Copula-Specific Credit Portfolio Modeling

How the Sector Copula Affects the Tail of the Portfolio
Loss Distribution

Matthias Fischer and Kevin Jakob

Abstract Traditionally, banks estimate their economic capital which has to be
reserved for unexpected credit losses with individual credit portfolio models. Many
of those have its roots in the CreditRisk™ or in the CreditMetrics framework, which
were both launched in 1997. Motivated by the current regulatory requirements, banks
are required to analyze how sensitive their models (and the resulting risk figures) are
with respect to the underlying assumptions. Within this context, we concentrate
on the dependence structure in terms of copulas in both frameworks. By replacing
the underlying copula and using other popular competitors instead, we quantify the
effect on the tail, in general, and on the risk figures in specific for a hypothetical loan
portfolio.

1 Introduction

After the market crash of October 1987, Value-at-Risk (VaR) became a popular
management tool in financial firms. Practitioners and policy makers have invested
individually in implementing and exploring a variety of new models. However, as a
consequence of the financial markets turmoil around 2007/2008, the concept of VaR
was exposed to fierce debates. But just a few years after the crisis, VaR is still being
used albeit with greater awareness of its limitations (model risk) or in combination
with scenario analysis or stress testing. In particular, banks are required to critically
analyze and validate their employed VaR models which form the basis for their
internal capital allocation process (ICAAP, see BaFin [1, AT.4.1]). In this context,
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the term “model validation” should be associated to the activity of assessing if the
assumptions of the model are valid. Model assumptions, not computational errors,
were the focus of the most common criticisms of quantitative models in the crisis. In
particular, banks should be aware of the errors that can be made in the assumptions
underlying their models which form one of the crucial parts of model risk, probably
underestimated in the past practice of model risk management. With respect to the
current regulatory requirements (see, e.g., BaFin [1] or Board of Governors of the
Federal Reserve System [2]), banks are also required to quantify how sensitive their
models and the resulting risk figures are if fundamental assumptions are modified.

The focus of this contribution is solely on credit risk as one of the most important
risk types in the classical banking industry. Typically, the amount of economic capital
which has to be reserved for credit risk is determined with a credit portfolio model.
Two of the most widespread models are CreditMetrics, launched by JP Morgan
(see Gupton et al. [3]) and CreditRisk™, an actuarial approach proposed by Credit
Suisse Financial Products (CSFP, see Wilde [4]). Shortly after their publication,
Koylouglu and Hickman [5], Crouhy [6] or Gordy [7] offered a comparative anatomy
of both models and described quite precisely where the models differ in functional
form, distributional assumptions, and reliance on approximation formulae. Sector
dependence, however, was not in the focus of these studies.

A crucial issue with credit portfolio models consists in the realistic modeling
of dependencies between counterparties. Typically, all counterparties are assigned
to one or more (industry/country) sectors. Consequently, high-dimensional counter-
party dependence can be reduced to low(er)-dimensional sector dependence, which
describes the way how sector variables are coupled together. Against this background,
our focus is on the impact of different dependence structures represented in terms of
copulas within credit portfolio models. Relating to Jakob and Fischer [8], we extend
the analysis of the CreditRisk™ model to CreditMetrics and provide comparisons
between both frameworks. For this purpose, we work out the implicit and explicit
sector copula of both classes in a first step and quantify the effect of exchanging the
copula model on the risk figures for a hypothetical loan portfolio and a variety of
recent flexible parametric copulas in a second step.

Therefore, the outline is as follows. In Sect. 2, we review the classical copula con-
cept and briefly introduce those copulas which are used during the analysis. Section 3
summarizes and compares the underlying credit portfolio models with special empha-
sis on the underlying sector dependence. Finally, we empirically demonstrate the
influence of different copula models on the upper tail of the loss distribution and,
hence, on the risk figures for a hypothetical but realistic loan portfolio. Section5
concludes.
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2 Copulas Under Consideration

The concept of copulas dates back to Sklar [9]. In general, a copula is a
multivariate distribution function on the d-dimensional unit hypercube with uniform
one-dimensional margins.! With the help of a copula function, one can decompose
an arbitrary multivariate distribution into its margins and the dependence structure.
i.e., according to Sklar’s Theorem, for any multivariate distribution function F on
R4 with univariate margins F; a unique function C : xf: Im(F;) — [0, 1] exists,
such that F (x) = C (Fi(x1), ..., Fg(xg)) for all x € R?. Conversely, for arbi-
trary univariate distribution functions F; and a copula C, the function F defines a
valid multivariate distribution function. Because our focus is solely on the depen-
dence structure between economic sectors, we will use Sklar’s theorem in the second
direction. By exchanging the copula, we can construct new multivariate distributions
without affecting the margins.

