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Abstract Nonparametrical copula density estimation is a meaningful tool for
analyzing the dependence structure of a random vector from given samples. Usually
kernel estimators or penalized maximum likelihood estimators are considered. We
propose solving the Volterra integral equation

u1∫

0

· · ·
ud∫

0

c(s1, . . . , sd)ds1 · · · dsd = C(u1, . . . , ud)

to find the copula density c(u1, . . . , ud) = ∂dC
∂u1···∂ud

of the given copula C. In the
statistical framework, the copula C is not available and we replace it by the empirical
copula of the pseudo samples, which converges to the unobservable copula C for
large samples. Hence, we can treat the copula density estimation from given samples
as an inverse problem and consider the instability of the inverse operator, which has
an important impact if the input data of the operator equation are noisy. The well-
known curse of high dimensions usually results in huge nonsparse linear equations
after discretizing the operator equation. We present a Petrov–Galerkin projection for
the numerical computation of the linear integral equation. A special choice of test
and ansatz functions leads to a very special structure of the linear equations, such
that we are able to estimate the copula density also in higher dimensions.

1 Copula Density Estimation as an Inverse Problem

Acopula is amultivariate distribution functionof ad-dimensional randomvectorwith
uniformly distributed margins. Sklar’s theorem ensures that any joint multivariate
distribution F of a d-dimensional vector X = (X1, . . . , Xd)T with margins Fj
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( j = 1, . . . , d) can be expressed as

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) ∀x = (x1, . . . , xd)T ∈ Rd

where the copula is unique on range(F1) × · · · × range(Fd), that is for contin-
uous margins F1, . . . , Fd the copula C is unique on the whole domain. Conse-
quently, the copula contains the complete dependence structure of the random vector
X. For a detailed introduction to copulas and their properties see, for example,
[8, 9, Chap. 5] or [10]. In risk management, knowledge of the dependence is of
paramount importance.

If the copula is sufficiently smooth, the copula density

c(u1, . . . , ud) = ∂dC

∂u1 · · · ∂ud
(1)

exists and then the density gives us the dependence structure in a more convenient
way, because usually the graphs of the copulas look very similar and there are only
small differences in the slope. For this reason the reconstruction of the copula density
is a vibrant field of research in finance and many other scientific fields. Particularly
in practical tasks, the dependence structure of more than two random variables is
of special interest as the dimension d is large. In the nonparametric statistical esti-
mation, usually kernel estimators are used, but they have often problems with the
boundary bias. There are also spline- or wavelet-based approximation methods, but
most of them are only discussed in the two-dimensional case. Likewise, in [12],
the authors discuss a penalized nonparametrical maximum likelihood method in the
two-dimensional case. A detailed survey of literature about nonparametrical copula
density estimation can be found in [6]. However, most of the nonparametrical meth-
ods are faced with the curse of dimensionality such that the numerical computations
are only for sufficiently low dimensions possible. Actually, many authors discuss
only the two-dimensional case in non-parametrical copula density estimation.

In this paper we develop an alternative approach based on the theory of inverse
problems. The copula density (1) exists only for absolutely continuous copulas.
Obviously, the copula is not observable for a sampleX1, X2, . . . , XT in the statistical
framework, but we can approximate it with the empirical copula

Ĉ(u) = 1

T

T∑
j=1

11{Û j ≤u} = 1

T

T∑
j=1

d∏
k=1

11{Ûk j ≤uk } (2)

of the margin transformed pseudo samples Û1, Û2, . . . , ÛT with Ûk j = F̂k(Xkj )

where

F̂k(x) = 1

T

T∑
j=1

11{Xkj ≤x}
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denotes the empirical margins. It is well-known that the empirical copula uniformly
converges to the copula (see [2])

max
u∈[0,1]d

∣∣∣C(u) − Ĉ(u)

∣∣∣ = O

(
(log log T )

1
2

T
1
2

)
a.s. for T → ∞ (3)

