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Abstract. Chemical carcinogenicity is an important safety issue for the
evaluation of drugs and environmental pollutants. The Ames test is use-
ful for detecting genotoxic hepatocarcinogens. However, the assessment
of Ames-negative hepatocarcinogens depends on 2-year rodent bioassays.
Alternative methods are desirable for the efficient identification of Ames-
negative hepatocarcinogens. This study proposed a decision tree-based
method using chemical-chemical interaction information for predicting
hepatocarcinogens. It performs much better than that using molecular
descriptors with accuracies of 86% and 76% for validation and inde-
pendent test, respectively. Four important interacting chemicals with
interpretable decision rules were identified and analyzed. With the high
prediction performances, the acquired decision rules based on chemical-
chemical interactions provide a useful prediction method and better un-
derstanding of Ames-negative hepatocarcinogens.

Keywords: Ames-Negative Hepatocarcinogens, Decision Tree, Chemical-
Chemical Interaction, Interpretable Rule, Toxicology.

1 Introduction

The assessment of carcinogenicity is crucial for drug development that is based
on 2-year rodent bioassays. The bioassays are labor-intensive, time-consuming
and expensive. Chemical carcinogens can be classified as either genotoxic (mu-
tagenic) or non-genotoxic (non-mutagenic) agents according to the mechanism
of action [1]. Several short-term in vitro and in vivo assays have been devel-
oped to assess genotoxic agents by measuring DNA damage, mutagenic effects,
and chromosomal aberrations [2]. Among the assays, the predictivity of Ames
test has been extensively studied for carcinogenicity. The Ames test is useful for
identifying mutagenic carcinogens with an accuracy of 80% [3,4]. However, 48%
of Ames-negative chemicals are carcinogens [5] and additional bioassays do not
help in detecting carcinogens from Ames-negative chemicals [6]. It is desirable
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to develop alternative methods for assessing carcinogenicity of Ames-negative
chemicals.

A quantitative structure-activity relationship (QSAR) model has been
evaluated for its prediction performance of non-genotoxic hepatocarcinogens.
However, the accuracy is only slightly better than random (55%) [7]. Recently,
toxicogenomics (TGx) correlating gene expression profiles and toxicity endpoints
has emerged as important alternative methods. The TGx methods performed
well in non-genotoxic hepatocarcinogenicity with a test accuracy of 80% [7,8].
However, gene expression profiles are only available for a small number of chem-
icals. It is highly expensive to conduct a large-scale TGx study for hepatocar-
cinogens.

Chemical-protein interaction (CPI) information has been proposed to predict
non-genotoxic hepatocarcinogens with a high accuracy of 86% using only one
protein biomarker [9]. Notably, both the aforementioned TGx and CPI meth-
ods were performed on a small dataset with less than 62 chemicals. Although
the CPI information is useful for analyzing and predicting hepatocarcinogens,
the information is incomplete that many chemical-protein pairs have not been
studied yet. The development of computational methods for a large number of
chemicals is desirable.

This study constructed a relatively large dataset consisting of 166 chemicals
by extracting information of Ames-negative chemicals and corresponding hep-
atocarcinogenicity from NCTRlcdb [10]. The more complete chemical-chemical
interaction (CCI) information from STITCH database [11] was proposed to pre-
dict hepatocarcinogens based on the assumption that interactive chemicals are
more likely to share similar toxicity. The CCI information has been successfully
applied to predict various chemical activities such as cancer drugs and chemical
toxicity [12,13].

In order to acquire rule-based knowledge, interpretable decision tree classifiers
were applied to predict hepatocarcinogenicity with accuracies of 85% and 76% for
validation and independent test, respectively. The CCI-based method performs
much better than a QSAR-based method with 12% and 6% improvements in
terms of accuracy for validation and independent test, respectively. The decision
rules were also analyzed to give insights into hepatocarcinogenicity.

2 Materials and Methods

2.1 Dataset

Ames-negative rodent hepatocarcinogens and noncarcinogens were extracted
from a liver cancer database NCTRIcdb [10]. The annotations of organ-specific
carcinogenicity and mutagenicity are available for 999 chemical compounds.
Mutagenic chemicals (Ames-positive) were firstly removed. Subsequently, hepa-
tocarcinogens and noncarcinogens were identified according to the field of OVER-
ALL. Six noncarcinogens without corresponding chemical-chemical interaction
data were also excluded. The final dataset consists of 73 hepatocarcinogens and
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93 noncarcinogens. The dataset was randomly divided into three datasets with
similar ratios between hepatocarcinogens and noncarcinogens for training (60%),
validation (20%) and independent test (20%). The three datasets are available
at http://cwtung.kmu.edu.tw/nghc.

