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Abstract This paper puts the concepts of model and calibration risks into the
perspective of bid and ask pricing and marketed cash-flows which originate from
the conic finance theory. Different asset pricing models calibrated to liquidly traded
derivatives by making use of various plausible calibration methodologies lead to
different risk-neutral measures which can be seen as the test measures used to assess
the (un)acceptability of risks.
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1 Introduction

The publication of the pioneering work of Black and Scholes in 1973 sparked off
an unprecedented boom in the derivative market, paving the way for the use of
financial models for pricing financial instruments and hedging financial positions.
Since the late 1970s, incited by the emergence of a liquid market for plain-vanilla
options, a multitude of option pricing models has seen the day, in an attempt to
mimic the stylized facts of empirical returns and implied volatility surfaces. The
need for such advanced pricing models, ranging from stochastic volatility models to
models with jumps and many more, has even been intensified after Black Monday,
which evidenced the inability of the classical Black—Scholes model to explain the
intrinsic smiling nature of implied volatility. The following wide panoply of models
has inescapably given rise to what is commonly referred to as model uncertainty or, by
malapropism, model risk. The ambiguity in question is the Knightian uncertainty as
defined by Knight [17], i.e., the uncertainty about the true process generating the data,
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as opposed to the notion of risk dealing with the uncertainty on the future scenario of a
given stochastic process. This relatively new kind of “risk” has significantly increased
this last decade due to the rapid growth of the derivative market and has led in some
instances to colossal losses caused by the misvaluation of derivative instruments.
Recently, the financial community has shown an accrued interest in the assessment
of model and parameter uncertainty (see, for instance, Morini [19]). In particular,
the Basel Committee on Banking Supervision [2] has issued a directive to compel
financial institutions to take into account the uncertainty of the model valuation in
the mark-to-model valuation of exotic products. Cont [6] set up the theoretical basis
of a quantitative framework built upon coherent or convex risk measures and aimed
at assessing model uncertainty by a worst-case approach.! Addressing the question
from a more practical angle, Schoutens et al. [22] illustrated on real market data
how models fitting the option surface equally well can lead to significantly different
results once used to price exotic instruments or to hedge a financial position.
Another source of risk for the price of exotics originates from the choice of the
procedure used to calibrate a specific model on the market reality. Indeed, although
the standard approach consists of solving the so-called inverse problem, i.e., quoting
Cont [7], of finding the parameters for which the value of benchmark instruments,
computed in the model, corresponds to their market prices, alternative procedures
have seen the day. The ability of the model to replicate the current market situation
could rather be specified in terms of the distribution goodness of fit or in terms of
moments of the asset log-returns as proposed by Eriksson et al. [9] and Guillaume
and Schoutens [12]. In practice, even solving the inverse problem requires making
a choice among several equally suitable alternatives. Indeed, matching perfectly the
whole set of liquidly traded instruments is typically not plausible such that one
looks for an “optimal” match, i.e., for the parameter set which replicates as well as
possible the market price of a set of benchmark instruments. Put another way, we
minimize the distance between the model and the market prices of those standard
instruments. Hence, the calibration exercise first requires not only the definition of
the concept of a distance and its metric but also the specification of the benchmark
instruments. Benchmark instruments usually refer to liquidly traded instruments. In
equity markets, it is a common practice to select liquid European vanilla options.
But even with such a precise specification, several equally plausible selections can
arise. We could for instance select out-of-the-money options with a positive bid price,
following the methodology used by the Chicago Board Options Exchange (CBOE
[4]) to compute the VIX volatility index, or select out-of-the-money options with a
positive trading volume, or ... Besides, practitioners sometimes resort to time series
or market quotes to fix some of the parameters beforehand, allowing for a greater
stability of the calibrated parameters over time. In particular, the recent emergence
of a liquid market for volatility derivatives has made this methodology possible to
calibrate stochastic volatility models. Such an alternative has been investigated in
Guillaume and Schoutens [11] under the Heston stochastic volatility model, where

1 Another framework for risk management under Knightian uncertainty is based on the concept of
g-expectations (see, for instance, Peng [20] and references therein).
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the spot variance and the long-run variance are inferred from the spot value of the VIX
volatility index and from the VIX option price surface, respectively. Another example
is Brockhaus and Long [3] (see also Guillaume and Schoutens [13]) who propose to
choose the spot variance, the long-run variance, and the mean reverting rate of the
Heston stochastic volatility model in order to replicate as well as possible the term
structure of model-free variance swap prices, i.e., of the return expected future total
variance. Regarding the specification of the distance metric, several alternatives can
be found in the literature. The discrepancy could be defined as relative, absolute, or in
the least-square sense differences and expressed in terms of price or implied volatility.
Detlefsen and Hérdle [8] introduced the concept of calibration risk (or should we say
calibration uncertainty) arising from the different (plausible) specifications of the
objective function we want to minimize. Later, Guillaume and Schoutens [10] and
Guillaume and Schoutens [11] extended the concept of calibration risk to include not
only the choice of the functional but also the calibration methodology and illustrated
it under the Heston stochastic volatility model.