Therefore, we treat the empirical copula as a noisy representation of the unobservable
copula Cδ = Ĉ. The estimation problem of the density is faced with differentiating
the empirical copula, which is obviously not smooth. However, for each density it
yields the integral equation

u1∫

0

· · ·
ud∫

0

c(s1, . . . , sd )ds1 · · · dsd = C(u1, . . . , ud ) ∀u = (u1, . . . , ud )T ∈ Ω = [0, 1]d

(4)
which can be seen as a weak formulation of Eq. (1). In the following, we therefore
consider the linear Volterra integral operator A ∈ L

(
L1(Ω), L2(Ω)

)
and solve the

linear operator equation
Ac = C (5)

to find the copula density c. In the following, we assume attainability which means
C ∈ R(A), hence we only consider copulas C ∈ L2(Ω) which have a solution
c ∈ L1(Ω)

The injective Volterra integral operator is well-studied in the inverse problem
literature. Even in the one-dimensional case, this is an ill-posed operator resulting
from the noncontinuity of the inverse A−1, which is the differential operator. Hence,
solving Eq. (1) leads to numerical instabilities if the right-hand side of (5) has only a
small data error. Because the solution is sensitive to small data errors, regularization
methods to overcome the instability are discussed in the inverse problem literature.
For a detailed introduction to regularization see, for example, [4, 13].

In Sect. 2 we discuss a discretization of the integral equation (4) and in Sect. 3,
we illustrate the numerical instability if we use the empirical copula instead of the
exact one and discuss regularization methods for the discretized problem.

The basics to the numerical implementation of the problem and especially the
details of the Kronecker multiplication are presented in the authors working paper
[14] and a discussion that the Petrov–Galerkin projection is not a simple counting
algorithm is done in [15]. This paper gives an summary of the proposed method for
effective computation of the right-hand side for larger dimensions and discusses in
more detail the analytical aspects of the inverse problem and reasons for the existence
of the Kronecker structure.
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2 Numerical Approximation

We discuss the numerical computation of the copula density c ∈ X = L1(Ω) from
a given copula C ∈ Y = L2(Ω), which is in principle a numerical differentiation
and in higher dimensions, a very hard problem (see [1]). Moreover, in practical
applications, the measured data Cδ have some noise δ with

∥∥C − Cδ
∥∥
Y ≤ δ and very

often the function is not smooth enough that is Cδ /∈ C1(Ω) even C ∈ C1(Ω), which
leads to numerical instabilities making a usual numerical differentiation impossible.

For the sake of convenience, we write

u∫

0

c(s)ds = C(u) ∀u = (u1, . . . , ud)T ∈ Ω = [0, 1]d

for Eq. (4) as a short form. We propose applying a Petrov–Galerkin projection (see
[5]) for some discretization size h and consider the finite dimensional approximation

ch(s) =
N∑

j=1

c jφ j (s) , (6)

where Φ = {φ1, φ2, . . . , φN } is a basis of the ansatz space Vh . The vector of coeffi-
cients c = (c1, . . . , cN )T ∈ RN is chosen such that

∫

Ω

u∫

0

ch(s)dsψ(u)du =
∫

Ω

C(u)ψ(u)du ∀ψ ∈ Ṽh . (7)

It is sufficient to fulfill Eq. (7) for N linear independent test functions ψi ∈ Ṽh . This
yields the system of linear equations

K c = C (8)

with right-hand side

Ci =
∫

Ω

C(u)ψi (u)du, i = 1, . . . , N (9)

and the N × N matrix K with

Ki j =
∫

Ω

u∫

0

φ j (s)dsψi (u)du .
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If the exact copula is replaced by the empirical copula, we obtain a noisy repre-
sentation Cδ with

Cδ
i =

∫

Ω

Ĉ(u)ψi (u)du, i = 1, . . . , N (10)

of the exact right-hand side C. A typical phenomenon of ill-posed inverse problems
is that the numerically computed solution based on noisy data (10) will be high
oszillating without choosing a proper regularization. This problem is not caused by
the numerical approximation, but rather by the discontinuity of the inverse operator.
In Section 3 this will be illustrated. Figure 3 shows the reconstructed density of the
Student copula for exact data (9), whereas Fig. 5 shows it for different noise levels.