2.2 Chemical Descriptors

The software of PaDEL-Descriptor [14] was utilized to generate chemical de-
scriptors from chemical 2D structures extracted from PubChem database. The
final feature vector is a 1610-dimensional vector consisting of 770 1D and 2D
descriptors and 840 PubChem fingerprints.

2.3 Chemical-Chemical Interactions

Chemical-chemical interaction (CCI) data are obtained from STITCH 3.1
database [11], an aggregated database of interactions connecting over 300,000
chemicals and 2.6 million proteins from 1,133 organisms. For each CCI, there
is a combined score calculated by combining four evidence sources of experi-
ments, databases, text-mining and similarity. In this study, the scores divided
by 1,000 are utilized to represent CCI features. The scores are ranging from 0
(low confident) to 1 (high confident).

2.4 Decision Tree Algorithm

Decision tree algorithms capable of generating interpretable rules are widely used
in various biological problems such as immunogenic peptides [15], ubiquitylation
sites [16] and esophageal squamous cell carcinoma [17]. In this study, the deci-
sion tree method C5.0 is applied to construct decision tree classifiers and derive
interpretable rules based on CCI features for predicting hepatocarcinogenicity.
C5.0 is an improved version of C4.5 with smaller trees and less computation time
[18]. The implementation of R package C50 is utilized in this study [19].

The construction of a decision tree is briefly described as follows. First, in-
formation gain is utilized to rank features. Second, the top-ranking features are
iteratively appended as nodes to split data into subsets. The tree growing pro-
cess stops when the data subset in each leaf node belongs to the same class. The
fully-grown tree is prone to over-fit the training data. Therefore, a pruning pro-
cess is applied to reduce the tree size by replacing a subtree with a leaf node to
avoid over-fitting problems. The pruning process is based on a default threshold
value of 25% confidence. The samples in the leaf node are the covered samples
of the rule. The class label of a leaf node is determined by using a majority rule.
The samples with a relative small size in the leaf node are regarded as misclas-
sified samples. The final decision tree can directly generate if-then rules where
one leaf node corresponds to one rule.
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2.5 Feature Selection

The selection of important features can provide better insights into the biological
problems and improve prediction performances [20,16,21,17]. This study utilized
a two-step feature selection method. First, features with near zero variances
were removed. Baseline models are constructed by using features whose vari-
ances are not near zero. Second, a wrapper-based feature selection method using
a minimum redundancy-maximum relevancy (mRMR) method [22] is utilized
to identify important CCI features for analyses and development of prediction
methods. The mRMR selection process is described as follows. First, mRMR
is utilized to rank the importance of CCI features. Subsequently, a sequential
backward feature elimination algorithm is applied to iteratively remove CCI fea-
tures with lowest ranks for selecting a subset of CCI features giving the highest
10-fold cross-validation (10-CV) accuracy. The selected feature subset is used to
construct a decision tree model for predicting hepatocarcinogens.

2.6 Performance Measurement

To evaluate classifiers for their prediction performance, the widely used 10-fold
cross-validation method is applied. Four measurements were used to evaluate
prediction performances including sensitivity, specificity, precision and accuracy,
defined as follows:

Sensitivity = P : (1)
TP+ FN

Specificity = 7 NT—&J—VF P (2)

Precision = TPT+PFP’ (3)

Accuracy =, Jj;ﬁi ?% L TN’ @

where TP, FP, FN and TN are the numbers of true positives, false positives,
false negatives and true negatives, respectively. In this work, accuracy is used as
the major indicator for estimating the performance of classifiers.

3 Results and Discussion

3.1 Selection of Informative Features

A baseline model using all 223 CCI features whose variances are not near zero
is firstly evaluated for comparison. The accuracies of 10-CV and validation for
the baseline model are 64% and 72.73% using training and validation datasets,
respectively. To identify informative features for Ames-negative hepatocarcino-
gens, the sequential backward feature elimination algorithm was applied to the
training dataset consisting of 45 hepatocarcinogens and 55 noncarcinogens.
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Fig. 1. The cross-validation performance for various numbers of selected features

The feature selection process and corresponding 10-CV accuracies are shown
in Figure 1. Based on the training dataset, the algorithm selected a small subset
of 11 CCI features giving a highest 10-CV accuracy of 70% that is 6% higher than
the baseline model. The feature selected model performs well in training dataset
with an accuracy of 82%. To evaluate the validation performance of the feature
selected model, a decision tree model constructed by using the 11 CCI features
and training dataset was utilized to classify chemicals in the validation dataset
consisting of 14 hepatocarcinogens and 19 noncarcinogens. A high validation
accuracy of 84.85% is obtained from the feature selected model that is 12%
higher than the baseline model. Detailed performance is shown in Table 1. In
addition to the mRMR method, three additional methods of chi-square test,
variable importance of random forest, and relief were also evaluated with worse
validation accuracies of 72.73%, 69.70% and 69.70%, respectively. The mRMR
method aiming to select a feature subset of minimum redundancy and maximum
relevancy might be able to avoid overfitting problems.