In order to measure the impact of model or parameter ambiguity on the price of
structured products, several alternatives have been proposed in the financial litera-
ture. Cont [6] proposed the so-called worst-case approach where the impact of model
uncertainty on the value of a claim is measured by the difference between the supre-
mum and infimum of the expected claim price over all pricing models consistent with
the market quote of a set of benchmark instruments (see also Hamida and Cont [16]).
Gupta and Reisinger [14] adopted a Bayesian approach allowing for a distribution
of exotic prices resulting directly from the posterior distribution of the parameter set
obtained by updating a plausible prior distribution using a set of liquidly traded instru-
ments (see also Gupta et al. [15]). Another methodology allowing for a distribution
of exotic prices, but based on risk-capturing functionals has recently been proposed
by Bannor and Scherer [1]. This method differs from the Bayesian approach since the
distribution of the parameter set is constructed explicitly by allocating a higher proba-
bility to parameter sets leading to a lower discrepancy between the model and market
prices of a set of benchmark instruments. Whereas the Bayesian approach requires
a parametric family of models and is consequently appropriate to assess parameter
uncertainty, the two alternative proxies (i.e., the worst-case and the risk-capturing
functionals approaches) can be considered to quantify the ambiguity resulting from a
broader set of models with different intrinsic characteristics. These three approaches
share the characteristic that the plausibility of any pricing measure 2 is assessed
by considering the average distance between the model and market prices, either
by allocating a probability weight to each measure .2 which is proportional to this
distance or by selecting the measures 2 for which the distance falls within the aver-
age bid-ask spread. Hence, the resulting measure of uncertainty implicitly depends
on the metric chosen to express this average distance. We will adopt a somewhat
different methodology, although similar to the ones above-mentioned. We start from
a set of plausible calibration procedures and we consider the resulting risk-neutral
probability measures (i.e., the optimal parameter sets) as the test measures used to
assess the (un)acceptability of any zero cost cash-flow X. In other words, these pric-
ing measures can be seen as the ones defining the cone of acceptable cash-flows;
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where X is acceptable or marketed, denoted by X € <7, if its expectation under any
of the test measures 2 is nonnegative:

Xedod & Eg[X]>0V2e 4.

This allows us to define the cone of marketed cash-flows in a market-consistent way
rather than parametrically in terms of some family of concave distortion functions as
proposed by Cherny and Madan [5]. We can even play with the minimum proportion p
of model prices included within their bid-ask spread in order to change the amplitude
of the cone of acceptability by requiring that at least [ pM ] model prices are within
their market spread for 2 to be included in the set of test measures . :

Qe//@#{ﬁige[bi,ai],i:1,-~-,M} = [pM],

where ﬁf@ , aj, bj, i =1,..., M denote the model price under the pricing measure
2, the quoted ask price, and the quoted bid price of the M benchmark instruments,
respectively. The higher the proportion, the smaller the set of test measures .# and
hence, the wider the cone of acceptability. We opt for a threshold expressed as a
percentage rather than as an average distance since we want our specification to be
free of any distance metric. Indeed, the set .# will be built by considering different
objective functions (expressed as price or implied volatility differences, as absolute,
relative, or in the least-square sense differences, ...) such that we do not want to
favor any of these metrics, to the detriment of the others. The impact of model or
parameter uncertainty on the price of exotic (i.e., illiquid) instruments is then assessed
by adopting a worst-case approach as in Cont [6]:

s = max {EP ]— min [EP }, 1
(p) 226///{ Qe 1)

provided that . # }; where EP denotes the exotic price under the pricing measure

2. The model uncertainty can thus be quantified by the bid-ask spread of illiquid

products. Indeed, the cash-flow of selling a claim with payoff X at time T at its ask

price is acceptable for the market if E gla — exp(—rT)X] > 0,YV2 € .4, ie., if

a > exp(—rT) ar@nai(// {E 9[X1}. For the sake of competitiveness, the ask price is set
en

at the minimum value, i.e.,

a =exp(—rT) Dr@nea}/[{EQ[X]}.