In principle, we can choose arbitrary ansatz functions φ j ∈ Vh and test functions
ψi ∈ Ṽh . However, having the curse of high dimensions in mind, we choose very
simple ansatz functions such that the matrix K gets a very special structure allowing
us to solve (8) and compute the approximated copula density also for higher dimen-
sional copulas. Obviously, the approximated density (6) is not smooth and in order
to obtain a smoother approximated copula Ch with

Ch(u) =
u∫

0

ch(s)ds

we choose the test functions as integrated ansatz functions, such that the approxi-
mated copula

Ch(u) =
N∑

j=1

c jψ j (u)

is smoother than the approximated density.
We discretize the domain Ω by splitting each one-dimensional interval [0, 1]

in n equal subintervals of length h = 1
n . Hence, we obtain N = nd equal-sized

hypercubes and call these elements e1, . . . , eN . We number the elements in a specific
order, illustrated in Fig. 1 such that if we look at the (d + 1)-dimensional problem,
the first nd elements of the new problem have the same number and location as the
elements of the d-dimensional problem.

We set N = nd and choose the ansatz functions

φ j (u) =
{
1 u ∈ e j

0 otherwise
(11)

and the test functions ψi as the integrated ansatz functions
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Fig. 1 Discretization of the domain Ω = [0, 1]d . a d = 2. b d = 3

ψi (u) =
u∫

0

φi (s)ds. (12)

In contrast to finite element discretizations, the systemmatrix K is not sparse and the
system size N = nd grows exponentially with the dimension d. A straightforward
assembling and solving of the linear system (8) becomes impossible for usual dis-
cretizations n. Even in the three-dimensional case, the matrix storage of the system
matrix for n = 80 needs approximately one terabyte, even when exploiting sym-
metry, and computing times for assembling and solving such systems will become
enormous.

The choices (11) and (12) yield a structure of the N × N system matrix K ,
illustrated in Fig. 2, allowing us to solve (8) also for d > 2. The matrixplot shows
that the n × n system matrix of the one-dimensional case is equivalent to the upper
left n × n corners of the two- and three-dimensional matrices. Moreover, the other
parts of the system matrices are scaled replications of the one-dimensional n × n
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(a) (b)

(c)

Fig. 2 Matrixplots of the system matrix K for n = 4 and different dimensions d. a System matrix
for d = 1. b System matrix for d = 2. c System matrix for d = 3

systemmatrix. This effect is based by aKronecker factorization of the d-dimensional
system matrix into d one-dimensional matrices of the one-dimensional problem.

One important reason for this structure is that the chosen ansatz functions decom-
posed into a product of one-dimensional ansatz functions. In order to illustrate this,
we consider the lowest corner bi of the i th element and define the one-dimensional
function

φk
i = 11{[bi

k ,b
i
k+h]}

This yields
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φi (u) =
d∏

k=1

φk
i (uk) (13)

as well as

ψi (u) =
d∏

k=1

ψk
i (uk) (14)

with the one-dimensional test functions

ψk
i (u) =

u∫

0

φk
i (s)ds.

We only formulate the main result allowing us to compute solutions of (8) also
for higher dimensions d. Details and proofs can be found in the working paper [14].

Theorem 1 The system matrix for the (d + 1)-dimensional case can be extracted
from the one and d-dimensional system matrices.

(d+1)K = (1)K ⊗ (d)K

Corollary 1 The system matrix (d)K is the d-fold Kronecker product of the n × n
matrix (1)K

(d)K = (1)K ⊗ (1)K ⊗ · · · ⊗ (1)K (15)

and the inverse system matrix of the d-dimensional problem is the d-times Kronecker
product of the one-dimensional inverse system matrix

(d)K −1 = (1)K −1 ⊗ (1)K −1 ⊗ · · · ⊗ (1)K −1 .

