
Worst-Case Scenario Portfolio Optimization
Given the Probability of a Crash

Olaf Menkens

Abstract Korn and Wilmott [9] introduced the worst-case scenario portfolio prob-
lem. Although Korn and Wilmott assume that the probability of a crash occurring
is unknown, this paper analyzes how the worst-case scenario portfolio problem is
affected if the probability of a crash occurring is known. The result is that the addi-
tional information of the known probability is not used in the worst-case scenario.
This leads to a q-quantile approach (instead of a worst case), which is a value at
risk-style approach in the optimal portfolio problem with respect to the potential
crash. Finally, it will be shown that—under suitable conditions—every stochastic
portfolio strategy has at least one superior deterministic portfolio strategy within this
approach.

1 Introduction

Portfolio optimization in continuous time goes back to Merton [17]. Merton assumes
that the investor has two investment opportunities; one risk-free asset (bond) and one
risky asset (stock) with dynamics given by

dP0,0(t) = P0,0(t) r0 dt, P0,0(0) = 1, “bond”

dP0,1(t) = P0,1(t) [μ0 dt + σ0 dW0(t)] , P0,1(0) = p1, “stock”

with constant market coefficients μ0, r0, σ0 > 0, and where W0 is a Brown-
ian motion on a complete probability space (Ω,F , P). Finally, Xπ

0 denotes the
wealth process of the investor given the portfolio strategy π (which denotes the
fraction invested in the risky asset). More specifically, the wealth process satisfies

dXπ
0 (t) = Xπ

0 (t) [(r0 + π(t) [μ0 − r0]) dt + π(t)σ0 dW0(t)] ,

Xπ
0 (0) = x .
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Assuming that the utility function U (x) of the investor is given by U (x) = ln(x),
one can define the performance function for an arbitrary admissible portfolio strategy
π(t) by

J0 (t, x, π) := E
[
ln

(
Xπ,t,x

0 (T )
)] = ln (x) + E

⎡

⎣
T∫

t

[

Ψ0 − σ 2
0

2

(
π(s) − π∗

0

)2

]

ds

⎤

⎦ . (1)

Here,

Ψ0 := r0 + 1

2

(
μ0 − r0

σ0

)2

= r0 + σ 2
0

2

(
π∗

0

)2 and π∗
0 := μ0 − r0

σ 2
0

will be called the utility growth potential or earning potential and the optimal port-
folio strategy or Merton fraction, respectively. Using this, the portfolio optimization
problem in the Merton case (that is without taking possible jumps into account) is
given by

sup
π(·)∈A0(x)

J0 (t, x, π) =: ν0(t, x) [= ln(x) + Ψ0(T − t)] , (2)

where ν0 is known as the value function in the Merton case. From Eq. (1), it is clear
that π∗

0 maximizes J0. Hence, it is the optimal portfolio strategy for Eq. (2).
Merton’s model has the disadvantage that it cannot model jumps in the price of

the risky asset. Therefore, Aase [1] extended Merton’s model to allow for jumps in
the risky asset. In the simplest case, the dynamics of the risky asset changes to

dPJ (t) = PJ (t) [μ0 dt + σ0 dW0(t) − k dN (t)] ,

where N is a Poisson process with intensity λ > 0 on (Ω,F , P) and k > 0 is the
crash or jump size. In this setting, the performance function is given by

JJ (t, x, π) = ln (x)+E

⎡

⎣
T∫

t

[

Ψ0 − σ 2
0

2

(
π(s) − π∗

0

)2 − ln (1 − π(s)k) λ

]

ds

⎤

⎦ .

Using this, the optimal portfolio strategy can be computed to

π∗
J = 1

2

(
π∗

0 + 1

k

)
−

√
1

4

(
π∗

0 − 1

k

)2

+ λ

σ 2
0

.

Figure 1 shows the fraction invested in the risky asset in Merton’s (solid line) and
Aase’s model for various λ (all the other lines). The dashed line below the solid
line is the case where 1

λ
= 50, that is the investor expects on average one crash

within 50 years. By comparison, the lowest line (the dash–dotted line) is the case
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Fig. 1 Examples of Merton’s optimal portfolio strategies. This figure is plotted with π∗
0 = 1.25,

σ0 = 0.25, r = 0.05, k = 0.25, and T = 50. This implies that λ0 = σ 2
0 π∗

0
k = 0.3125, Ψ0 ≈

0.098828, and 1
k∗ = 4

where 1
λ

= 2.5, that is the investor expects on average one crash within 2.5 years.
Note, however, that the fraction invested in the risky asset is negative in this case,
meaning that the optimal strategy is that the investor goes short in the risky asset.
This strategy is very risky because the probability that the investor will go bankrupt
is strictly positive. This can also be observed in practice where several hedge funds
went bankrupt which were betting on a crash in the way described above.