Similarly, the cash-flow of buying a claim with payoff X at time 7 at its bid price
is acceptable for the market if E g[—b + exp(—rT)X] > 0,V2 € ., i.e., taking
the maximum possible value for competitiveness reasons

b =exp(~rT) min (Eg[X]).
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The impact of model uncertainty can be expressed as a function of the severity of the
percentage threshold p. We note that decreasing the threshold ultimately boils down
to considering a thinner set of benchmark instruments since the model price has to
fall within the market bid-ask spread for a smaller number of calibration instruments
in order for a pricing measure to be selected. In particular, such a relaxation typically
results in the “elimination” of the most illiquid calibration instruments, i.e., deep
out-of-the-money options in the case of equity markets (see Fig.2).

For the numerical study, we consider the Variance Gamma (VG) model of Madan
et al. [18] only, although the methodology can be equivalently used to assess cali-
bration or/and model uncertainty. The calibration instrument set consists of liquid
out-of-the-money options: moving away from the forward price, we select put and
call options with a positive bid price and with a strike lower and higher than the
forward price, respectively, and this until we encounter two successive options with
zero bid. Denoting by P; = @ the mid-price of option i and by o; its implied
volatility, the set of measures .# results from the following specifications for the
objective function we minimize (i.e., for the distance and its metric):

1. Root-mean square error (RMSE)

a. price specification

M
RMSE = | > w; (P — P
i=1

)2

b. implied volatility specification

M
RMSE = | > w; (0; — ;)
i=1

2. Average relative percentage error (ARPE)

a. price specification

M ~
ARPE = > o "Pf“
i=1 !
b. implied volatility specification
- L oi -5
ARPE” = > w;———
“ o}
i=1

3. Average absolute error (APE)

a. price specification
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1 M
APE = szi |P; — P
i=1

b. implied volatility specification

APE° = lia)- lo; — G
_O—_ 1 1 Ll

i=1

where P and & denote the average option price and the average implied volatil-

ity, respectively.
Each of these six objective functions can again be subdivided into an unweighted
functional for which the weight w; = @ = % Vi and a weighted functional for which
the weight w; is proportional to the trading volume of option i. We furthermore con-
sider the possibility of adding an extra penalty term to the objective function in order
to force the model prices to lie within their market bid-ask spread. Besides these stan-
dard specifications (in terms of the price or the implied volatility of the calibration
instruments), we consider the so-called moment matching market implied calibra-
tion proposed by Guillaume and Schoutens [12] and which consists in matching the
moments of the asset log-return which are inferred from the implied volatility sur-
face. As the VG model is fully characterized by three parameters, we consider three
standardized moments, namely the variance, the skewness, and the kurtosis. Since
as shown by Guillaume and Schoutens [12], the variance can always be perfectly
matched, we either allocate the same weight to the matching of the skewness and the
kurtosis or we match uppermost the lower moment, i.e., the skewness. This leads to
a total of 26 plausible calibration procedures, each of them leading to a test measure
2 e ./ provided that the proportion of model prices falling within their market
bid-ask spread is at least equal to the threshold p.

2 Exotic Bid-Ask Spread

For the numerical study, we consider daily S&P 500 option surfaces for a timespan
ranging from October 2008 to October 2009, including ,therefore, the recent credit
crunch?. We calibrate the VG model daily on the quoted (liquid) maturity which is the
closest to the reference maturity of three months. Note that we only consider matu-
rities for which the total trading volume of out-of-the-money options exceeds 1,000
contracts which allows to avoid the extreme situation of an undetermined calibration
problem where the number of parameters to calibrate is higher than the number of
benchmark instruments. This also ensures that the number of option prices is large
enough (and so the strike range wide and refined enough) to guarantee a sufficient
precision for the derived market implied moments. For each of the trading days

2 The data are taken from the KU Leuven data collection which is a private collection of historical
daily spot and option prices of major US equity stocks and indices.
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Fig. 1 Maximum proportion 7 of option prices replicated within their bid-ask spread (upper) and
option bid-ask spreads (below)

included in the sample period, we successively perform the 26 calibration method-
ologies, which leads to 26 optimal parameter sets. We then select those for which
the proportion of model prices falling within their market bid-ask spread is at least
p- The higher the threshold p, the fewer the test measures 2 € .# and hence, the
thinner the exotic bid-ask spreads. Figure 1 shows the highest proportion 7 of option
prices replicated within their bid-ask spread for the 26 above-mentioned calibration
procedures:

1 _
n:Mm;x#{Pige[bi,ai],i=1,...,M}.