3.2 Independent Test Performance

To further evaluate the prediction performance of the proposed method, the de-
cision tree model constructed by using the 11 selected CCI features was utilized
to predict the chemicals in the independent test dataset consisting of 14 hepato-
carcinogens and 19 noncarcinogens. The test performances are 75.76%, 50.00%,
94.74% and 87.50% for accuracy, sensitivity, specificity and precision, respec-
tively. Compared to the test accuracy of the baseline model (66.67%), the con-
structed decision tree model performs well with 9% improvement. The CCI-based
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Table 1. Prediction performance

Validation Test
Method CCI QSAR CCI QSAR
Accuracy 84.85% 72.73% 75.76% 69.70%

Sensitivity 78.57% 57.14% 50.00% 71.43%
Specificity 89.47% 84.21% 94.74% 68.42%
Precision 84.62% 72.73% 87.50% 62.50%
AUC 0.8421 0.7030 0.7180 0.6880

model with high performances of precision and specificity is expected to be a
useful tool for screening Ames-negative hepatocarcinogens. The detailed perfor-
mance of the constructed model is shown in Table 1.

3.3 Comparison to Quantitative Structure-Activity Relationship
(QSAR) Models

For comparison, a QSAR model was developed using the same feature selection
algorithm and decision tree classifier. After feature selection, the QSAR model
with a 10-CV accuracy of 69% is slightly worse than the CCI-based model (Fig-
ure 1). As shown in Table 1, the QSAR model with 27 selected features performs
much worse than the CCI-based model in both validation and test dataset. The
prediction accuracies of the CCI-based model are 12% and 6% higher than that
of the QSAR model for validation and independent test, respectively. Due to dif-
ferent specificity levels of CCI-based and QSAR models, it is hard to conclude the
superiority of the CCI-based model. An additional nonparametric measurement
of area under receiver operating characteristic (ROC) curve (AUC) is applied to
evaluate the CCI-based and QSAR models. As shown in Table 1, results show
that the CCI-based model is better than the QSAR model with 14% and 3%
improvement on validation and test datasets, respectively.

3.4 Decision Rules for Ames-Negative Hepatocarcinogenicity

To better understand the relationship between important CCI features and Ames-
Negative Hepatocarcinogenicity, the decision tree model constructed by using the
training dataset and 11 selected CCI features is shown in Figure 2. Five decision
rules corresponding to five leaf nodes can be derived from the decision tree. In
brief, a chemical interacting with one of the four chemicals is a hepatocarcinogen
that correctly predict 27 hepatocarcinogens. Otherwise, it is a noncarcinogen that
55 noncarcinogens are correctly predicted with 18 miss-classified hepatocarcino-
gens. The four compounds are di-(4-aminophenyl)ether (CID000007579), ethane
(CID000006324), 2-acetylaminofluorene (CID000005897), and deoxyguanosine
(CID000187790). Among the four compounds, the di-(4-aminophenyl)ether and
2-acetylaminofluorene are Ames-positive carcinogens.
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Fig. 2. Decision tree classifier for Ames-negative hepatocarcinogens

4 Conclusions

The development of computational methods for the assessment of hepatocarcino-
genicity is important for efficient drug development compared to the traditional
2-year rodent bioassays. Most of the non-mutagenic hepatocarcinogens could be
identified by the in vitro Ames test. However, it is desirable to develop alterna-
tive methods for assessing Ames-negative hepatocarcinogens. The acquisition of
rules for efficient recognition of Ames-negative hepatocarcinogens is especially
important for practical application. This study proposed a decision tree-based
method using the CCI information and mRMR feature selection method for
the acquisition of decision rules for predicting hepatocarcinogenicity of Ames-
negative chemicals. The prediction model performs well with validation and test
accuracies of 85% and 76%, respectively. The acquired simple decision rules are
useful for identifying Ames-negative hepatocarcinogens with high specificity and
precision. Future works can be the application and comparison of other ma-
chine learning methods to improve the prediction performance of Ames-negative
hepatocarcinogens.
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