Following Corollary1 we only have to assemble the one-dimensional system
matrix (1)K of dimension n × n, compute its inverse (1)K −1 and have to perform the
Kronecker factorization for computing the solution c = (d)K −1C of (8). Details of
the algorithm and an effective Kronecker multiplication are written in [14]. Using
effective parallelization methods, the running time can be accelerated. Actually, the
computation of the right-hand side (9) is the crucial part and much more expensive
than solving the linear system, because we have to evaluate N = nd different d-
dimensional integrals over the whole domain Ω . Note that for our special choice of
ansatz functions (6) we have

Ci =
∫

Ω

C(u)ψi (u)du =
N∑

l=i

11{bl≥bi }
∫

el

C(u)ψi (u)du , (16)



Nonparametric Copula Density Estimation Using a Petrov–Galerkin Projection 431

which also reduces the numerical effort. In higher dimensions, the number of ele-
ments ei with zero values grows, such that using Eq. (16) instead of (9) improves the
running times.

In the most practical relevant case, where the components of the right-hand side
(10) are evaluated over the empirical copula (2), the numerical effort can be radically
reduced, because the d-dimensional integral

Cδ
i = ∫

Ω

Ĉ(u)ψi (u)du = 1
T

T∑
j=1

∫
Ω

d∏
k=1

11{Ûk j ≤uk }ψ
k
i (uk)du = 1

T

T∑
j=1

d∏
k=1

I k
i j (17)

degenerates in a product of d one-dimensional integrals

I k
i j =

1∫

0

11{Ûk j ≤s}ψ
k
i (s)ds =

⎧⎪⎨
⎪⎩

h(1 − bi
k) − 1

2h2 , Ûk j < bi
k

h(1 − bi
k) − 1

2h2 − 1
2 (Ûk j − bi

k)
2 , bi

k ≤ Ûk j ≤ bi
k + h

h(1 − Ûk j ) , Ûk j > bi
k + h

using Eqs. (13) and (14). In this case, the numerical effort is of order O (N T d)

which is an extreme improvement to O
(

N3d T + N2+N
2 3d

)
, if the d-dimensional

integrals (10) are numerically computed by a usual 3d -pointsGauss formula.Wewant
to point out that the computation of the right-hand side (10) for the empirical copula
based on formula (17) is still possible for d = 9, whereas the computational effort for
computing (16) for an arbitrary given copula C is exorbitant, even if the discretization
size n is moderately chosen. The numerical effort is illustrated in Table1.

Note that contrary to what might be expected, the vector c = (c1, . . . , cN )T does
not count the number of samples in the elements, even though the approximated
solution ch is a piecewise constant function on the elements and the Petrov–Galerkin
projection is not simple counting (for more details see [15]).

Table 1 Computing times using (16) for the independence copula

d n N srhs trhs (s) trhs using (16) tsolve (s) ‖c − ch‖L1(Ω)

2 30 900 1 0.2 <1s 0.0005 2.5e − 10

2 60 3,600 1 2.2 <1s 0.003 4.9e − 9

2 100 10,000 3 6.7 3 s 0.01 2.8e − 8

3 30 27,000 10 60.7 18s 0.01 4.8e − 7

3 60 216,000 30 1,440 379s 0.13 3.4e − 5

3 100 1,000,000 30 32,163 8,031s 1.04 7.1e − 4

4 30 810,000 30 72,989 10,876s 0.29 1.2e − 3

5 30 24,300,000 30 ≈112days

6 30 729,000,000 30 ≈270years
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2.1 Examples

In order to illustrate the computing times and approximation quality, we use the
independent copula

C(u) =
d∏

k=1

uk

which has the exact solution c(u) = 1. Please note that for this example, we used
the exact copula as right-hand side without generating samples. So, there is no data
noise and hence δ = 0, which allows us to separate the approximation error and the
ill-posedness resulting from the uncontinuity of the inverse operator C−1.