Ifr < p,then . is an empty set and there does not exist exotic spread for that partic-
ular threshold p as defined by (1). Hence, when selecting the proportion threshold p,
we should keep in mind the trade-off between the in-spread precision and the number
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Fig. 2 Number of options for which the model price falls within the quoted bid-ask spread

of test measures. Indeed, the higher the proportion, the higher the precision but the
fewer the measures selected as test measure, which can in turn lead to an underesti-
mation of the calibration uncertainty measured as the exotic bid-ask spreads. From
Fig. 1, we observe that 7 is significantly higher during the heart of the recent credit
crunch, i.e., from the beginning of the sample period until mid 2009. This can easily
be explained by the typically wider bid-ask spreads observed during market distress
periods. Indeed, as shown on the lower panel of Fig. 1, the quoted spread for at-the-
money, in-the-money (K = 0.75 Sp), and out-of-the-money (K = 1.25 Sp) options
has significantly shrunk after the troubled period of October 2008—July 2009.
Figure 2 shows the number of vanilla options whose model price falls within the
quoted bid-ask spread as a function of the option moneyness for four of the calibration
procedures under investigation, namely the weighted and unweighted RMSE price
and implied volatility specifications without penalty term. To assess the impact of
moneyness on the model ability to replicate option prices within their bid-ask spread,

we split the strike range into 21 classes: S% < 0.5, 05< Sﬁo < 0.55, 0.55 < SEO <
0.6,...,1.45 < S% < 1.5, and Sﬁo > 1.5. We clearly see that, at least for the price

specifications, option prices falling outside their quoted bid-ask spread are mainly
observed for deep out-of-the-money calls and puts. This trend is even more marked
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and present in the implied volatility specifications when we add a penalty term in
the objective function to constraint the model price within the market spread. Hence,
increasing the proportion threshold p mainly boils down to limit the set of calibration
instruments to close to the money vanilla options.

In order to illustrate the impact of parameter uncertainty on the bid-ask spread of
exotics, we consider the following path dependent options (with a maturity of 7 = 3
months):

1. Asian option
The payoff of Asian options depends on the arithmetic average of the stock price
from the emission to the maturity date of the option. The fair price of the Asian
call and put options with maturity 7" is given by

e et — oxn(— _ +
AC = exp( rT)E'“@[(ongl?gnTSt K)*] AP =exp(—rT)Eg[(K Orgc;:%nTSt) ].

2. Lookback call option
The payoff of lookback call and put options corresponds to the call and put vanilla
payoff where the strike is taken equal to the lowest and highest levels the stock
has reached during the option lifetime, respectively. The fair price of the lookback
call and put with maturity 7 is given by

LC = exp(—rT)E g [(ST - m~;)+] LP = exp(—rT)E g [(M}g - ST)+] ,

respectively, where m ,X and M, denote the minimum and maximum processes
of the process X = {X;,0 <t < T}, respectively:

m¥ =inf{X;,0<s <1} MY =sup{X;,0<s<r1}.

3. Barrier call option
The payoff of a one-touch barrier option depends on whether the underlying
stock price reaches the barrier H during the lifetime of the option. We illustrate
the findings by looking at the up-and-in call and the down-and-in put price:

UIBC = exp(—rT)Eg [(ST —K*1 (Mi > H)]

DIBP = exp(—rT)E g [(K | (m§ < H)] .

4. Cliquet option
The payoff of a cliquet option depends on the sum of the stock returns over a
series of consecutive time periods; each local performance being first floored
and/or capped. Moreover, the final sum is usually further floored and/or capped
to guarantee a minimum and/or maximum overall payoff such that cliquet options
protect investors against downside risk while allowing them for significant upside
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potential. The Cliquet we consider has a fair price given by

N

. . St[ - Sti_l
Cliquet = exp(—rT)E g | max | 0, E min | cap, max ( floor, ———— .
i=1 Sty

For sake of comparison, we also price a 3 months at-the-money call option. Note
that this option does not generally belong to the set of benchmark instruments since,
most of the time, we can not observe a market quote for the option with the exact
same maturity and moneyness.

The path dependent nature of exotic options requires the use of the Monte Carlo
procedure to simulate sample paths of the underlying index. The stock price process

o _ Soexp((r — q)i +X0)
' E glexp(X,)]

, X~VG(o,v,0)

is discretized by using a first order Euler scheme (for more details on the simula-
tion, see Schoutens [21]). The (standard) Monte Carlo simulation is performed by
considering one million scenarios and 252 trading days a year.