Therefore, let us consider an ansatz which overcomes this problem.

1.1 Alternative Ansatz of Korn and Wilmott

The ansatz made by Korn and Wilmott [9] is to distinguish between normal times
and crash time. In normal times, the same set up as in Merton’s model is used. At
the crash time, the price of the risky asset falls by a factor of k ∈ [k∗, k∗] (with
0 ≤ k∗ ≤ k∗ < 1). This implies that the wealth process Xπ

0 (t) just before the crash
time τ– satisfies

Xπ
0 (τ−) = [1 − π(τ)] Xπ

0 (τ−)
︸ ︷︷ ︸

bond investment

+π(τ)Xπ
0 (τ−)

︸ ︷︷ ︸
stock investment

.
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At the crash time, the price of the risky asset drops by a factor of k, implying

[1 − π (τ)] Xπ
0 (τ−) + π(τ)Xπ

0 (τ−) [1 − k] = [1 − π(τ)k] Xπ
0 (τ−) = Xπ

0 (τ ) .

Therefore, one has a straightforward relationship of the wealth right before a crash
with the wealth right after a crash.

The main disadvantage of this ansatz is that one needs to know the maximal
possible number of crashes M that can happen at most—in the following, we assume
for simplicity that M = 1 if not stated otherwise—and one needs to know the worst
crash size k∗ that can happen. On the other hand, no probabilistic assumptions are
made on the crash time or crash size. Therefore, Merton’s approach, to maximize the
expected utility of terminal wealth, cannot be used in this context. Instead the aim is
to find the best uniform worst-case bound, e.g. solve

sup
π(·)∈A(x)

inf
0≤τ≤T
k∈K

E
[
ln

(
Xπ (T )

)]
, (3)

where the terminal wealth satisfies Xπ (T ) = (1 − π(τ)k) Xπ
0 (T ) in the case of a

crash of size k at stopping time τ . Moreover, K = {0} ∪ [k∗, k∗]. This will be called
the worst-case scenario portfolio problem.

Note that one requires that π(t) < 1
k∗ for all t ∈ [0, T ] in order to avoid bank-

ruptcy. The value function to the above problem is defined via

νc(t, x) := sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

E
[
ln

(
Xπ,t,x (T )

)]
. (4)

Observe that this optimization problem can be interpreted as a stochastic differen-
tial game (see Korn and Steffensen [12]), where the investor tries to maximize her
expected utility of terminal wealth while the counterparty (the market or nature) tries
to hit the investor as badly as possible by triggering a crash. The control of the investor
is π , the fraction of wealth invested into the risky asset, while the control of the coun-
terparty is the crash time τ and the crash size k. Figure 2 depicts the optimization
problem. For each control choice (that is portfolio strategy) of the investor (e.g., π2),
the investor calculates the expected utility of terminal wealth for all possible control
choices (that is (τ, k)) of the counterparty (which is the dotted line for the strategy
π2). Then the worst-case scenario is determined for each portfolio strategy (e.g.,(
τ (π2), k(π2)

)
for the strategy π2). Afterwards, the expected utility of terminal wealth

for this worst-case scenario is calculated and denoted by W C (π2). The last step is to
find the strategy which maximizes the worst-case scenario function W C (·). For the
three examples given in Fig. 2, this would be π3. Notice that π3 is special in that all
choices (τ, k) lead to the same worst-case scenario, that is W C (π3) is independent
of the scenario (τ, k).

Observe that Aase [1] would fix k, model the crash time via a Poisson distribution,
and maximize the expected utility of terminal wealth. Whereas, by comparison, the
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Fig. 2 Schematic interpretation of the worst-case scenario optimization

worst-case scenario optimization method uses a probability-free approach on crash
time and size.