Many authors (see, for example, [11]) look at the integrated square error, which is
the squared L2-norm of the difference between the copula density and its approxima-
tion. For the independent copula, the integrated square error can easily be computed

ISE(c, ch) = ‖c − ch‖2L2(Ω)
= 1

N

∥∥∥c − (1, 1, . . . , 1)T
∥∥∥2

l2
.

Actually, this error measure is unsuitable, because the natural space for densities is
L1 instead of L2 (see [3]) and so we measure the difference in the L1-norm, which
also can be easily computed for the independence copula

‖c − ch‖L1(Ω) =
∫

Ω

|c(u) − ch(u)| du = 1

N

∥∥∥c − (1, 1, . . . , 1)T
∥∥∥

l1
.

In Table1, we give the following quantities for different discretization steps n in
dimension 1 and dimension d: the system size N = nd , the computing times trhs

for assembling the right-hand side, tsolve for solving the system, srhs as the number
of computing slaves and the L1-approximation errors. For the computation of the
right-hand side, a parallel OpenMPI implementation was used with srhs computing
slaves. For solving the system with the Kronecker factorization, a sequential C++
implementation is used. The exact computation of an ordinary right-hand sidewithout
using the product structure gets still impossible for d ≥ 5 and the times are estimated
computing times. In summary, the example of the independence copula shows that
for exact data of the right-hand side, the approximation error is suitable but grows
with decreasing discretization size h = 1

n . We want to point out that this is typical
phenomenon of inverse problems, called “regularization by discretization”.

If we consider the more practical relevant case, that the empirical copula, gener-
ated by T independent samples of the independence copula, is used, we are faced
with data noise δ > 0 and ill-posedness. Table2 shows that the computation based
on (17) is still possible for d ≈ 10. However, the approximation error increase with
the dimension d, which is a direct consequence of the ill-posedness, because the
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Table 2 Computing times using (17) for T = 100,000 samples

d n N srhs trhs tsolve (s) ‖c − ch‖L1(Ω)

2 30 900 1 1.3 s 0.0002 8.89e − 2

2 60 3,600 1 5.3 s 0.002 1.76e − 1

2 100 10,000 3 5s 0.014 2.96e − 1

3 30 27,000 10 7.2 s 0.013 5.17e − 1

3 60 216,000 30 19s 0.11 1.45e + 0

3 100 1,000,000 30 86s 0.95 2.71e + 0

4 30 810,000 30 97s 0.25 2.72e + 0

5 30 24,300,000 30 3,607s 8.49 1.82e + 2

6 10 1,000,000 30 197s 0.14 3.50e + 0

7 10 10,000,000 30 2,371s 1.68 3.54e + 1

8 10 100,000,000 30 26,329s 18.2 7.28e + 3

9 10 1,000,000,000 30 303,239s 253 9.63e + 5

10 10 10,000,000,000 30 ≈40days 2,025

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0
5

10
15
20
25
30
35

0
0.2 0.4

0.6 0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 3 Student copula, ρ = 0.5, ν = 1, n = 50, a reconstructed density c, b copula C
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Fig. 4 Frank copula, θ = 4, n = 50, a reconstructed density c, b copula C
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condition number of the system matrix K is the condition number of the one-
dimensional system matrix (1)K to the power of d.

Naturally, our proposedmethodworks not only for the rather simple independence
copula, it also works quite well for all typical copula families. The approximation
error for noise free right-hand sides can be neglected. Figures3 and 4 show the
reconstructed densities for the Student and Frank copula, using exact data for the
right-hand side. However, ill-posedness is expectedwhen empirical copulas are used.
In [14], numerical results for other copula families, like the Gaussian, Gumbel,
or Clayton copula, can also be found. However, ill-posedness is expected when
empirical copulas are used and we are faced with data noise, which we discuss in
the next section.