Already at the beginning of this century, Li [12] incorporated the concept of
copulas into the CreditMetrics model. Ebmeyer et al. [13] used a Gaussian and a
t-copula within the CreditRisk™ framework to model sector dependencies. Our aim
is to extend these studies to a broader range of copulas and to establish a comparison
between both portfolio models regarding the sensitivity of the risk figures with respect
to the sector dependence. In addition to the original dependence structures, i.e., the
Gaussian copula (CreditMetrics) and a specific factor copula (CreditRisk ™), we apply
the following parametric competitors:

e elliptical copulas, i.c., the Gaussian copula (GC) and the t-copula (TC) (see,
McNeil et al. [14]),

e generalized hyperbolic copulas (GHC), implicitly defined by the family of gen-
eralized hyperbolic distributions (see Barndorff-Nielsen [15]),

e Archimedean (AC), for example the Gumbel, Clayton, Joe or Frank copula and
hierarchical Archimedean copulas (HAC) (see Savu and Trede [16], McNeil
[17] or Hofert and Scherer [18]),

e pair copula constructions (PCC) (see Aas et al. [19]).

To estimate the unknown parameters, e.g., the dispersion matrix in case of the GC,
we use the maximum likelihood (ML) approach. Other techniques, e.g., inverting
Kendall’s 7 may be also possible. In case of the HAC and PCC, one also has to
choose a suitable nesting or vine structure, 2 respectively. For this purpose, we applied
the methods implemented in the R-packages “HAC” by Okhrin and Ristig [20] and
“VineCopula” by Schepsmeier et al. [21], respectively. Further information about
the estimation are given in Sect.4.3. In addition, for more details about the model
selection process we also refer to the mentioned articles.

! In general, we assume that the reader is already familiar with the concept of copulas as well as
the most popular classes. For details, we refer to Joe [10] and Nelson [11].

2 A vine is a directed acyclic graph, representing the decomposition sequence of a multivariate
density function.
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3 A Comparison Between CreditRisk* and CreditMetrics

Within this section, we shortly introduce both CreditMetrics and CreditRisk™ in a
comparative way to highlight the differences.

3.1 Preliminary Notes and General Remarks

CreditMetrics was developed by a group of investment banks, led by J.P. Morgan
(see Gupton et al. [3]). It follows a mark to market approach and includes default
risk as well as migration risk.? In order to ensure comparability across both models,
we solely focus on the default risk. Nevertheless, in practice, migration risk is also
very important and should not be neglected. CreditMetrics belongs to the class of
threshold models (see McNeil et al. [14]). Here, the creditworthiness of each obligor
is governed by a latent variable, which is driven by the state of the overall economy
or a special sector/region as well as by an idiosyncratic factor. A default occurs if a
predefined threshold, determined by the obligors’ initial probability of default (PD),
is exceeded.

In contrast, CreditRisk™ belongs to the class of actuarial models. It was developed
by the Financial Products division of Credit Suisse (see Wilde [4]). The default
distribution of each counterparty is influenced by one or several factors. As in case
of CreditMetrics, these factors depend on the current state of the economy as well
as on idiosyncratic components. Given these values, defaults are assumed to be
independent of each other.

A major difference between both models is the way how the portfolio loss distrib-
ution is achieved. Whereas in the CreditMetrics framework a Monte Carlo simulation
is required to estimate the later, the same can be calculated analytically within the
CreditRisk* framework. A numerically stable algorithm is described in Gundlach
and Lehrbass [22, Chap. 5].