The bid and ask prices and the relative bid-ask spread (dollar bid-ask spread
expressed as a proportion of the mid-price) of different exotic options are shown
on Figs.3 and 4, respectively, and this for a proportion threshold p equal to 0.5,
0.75, and 0.9. For sake of comparison, Fig.5 shows the same results but for the
3months at-the-money call option. The figures clearly indicate that the impact of
parameter uncertainty is much more marked for path-dependent derivatives than for
(non-quoted) vanilla options. Indeed, the relative bid-ask spread is of a magnitude
order at least 10 times higher for the Asian call, lookback call, barrier call, and
cliquet than for the vanilla call option. Besides, we observe that a far above average
call relative spread does not necessarily imply a far above average percentage spread
for path dependent options. In order to assess the consistency of our findings, we
have reproduced the Monte Carlo simulation 400 times for one fixed quoting day
(namely October, 1, 2008) with different sets of sample paths and computed the
option relative spreads for each simulation. Figure 6 shows the resultant histogram
for each relative spread and clearly brings out the consistency of the results: the
relative spread is far more significant for the exotic options than for the vanilla
options whatever the set of sample paths considered. The consistency of the Monte
Carlo study is besides guaranteed by the fact that we used the same set of sample
paths to price each option. Table 1 which shows the average price, standard deviation,
and relative spread (across the 400 Monte Carlo simulations) for the price weighted
RMSE functional confirms that the exotic bid-ask spreads are due to the nature of
the exotic options rather than to the intrinsic uncertainty of Monte Carlo simulations.
Indeed, the Monte Carlo relative spread given in Table 1 is significantly smaller than
the option spread depicted on Fig. 6, and this for each exotic option. Table2 shows
the average of the relative spread over the whole period under investigation, and this
for the different options under consideration. We clearly observe that the threshold p
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Fig. 3 Evolution of exotic bid and ask prices through time
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impacts more severely the spread of the path-dependent options. Indeed, decreasing
p leads to a sharper increase of the relative bid-ask spread for the exotic options than
for the European call and put options. Besides, the calibration risk is predominant
for the up-and-in barrier call option and, to a smaller extent, for the Asian options.
Table 3 shows the 95 % quantile of relative bid-ask spreads. We clearly see that in
terms of extreme events, the more risky options are the up-and-in barrier call option
and the lookback options. By way of conclusion, our findings clearly illustrate the
impact of the calibration methodology on the price of exotic options, suggesting that
risk managers should take into account calibration uncertainty when assessing the
safety margin.
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Fig. 6 Relative bid-ask spreads (in absolute value) for different Monte Carlo simulations

Table 1 Monte Carlo precision

Call Put Asian | Asian | Lookback| Lookback| UIBC | DIBP | Cliquet

call put call put
Mean 77.201 | 73.647 | 29.270 | 27.487 | 254.70 | 283.32 |43.690 | 57.681 | 0.0449
Std 0.1000 0.1202, 0.0345 0.0552] 0.1505| 0.1856| 0.0922/ 0.1225| 5E-05
Rel. spread?| 0.0078 0.0092, 0.0073] 0.0118 0.0034| 0.0035| 0.0131 0.0120/ 0.0066

4 The Monte Carlo relative spread is defined as the maximum minus the minimum price divided by

the average price across the 400 Monte Carlo simulations

Table 2 Average relative bid-ask spreads (in %)

p Call | Put | Asian call | Asian put | Lookback call | Lookback put | UIBC | DIBP | Cliquet
0.5 [2.59|2.53(29.82 27.41 17.89 24.97 43.80 | 7.20 | 17.26
0.75 | 1.66 | 1.72 | 19.81 18.68 11.09 16.78 22.11 |3.75 |11.50
09 |1.37]1.46|12.18 11.77 597 9.75 1031 | 2.44 | 6.55
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Table 3 95 % quantile of relative bid-ask spreads (in %)

P Call | Put | Asian call | Asian put | Lookback call | Lookback put | UIBC | DIBP | Cliquet
0.5 |5.75/5.24|77.95 67.56 79.19 90.87 102.32 | 28.41 | 49.75
0.75|3.89|3.67 | 51.99 51.98 68.04 81.13 72.11|12.88 | 40.64
0.9 |3.15|3.26|40.46 40.44 27.28 43.58 33.03| 5.06|24.36

3 Conclusion

This paper sets the theoretical foundation of a new framework aimed at assessing the
impact of calibration uncertainty. The main advantage of the proposed methodology
resides in its metric-free nature since the selection of test measures does not depend
on any specified distance. Besides, the paper links the concept of uncertainty and
the recently developed conic finance theory by defining the test measures used to
construct the cone of acceptable cash-flows as the pricing measures resulting from
any plausible calibration methodology such that model and parameter uncertainties
are naturally measured as bid-ask spreads. The numerical study has highlighted
the significant impact of parameter uncertainty for a wide range of path-dependent
options under the popular VG model.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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