), the number of genes (p) and sample size. Based on empirical experiments
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done in [22,23], we configured the number of attributes to sample in each split
(K) to its optimal value of K =

√
p− 1. However, it is beyond the scope of this

paper to prove which configuration of the parameters has the greatest impact
on the performance.

Since there are three parameters to vary in the algorithm, we alter one and
keep the other two constant. Measurements are collected by running the algo-
rithms on synthetic datasets with the number of trees in a forest from 100 to
10000 and the number of genes from 10 to 500 and sample size (i.e. number of
conditions or time points in microarray) from 100 to 5000. Table 2, shows the
runtime improvement of CUDAGRN in comparison with other implementations
of the GENIE3 algorithm running on different synthetic datasets. As shown in
the table, CUDA implementation of the GENIE3 has a faster runtime than the
other two implantations when the amount of computation increases. Moreover,

Table 2. Demo result of execution improvement with 1000 trees and 1000 experiments

Number of Genes Sequential(sec) CPU 8-Threads(sec) GPU(sec)

10 30 6 2

20 84 13 6

50 274 38 18

100 753 98 51

200 2175 285 154

500 8361 1093 586

Fig. 3. Diagram of runtimes while the number of genes is varying

line charts of the three tables are shown in Figure 3. The diagram is depicted
for a varying number of genes, while the numbers of experiments and trees are
both equal to 1000. From the figure, we can see that CUDAGRN achieves the
best performance in term of runtime.
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In addition, CUDAGRN was faster than the other two implementations when
executed on the aforementioned real dataset. CUDAGRN obtained the result
of GRN inference approximately 15 times faster than the sequential program
(Figure 4). In this section we conducted experiments on real and simulated
datasets to show that CUDAGRN is able to infer gene regulatory networks from
large and high-dimensional datasets faster than other implementations while
maintaining nearly all the accuracy of inference.

Fig. 4. Computational times of real dataset (6331 Genes, 131 Experiments, 1000 Trees)

4 Conclusion

We presented a novel parallel model of the GENIE3 algorithm, CUDAGRN, de-
veloped by exploiting the Compute Unified Device Architecture (CUDA). Com-
paring the performances of CUDAGRN, Sequential GRN inference and CPU
multi-threaded implementations, we observed that CUDAGRN can outperform
both the other competitors in term of computational time provided paralleliza-
tion did not reduce the accuracy of inference.

Unlike the sequential approach and CPU parallelization, the CUDAGRN al-
gorithm as proposed in this paper is executable on the GPUs. On ordinary PCs,
the number of processing units (cores) in the CPUs is significantly less than the
number of processing units on GPUs. In our approach, whereas the difference
in regression performance, e.g. accuracy, among the different implementations
is imperceptible (data not shown), it is clear that CUDAGRN is much more
efficient in term of computational speed, particularly with large numbers of ex-
periments and trees to build in the Random forest. Testing on real data shows
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that CUDAGRN is nearly 15 times faster than Sequential GRN, and about twice
faster than multi-threaded CPU implementation.

In future, we will refine our implementation of CUDAGRN. In particular,
we plan to append properties to make CUDAGRN more accessible to different
kinds of applications and practical conditions. For instance, the present version
of CUDAGRN is only able to operate on input attributes that are numeric and
it cannot deal with missing values which will be addressed in the new version of
our implementation.
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