3.2 Theoretical Background

3.2.1 Model Input

We assume that for each counterparty i = 1, ..., N the exposure at default (EAD;),
the loss given default (LGD;) and the (unconditional) probability of default (PD;)
are known and not stochastic. We also assume that all business transactions of the
obligors have been aggregated to a single position for each counterparty. To derive the
loss distribution analytically, CreditRisk™ requires the exposures to be discretized
with respect to a so-called loss unit U > 0. The original values for EAD; and PD;

3 Migration risk includes the financial risk due to a change of the portfolio value caused by rating
migrations (i.e., down- and upgrade).
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are replaced by

—— EAD; - LGD; — EAD; - LGD; - PD;
EAD; .= max{| ——— |, 1 and PD; := —
U EAD; - U

respectively. The adjustment of the PDs ensures that the expected loss of the portfolio
is not affected by the discretizastion. i.e., it holds:

N N
E(L) = ZEAD,- -LGD; - PD; = ZEAT),- U - PD; =]E(Z)-
i=1 i=1

To simplify notation, we will omit the tilde for the discretized exposure and the PD
in the following and denote them also with EAD; and PD;, respectively. Since the
CreditMetrics model is a simulative one, such an adjustment is not necessary.

3.2.2 Sector Variables and Sector Dependencies

In order to introduce dependencies between counterparties, every obligor is mapped
to one or several out of K sectors. Since the interpretations and assumptions behind
the sectors variables and the corresponding counterparty specific sector weights are
different, we will use an individual notation for each model. In CreditMetrics, the
vector of sector variables X = (Xq,..., X K)T is assumed to follow a multivariate
normal distribution. Therefore, each sector variable X—1,  x has a standard normal
law and the copulaof X = (X1, ..., X K)T is a Gaussia one with dispersion matrix X

Within CreditRisk™, the sector variables S are assumed to follow a Gamma law
with specific shape and scale parameters, such that E (Sy) = 1 forallk =1, ..., K.
The choice of the Gamma distribution was motivated by the fact that in combination
with Poisson distributed defaults, the loss distribution can be derived analytically.
In order to specify the sector distributions, the sector variances akz can be estimated
from empirical data, for example, insolvency rates. In the original model of 1997, the
variables Sy are also assumed to be independent of each other. In contrast, we apply
the so-called CBV approach, which is an extension, published by Fischer and Dietz
[23], with respect to correlated sectors. Here, each single sector variable is driven by
a linear combination of L + 1 independent Gamma distributed variates, i.e.,

L
Sk=St+ > vude. fork=1... K (1)
=1
with non-negative weights yx o fork = 1,..., K and £ = 1, ..., L. The vector

A

~ ~\T ~ ~
S = (Sl, el SL) ,with S ~ I” (0913, 1), is called common-background-vector
(CBV). Besi_des this vector, each sector variable is a_lso affegted by an individual
component S; ~ I (6k, 8r). Because all variables S; and S, are assumed to be
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independent of each other, one can reduce the CBV extension to the basic CreditRisk™
model. Hence, also the CBV model can be solved analytically, too. For further details
on the estimation of the Gamma parameters, we refer to Fischer and Dietz [23].

In Eq. (1), the marginal distributions of § = (S, ..., Sk)T are (in general) not
Gamma anymore. An analysis of the resulting univariate distribution was established
by Moschopoulos [24]. The copula of S is called a multi factor copula, which is
discussed by Oh and Patton [25] in a very general way or Mai and Scherer [26].

3.2.3 Default Mechanism

In the CreditMetrics setting, a default occurs if obligor i ’s creditworthiness,* modeled

by
Ai=R!'X+,/1-RI'ZR;Y;, 2

falls below ¢! (PD;), where ¢! denotes the quantile function of the standard
normal distribution and ¥; ~ N/ (0, 1) is independent from X and Y; fori # j. The
vector Rl.T € [—1, 11X, with the restriction that Rl.TE R; < 1, contains the so-called
factor loadings, describing the correlation between a counterparty’s asset value A;
and the systemic factors X. Given a sector realization x of X, the conditional PD,
derived from the asset process (2) reads as

PDM(X = x) =¢[(¢—‘ (PD,-)—Rl.Tx) /,/1 —RiTERI-:|. 3)

In the CreditRisk™ model, the sector variables Sj are assumed to influence the con-
ditional PD according to

PDR* (§ = 5) = PD; (Wl-T s+ W,-,o) @)

with W; € [0, 11X and Wio = Zle Wi < 1. Equations (3) and (4) establish a
connection between sector variables and counterparties PDs. In CreditRisk ™, PDl.CR+
serves as intensity parameter of a Poisson distribution from which defaults are drawn
independently for every counterparty. The Poisson distribution is used instead of a
Bernoulli one in order to obtain a closed form expression of the loss distribution.
Therefore, also multiple defaults of counterparties (especially with bad creditworthi-
ness) are possible. This is a major drawback of the model, leading to an overestimation
of the risk figures. In Sect.4 we analyze the changes of risk figures with respect to
the underlying copula. But since our focus is on relative changes, this overestimation
does not influence the comparison.