3 Ill-Posedness and Regularization

Note that in real problems, the copula C is not known and we only have noisy data
(10) instead of (9). In order to illustrate the expected numerical instabilities, we have
simulated T samples for each two-dimensional copula and present the nonparametric
reconstructed densities using the Petrov–Galerkin projection with grid size n = 50.
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Fig. 5 Student copula density, ρ = 0.5, ν = 1, n = 50. a T = 1,000,000. b T = 100,000. c
T = 10,000. d T = 1,000



Nonparametric Copula Density Estimation Using a Petrov–Galerkin Projection 435

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−1
0
1
2
3
4
5
6
7

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−1
0
1
2
3
4
5
6
7

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−1
0
1
2
3
4
5
6
7

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−1
0
1
2
3
4
5
6
7

(a) (b)

(d)(c)

Fig. 6 Frank copula density, θ = 4, n = 50. a T = 1,000,000. b T = 100,000. c T = 10,000. d
T = 1,000

A typical problem of ill-posed inverse problems is, that the numerical instability
decreases if the grid size n decreases, which can also be seen in Table1. Therefore,
we fix the grid size n = 50 and look at the influence of sample size T .

Because of (3), the data noise δ increases if T decreases. Figures5 and 6 show
the expected ill-posedness appearing for decreasing sample size T . Of course, this
instabilities also occur for the other copula families, but we restrict our illustration
here to these two examples. More examples can be found in [14].

To overcome the ill-posedness, an appropriate regularization for the discretized
problem (8) is required. Figures7 and 8 show the reconstructed copula densities for
T = 1,000 and T = 10,000 samples using the well-known Tikhonov regularization.
There is no regularization, if the regularization parameter α = 0 is chosen. The
left-hand side of the figures shows the unregularized solutions. The choice of the
regularization parameter α = 10−8 is very naive and arbitrary and serves only as
demonstration how the instability can be handled. A better parameter choice should
improve the reconstructed densities. It is further work to discuss an appropriate
parameter choice rule for Tikhonov regularization as well as other regularization
methods.

In order to avoid the complete assembling of the system matrix K leading to
high-dimensional systems for d > 2, we are interested in regularization methods
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Fig. 7 Regularized Student copula density, ρ = 0.5, ν = 1, n = 50. a α = 0, T = 1,000 samples.
b α = 10−8, T = 1,000 samples. c α = 0, T = 10,000 samples. d α = 10−8, T = 10,000 samples

using the special structure (15). In particular, all regularization methods based on
the singular value or eigenvalue decomposition of K can be easily handled because
the eigenvalue decomposition of the one-dimensional matrix(1)K = V ΛV T leads
to the eigenvalue decomposition of the system matrix

K = (V ⊗ · · · ⊗ V ) (Λ ⊗ · · · ⊗ Λ)
(

V T ⊗ · · · ⊗ V T
)

.

A typical property of Tikhonov regularization is that true peaks in the density will be
smoothed. This effect appears in particular for the Student copula density. Hence, the
reconstruction quality should be improved, if other regularization methods are used.
In the inverse problem theory, it is well-known that Tikhonov regularization accom-
panies L2-norm penalization of the regularized solutions. Therefore, L1 penalties or
total variation penalties (see [7]) seem more suitable.

Furthermore, the approximated copula

Ch(u) =
u∫

0

ch(s)ds =
N∑

j=1

c jψ j (u)
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Fig. 8 Regularized Frank copula density, θ = 4, n = 50. a α = 0, T = 1,000 samples.b α = 10−8,
T = 1,000 samples. c α = 0, T = 10,000 samples. d α = 10−8, T = 10,000 samples

should yield the typical properties of copulas. For example, the requirement

Ch(1, . . . , 1)
!= 1

yields the condition
∑N

j=1 c j = 1 and the requirements

Ch(1, . . . , 1, uk, 1, . . . , 1)
!= uk k = 1, . . . , d

lead to additional conditions on the vector c, which all together can be used to build
problem specific regularization methods.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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