4 One should note, that A; again has a standard Gaussian law. The dependence structure is described
by a multi factor copula as in case of the CreditRisk™- CBV model, but with a different parame-
trization.
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4 Results on Estimated Copulas and Risk Figures

In this section the estimation results for the sector copulas are presented as well as
the effect on economic capital.

4.1 Portfolio and Model Calibration

Consider a hypothetical portfolio consisting of 5,000 counterparties, each mapped
to exactly one® out of ten industrial sectors. For reasons of simplicity, LGDs® are
assumed to be deterministic and independent from PD. Since the absolute expo-
sure values are chosen arbitrarily, we can assume that w.l.o.g LGD; = 1 for all
i =1,...,5,000. Because our focus is only on the relative changes of the risk figures
rather than absolute values, this simplification does not restrict our results. Table 1
summarizes the number of counterparties (#CP) and exposures by industrial sectors,
as well as the estimated sector parameters related to the marginal sector distribu-
tions. Although the portfolio itself is hypothetical, the distribution of exposure and
counterparties across sectors might be characteristic for certain banks. Please note,
that in case of CreditMetrics higher values of R,f indicate a stronger dependency to
systemic factors, leading to a higher risk for the specific sectors. In the CBV model

Table 1 Number of counterparties, percentage of exposures, factor loadings (R,f CreditMetrics)
and sector variances (akz, CreditRisk*) by industrial sector

Sector Portfolio characteristics Sector parameters
#CP EAD (%) R? of
1 Basic materials 16 1.7 0.070 0.42
2 Communication 5 2.5 0.045 0.29
3 Cyclical consumer goods 4,631 19.5 0.058 0.36
4 Noncyclical consumer goods 15 1.5 0.048 0.27
5 Diversified companies 28 3 0.040 0.19
6 Energy 10 4.3 0.075 0.40
7 Finance 146 459 0.050 0.46
8 Industry 75 11.1 0.050 0.30
9 Technology 19 1.8 0.046 0.26
10 Utilities 55 8.7 0.082 0.72

5 Assigning an obligor to more than one sector would cause serious problems in the CreditMetrics
framework, since, in general, the distribution of the asset value (2) is unknown if the copula of X
is not Gaussian.

6 For readers who are interested in the effect of stochastic LGDs, we refer to Gundlach and Lehrbass
[22, Sect. 7] or Altman [27].
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a,? represent the uncertainty about possible PD changes within the sector. Therefore,
the risk related to a particular sector increases with akz.

The basis for the parameter estimation is a data pool containing monthly obser-
vations (PD estimations) from 2003 to 2012 for more than 30,000 exchange traded
corporates from all over the world. The individual PD time series, derived from mar-
ket data (equity prices and liabilities) via a Merton model (see Merton [28]), are
aggregated on sector level via averaging. In order to take time dependencies into
account, we fitted a univariate autoregressive process to every sector time series.

4.2 Parametrization of Marginal Distributions

In order to fully determine the marginal distributions, we have to specify the sector
variances akz for the CreditRisk™ and the asset correlations R,% for the CreditMetrics
model.” The sector variances are estimated based on the autocovariance function of
the aggregated sector time series mentioned above, which are normalized such that
E(Sx) = 1 holds, in order to ensure that the mean of the conditional PD (Eq. (4))
equals the unconditional PD. In case of the CreditMetrics model, the asset correlation
parameters R,% are estimated via a moment matching approach, such that the first
two moments of the conditional PD in both models coincide.® Note, that the PD
variance Var (PDl.CM(X )) induced by Eq. (3) of counterparty i in sector k is given by
@, (¢! (PD;), ¢~ (PD;), R?) whereas, in case of CreditRisk™,Var (PDSR* (8))
is simply PD%akz. Hence, fork =1, ..., K the parameter R,% is chosen such that

@, (¢~ (PDy) ¢ (PDy) . RY) = o7PD,
where PD;, denotes the mean of the time series for sector k and @ is the distribution
function of the bivariate normal distribution with correlation parameter R,%.
4.3 Estimation of Copulas

First note that the estimations are based on the residuals of the autoregressive
processes, fitted on every sector PD time series. For a more detailed discussion
on this topic, we refer to Jakob and Fischer [8], for instance.

7 In practice, the parametrization of both models are very different. The parameters of the
CreditRisk™ model are typically estimated based on default data or insolvency rates, whereas
in case of the CreditMetrics model marked data are used. Using PD time series based on marked
data might serve as a compromise in order to compare the results across both models.

8 Please note that E (PDSM (X)) = E (PDER*(S)) = PD;.
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Table 2 Rounded
log-likelihood values for
elliptical copulas and GHC

Copula GC TC sym. GHC GHC
Log-likelihood 634 728 8,848 13,566

4.3.1 Elliptical and Generalized Hyperbolic Copulas

The parameters of the GC and the TC (as representatives of the elliptical copula class)
are estimated via maximum likelihood using the R-Package “copulas” from Hofert
et al. [29]. For the TC, we estimated 3.786 degrees of freedom indicating that a joint
exceedance of high quantiles is more likely compared to the GC. Generalizing the
TC, we also considered symmetric and asymmetric’ GHC. For parameter estimation
the R-package “ghyp” from Luethi and Breymann [30] was used. Please note that
compared to the TC, the sym. GHC poses two more parameters due to the generalized
inverse Gaussian distribution, which is used as mixing distribution for the family of
generalized hyperbolic distributions and by another ten parameters because of the
skewness vector in case of the asymmetric GHC. The corresponding log-likelihood
values are summarized in Table2. A standard likelihood ratio test indicates that the
TC fits the data significantly better than the Gaussia one on every typical significance
level. Also, the increase of the log-likelihood of the asymmetric GHC is significant
to that of its symmetric counterpart. Hence, the stronger dependence between higher
PDs, occurring in the asym. GHC, is significant again on every common level.

Please note that the application of the GHC in practice has several drawbacks.
The estimation procedure, the MCECM (multi-cycle, expectation, conditional esti-
mation) algorithm is much more difficult to implement and time consuming com-
pared to estimation of GC or a TC. Furthermore, the simulation of random numbers
is much more computationally intensive due to the quantile functions, which con-
tain the modified Bessel function of the third kind, requiring methods for numerical
integration.

4.3.2 (Hierarchical) Archimedean Copulas

Out of the Archimedean class, we estimated parameters for the Gumbel, Clayton,
Joe, and Frank copula but only the copulas of Gumbel and Joe provided a reasonable
fit to our data. Since our data represent default probabilities, the economic intuition
would be that the dependence increases for higher values, i.e., in times of recession,
as can be seen from the empirical data (see, Fig.2). The Gumbel and Joe copulas
exhibit a positive upper tail dependence,'? while the lower ones are zero. Therefore,
they are suitable to model this kind of asymmetric dependence. The Frank copula is

9 For the symmetric GHC, we force the skewness parameter y € RX to be zero for all components
(notation according to Luethi and Breymann [30]).

10 The coefficients of upper (lower) tail dependence are defined by iy =

limy, 11 ]P’[Xz >yl | X > Ffl(u)} and A = limu\o]P’[Xz <Pl X < F;‘(u)],
respectively.



138 M. Fischer and K. Jakob

R-Vine (first level) HAC Sectors

Basicmaterials
B, 2 |Communication
Cycl.
consumer goods
Non-cycl.
consumer goods
5 Diversified
companies
6 Energy
7 Finance
8
9

—

Industry
Technology
0 Utilities

—

Fig. 1 First level of R-vine (with parameters of Gumbel and Joe copulas) and Hierarchical
Archimedean copula (Gumbel) estimated from default data

tail independent, whereas the Clayton copula posses only a lower tail dependence.
Applying goodness-of-fit tests (see Genest et al. [31]), we have to reject both copulas
(Frank and Clayton) on a significance level considerably below 1 %. In addition, we
also considered hierarchical Archimedean constructions. With the help of the “HAC”
package from Okhrin and Ristig [20], a stepwise ML estimation procedure was used
to estimate the tree of the Gumbel HAC, depicted in Fig. 1. The figure shows that the
dependence parameters are in a range of 4.35 at the bottom, indicating the strongest
dependence, and 1.21 at the top of the tree. For the ordinary Gumbel copula, we
estimate a parameter value of 1.836, which is in the range of the HAC parameters.
Since the variates selection on each level of the HAC tree is based on empirical values
of Kendall’s 7, the structures of the two HACs (Gumbel and Joe) coincide.

4.3.3 Pair Copula Construction (PCC)

In general, a PCC arises from a nonunique decomposition of a multivariate distrib-
ution into a product of conditional bivariate distribution, characterized by so-called
vines. The estimation algorithm of a PCC in general consists of three major steps:

(I) Specification of a valid vine structure (e.g., C-, D-, or R-Vine tree),
(II) type-selection of the underlying bivariate copulas for the tree in (I) (e.g., GC or
Gumbel copula),
(IIT) parameter estimation for the copulas, selected in (II).

Brechmann and Schepsmeier [32] describe several algorithms addressing all these
issues. In particular, the specification of the vine structure is done with the help of
maximum spanning trees, where on each level a tree is selected such that the sum of
Kendall’s 7 for all pairs of variables is maximized. To determine a particular copula
for the selected pairs out of a set of certain candidates, the AIC criterion is applied.
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Finally, the copula parameters are estimated via ML. The corresponding steps
(D)—(III) are implemented in the R-package “VineCopula” (see Schepsmeier et al.
[21]), which has been used to determine a PCC for our data set. In order to allow
maximum flexibility, we decided to use a R-vine, which generalizes both C- and D-
vines. The candidate set for the pair copulas comprises GC, TC, Gumbel, Clayton,
Frank, and Joe copula.

Analog to the HAC, the estimation algorithm of the PCC identifies sectors 3
and 8 as those with the strongest dependence. Therefore, these sectors are coupled
together on the first level of the R-vine, which means that their pairwise dependence
is explicitly selected to follow a Gumbel copula with 6 =4.35.1In general, all except
one bivariate copulas on the first level are estimated to be Gumbel with parameter
values in [1.56, 4.35], which is close to the HAC parameter range, see Fig. 1. Only
in case of sectors 5 and 9, the Joe copula with parameter 1.87 is preferred. Again,
the weakest dependence (measured by the implied value of Kendall’s t) on the first
level is related to sector 5. On higher levels, all copulas out of the candidates set are
selected to model conditional bivariate dependencies.

4.3.4 Parametrization of the CreditRisk *- CBV Copula

For the CBV model, the likelihood function is rather complex and a ML estimation is
numerically not feasible. Hence, the parameters of the CBV factor copula are chosen
such that the Euclidean distance between the empirical and the theoretical covariance
matrix is minimal (see, e.g., Fischer and Dietz [23]).

4.3.5 Illustration for Sectors 3 and 8

Exemplarily, Fig.2 illustrates the contour plot of the estimated copula density
between sectors 3 (cycl. consumer goods) and 8 (industry) for different competi-
tors as well as the (transformed) empirical observations. Notice that darker areas
indicate higher concentration of the probability mass. In the first row, the elliptical
and GHC:s are displayed. Looking at the center of the unit squares, one observes that,
in case of the TC and the asymmetric GHC, more probability mass is concentrated
around the main diagonal as for the GC or the symmetric GHC. Since the asymmetric
GHC provides a significantly better fit compared to the TC, the issue of asymmetri-
cally distributed data seems to be more important than the absence of a positive tail
dependence, at least for our data. This might be caused by the limited sample size
of only 120 observations. Although the asymmetric GHC has a significantly better
fit compared to the symmetric one and the skewness parameters are strictly positive,
its density still looks very symmetric.

In contrast, the copula of the CBV model!! is extremely concentrated around
the main diagonal. Here, observations aside from the diagonal have a very low

"'n case of the CBV copula, the density is estimated via a two dimensional kernel density estimator.
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Fig. 2 Contour of the estimated copulas between sector 3 (cycl. consumer goods) and 8 (industry)
together with empirical observations

probability. Please note again that the estimation procedure for this copula is dif-
ferent, which might explain this issue to some extend. For the ordinary Gumbel and
Joe copulas, one has to choose one single parameter for all bivariate (and higher
dimensional) dependencies. Therefore the estimation is always a trade-off between
stronger and weaker dependencies. This leads to the effect that, in our example, the
dependence in both cases seems to be rather underestimated by this copulas compared
to its competitors. The HAC overcomes this drawback by using different parameters,
which leads to a significantly better fit.

4.4 Effect of the Copula on the Risk Figures and the Tail
of the Loss Distribution

Finally, we analyze the impact of the sector copula on the right tail and therefore
on the economic capital. Since, in practice, the underlying data sets used for para-
metrizations of both model types are rather different and not comparable, we do
not draw any comparisons between the absolute values of the risk figures across the
two models. Instead, we measure the impact with the help of factors, where the risk
figures of the models with the GC are normalized to one. In case of the CreditRisk™-
CBYV model, the marginal distributions of the sectors, which follow a weighted sum
of Gamma distributions (see Eq. (1)), are replaced by Gamma distributed variates
with the same mean and variance, for reasons of simplicity. Since this is a monotone
transformation, the dependence structure is not affected. Please note that by drawing
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the sector realizations!2 for the CreditMetrics model, we use the survival copula,13
because in this case higher values of the sector variates correspond to an increase
rather than a decrease of obligors creditworthiness.

Table3 summarizes all risk figures. The copulas are ordered according to the
impact on the economic capital on a 99.9 % level in case of the CreditRisk™ model.

First of all, one observes that in the CreditRiskt framework, the risk decreases
if we switch from the original model (CBV) to another one. In both models, the
GC implies the lowest risk, followed by the sym. GHC. Although both copulas
are elliptically symmetric and tail independent, the risk figures differ by up to 4 %.
Applying a TC, the risk rises in both models because of the positive tail dependence of
Au = 0.69. For the CreditMetrics model the markup is around 6 %. The highest risk
arises if we use an asymmetric dependence structure, i.e., a (hierarchical) Gumbel
or Joe copula, an asym. GHC, a PCC or, in case of CreditRisk™, the factor copula
induced by the CBV model. Therefore, at least for our data set and portfolio, there
is an indication that the risk arising from an asymmetric dependence structure, i.e.,
where dependencies are higher during times of a recession, is higher compared to
the risk caused by a positive tail dependence. In the CreditRisk™ model even the
economic capital in case of the HAC (Joe) copula is around 8.1 % above the amount
of the model with a GC and 2 % below the basic model. In both models, the risk
implied by a Joe copula is higher compared to a Gumbel copula. Since both copulas
exhibit no positive lower tail dependence, whereas the upper tail dependence'* is
higher in case of the Joe copula, this observation is plausible.

As to be expected, all portfolio loss distributions exhibit a significant amount of
skewness (skew) and kurtosis (kurt), measured by the third and fourth standardized
moments, respectively. In addition, we calculated the right-quantile weight (RQW)
for B = 0.875 which was recommended by Brys et al. [34] as a robust measure of
tail weight and is defined as follows:

F (%) + 0t (1= 8) — 26, 079)

—1 {1+ -1 ’
Fr (T)—FL (1—%5)

where, inour case, F; ! denotes the quantile function of the portfolio loss distribution.
First of all, it becomes obvious that the rank order observed for ECog 9 with respect
to the copula model is highly correlated to the rank order of the higher moments and
of the tail weight. Secondly, all of the latter statistics derived from the CreditMet-
rics framework are (significantly) higher than those derived from the CreditRisk™
framework.

RQW(B) :=

12 For details on the simulation of copulas in general, please refer to Mai and Scherer [33].

13 For a random vector u = (g, ..., uK)T with copula C, the survival copula is defined as the
copula of the vector (1 — uy,...,1 — uK)T.

14 The coefficients of upper tail dependence implied by the estimated parameters are 0.54 in case
of the Gumbel copula and 0.66 for the Joe copula.



M. Fischer and K. Jakob

142

s¢0 | 6v'9 | 81 | w0 [ ovs0 | 100 | 06L0 | 9820 | 9g0 | Ts's | 611 | 0cs0 | 8580 | £sL0 | TsLo | sero | dopur
wo | ss6 | zor | w0t | L1or | 16071 | 0860 | o010t | ovo | stz | zot | 9901 | eror | 180t | 860 | 0001 | (DOVH
W0 | 9L6 | S6'T | €80T | 0TO'L | LOI'L | 086°0 | €10°T | 140 | 1L | €9°1 | 190°T | SIO'T | 80T | 986°0 | 100°T 20f
170 | S16 | s8T | #80°1 | 920'T | 901°T | 800°T | 1€0°T | 6€0 | 090 | zST | 9501 | 2ot | w01 | €101 | €201 00d
70 | L26 | S8T | 2801 | S10T | 9601 | 66°0 | 810°T | 6€0 | £90 | €51 | 8KOT | $00'T | 65071 | 8460 | S66'0 | Ioquno

10 | or'6 | L8 | 89071 | 60001 | 0601 | 2660 | L00T | 8¢0 | 989 | 9c1 | cvor | 1101 | Lso1 | L660 | 0101 OHD
170 | 816 | €81 | €071 | 6001 | S60°T | 8460 | 9001 | 6€0 | £s9 | 0sT | 65071 | 8001 | €501 | 886'0 | 1001 | (D)OVH
0v0 | 8F'8 | €L | SSOT | SOOI | 0901 | S66°0 | 600°T | 8€0 | LT9 | vH1 | 10T | S00TT | 9071 | 8660 | SO0 oL
660 | £9® | sc1 | 8e0r | zoor | zvor | 8860 | €001 | 80 | ze9 | sk | wzor | o001 | Lzor | 1660 | 0001 | OHOS
6€0 | TLL | ¥9T | 000°T | 000°T | 000°T | 000°T | 000°T | LEO | 109 | OFT | 000°T | 000°T | 000°T | 000°T | 000 09
- | - - - - - - - 650 | 6¥°9 | €51 | PLOT | LyO'L | T01T | 8SO'L | 090°1 A€D

MOY | MY | mds | 6°66g7 | 0657 | 66607 | 0607 as | MOY | uny | moys | 66657 | 067 | 666D7 | 0697 as | emdop

SOLIDANPAI) ISRIIpaID
(ured 1y31)

[opoW SOLBANIPAID oY) pue (1red 1J9]) [opow | YSIIIPaI)) AY) JO 958D Ul se[ndod JUSIQYJIP 10J (San[eA 9IN[0sqe Ul JYSIom-9[nuenb-1ySLI pue ‘SIsouny ‘Ssoumays)
SQINSEAW [Ie} pue (DO 0) PIZI[eWIou [] ‘(] D © [0A9] UO [[epIoys pajoadxo pue [ejrdes orwoOU0dd :PSHPDH ‘UONLIAD prepuels :(S) seinSy Ysny ¢ d[qeL



Copula-Specific Credit Portfolio Modeling 143

serys 1, + . .
CreditRisk CreditMetrics
o~ CBV
—~— Joe
= Rvine
- T
o i
indep
LB Sk=KaBuy
099 0.9931 0.9966 09983 0.9991 09995 09913 09946 0.9973 0.9986 0.9993 0.9996
loss percentile (standard model) loss percentile (standard model)

Fig. 3 Right tail of portfolio loss distribution for selected copulas

Finally, Fig. 3 exhibits the estimated densities of the portfolio loss for both models
and different copulas. On the horizontal axis, the percentiles of the loss distribution of
the particular standard models are displayed. The ordering of the densities confirms
our results, derived from the corresponding risk figures.

5 Summary

Credit portfolio models are commonly used to estimate the future loss distribution
of credit portfolios in order to derive the amount of economic capital which has to
be allocated to cover unexpected losses. Therefore, capturing the (unknown) depen-
dence between the counterparties of the portfolios or between the economic sectors
to which counterparties have been assigned is a crucial issue. For this purpose, copula
functions provide a flexible toolbox to specify different dependence structures.
Against this background, we analyzed the effect of different parametric copulas on
the tail of the loss distribution and the risk figures for a hypothetical portfolio and for
both CreditMetrics and CreditRisk™, two of the most popular credit portfolio mod-
els in the financial industry. Our results indicate that the specific CreditRiskt* —CBV
model uses a rather conservative copula. However, referring to Jakob and Fischer
[8], one might come across to certain artifacts for this (implicit) copula family. In the
CreditMetrics setting, the canonical assumption of a Gaussian copula allows an easy
and fast implementation but also gives rise to certain drawbacks, such as the absence
of a tail dependence (“‘extreme events occur together”) or the ability to model asym-
metric dependence structures for which we found evidence in the underlying data
set. Replacing the Gaussian copula by alternative competitors (Student-t, General-
ized hyperbolic, PCC or generalized Archimedean copulas) we could significantly
improve the goodness-of-fit to the underlying PD series. As a consequence, using the
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Gaussian copula might lead to an underestimation of credit risk by up to 10 % (for
ECg9.9) within the CreditMetrics framework, at least for our calibration. In contrast,
the CreditRisk+ model seems to be less sensitive with respect to the dependence
structure, because here the markup (related to the Gaussian copula as benchmark) is
around 2—4 % points lower. The question about the different behavior of both model
types has to be left open for further research.
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