Apparently, it is quite cumbersome to determine the optimal portfolio strategy
as described above. Instead consider the following approach. Define as ν1 the value
function as in Eq. (2), except that the subscript 1 indicates that this is the value function
in the Merton case after a crash has happened (and where the market parameters might
change—see Sect. 2 for details). To that end, a portfolio strategy π̂ ≥ 0 determined
via the equation

J0
(
t, x, π̂

) = ν1
(
t, x

(
1 − π̂(t)k∗)) for all t ∈ [0, T ] (5)

will be called a crash indifference strategy. This is, because the investor gets the
same expected utility of terminal wealth if either no crash happens (left-hand side)
or a crash of the worst-case size k∗ happens (right-hand side). It is straightforward
to verify (see Korn and Menkens [10]) that there exists a unique crash indifference
strategy π̂ , which is given by the solution of the differential equation

π̂ ′(t) = σ 2
0

2

(
π̂(t) − 1

k∗

) (
π̂(t) − π∗

0

)2
, (6)

with π̂(T ) = 0. (7)

This crash indifference strategy is bounded by 0 ≤ π̂ ≤ min{π∗
0 , 1

k∗ }. It can be shown
(see Korn and Wilmott [9] or Korn and Menkens [10]) that the optimal portfolio
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strategy for an investor, who wants to maximize her worst-case scenario portfolio
problem, is given by

π̄(t) := min
{
π̂(t), π∗

0

}
for all t ∈ [0, T ]. (8)

π̄ will be named the optimal crash hedging strategy or optimal worst-case scenario
strategy.

Figure 3 shows the optimal worst-case scenario strategies of Korn/Wilmott if at
most one (solid line), two (dashed line), or three (dash–dotted line) crashes can
happen. Assuming that the investor has an initial investment horizon of T = 50 and
expects to see at most three crashes, a optimal worst-case scenario investor would use
the portfolio strategy π̂3(t) until she observes a first crash, say at time τ1. After having
observed a crash, the investor would switch to the strategy π̂2(t), since the investor
expects to see at most two further crashes in the remaining investment horizon T −τ1;
and so on. Finally, if the investor expects to observe no further crash, she will switch
to the Merton fraction π∗

0 .
The worst case scenario strategies are now compared to the optimal portfolio

strategy in Aase’s model, where λ(t) = 1
T −t (see dotted line in Fig. 3), that is the

investor expects to see on average one crash over his remaining investment horizon
T − t . Clearly, setting λ in this way is somewhat unrealistic. Nevertheless, this
extreme example is used to point out several disadvantages of the expected utility
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Fig. 3 Examples of worst-case optimal portfolio strategies
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approach of Aase. First, considering a λ which changes over time and depends on
the investment horizon of the investor, leads not only to a time-changing optimal
strategy πP (t), but also to a price dynamics of the risky asset which depends on the
investment horizon of the investor. Hence, any two investors with different investment
horizons would work with different price dynamics of the risky assets. Second, as
the investor approaches the investment horizon, λ(t) → ∞ (that is a crash happens
almost surely), thus, πP (t) → −∞, which would lead to big losses on short-term
investment horizons if no crash happens. Of course, these losses would average out
with the gains made if a crash happens remembering that the assumption is that—on
average—every second scenario would observe at least one crash. This is the effect
of averaging the crash out in an expected utility sense (compared to the worst-case
approach of Korn/Wilmott).

Basically, it would be possible to cut off πp(t) at zero, that is, one would not
allow for short-selling. This would imply to cut off λ(t) at μ0−r0

k and there is no
economic interpretation why this should be done (except that short-selling might not
be allowed). Finally, note that it is also possible to set λ such that one expects to see
at least one crash with probability q (e.g., q = 5 %), however this would not remedy
the two disadvantages mentioned above.

Why is the worst-case scenario approach more suitable than the standard expected
utility approach in the presence of jumps? The standard expected utility approach
will average out the impact of the jumps over all possible scenarios. With other
words, the corresponding optimal strategy will offer protection only on average over
all possible scenarios, which will be good as long as either no jump or just a small
jump happens. However, if a large jumps happens, the protection is negligible. By
comparison, the worst-case scenario approach will offer full protection from a jump
up to the worst-case jump size assumed.

The situation can be compared to the case of buying liability insurance. The
standard utility approach would look at the average of all possible claim sizes (say
e.g., 100,000 EUR)—and its optimal strategy would be to buy liability insurance
with a cover of 100,000 EUR. However, the usual advice is to buy liability insurance
with a cover which is as high as possible—this solution corresponds to the worst-
case scenario approach. With other words, the aim is to insure the rare large jumps.
This observation is supported by the fact that many insurances offer retention (which
excludes small jumps from the insurance).

1.2 Literature Review

To the best of our knowledge, Hua and Wilmott [8] were the first to consider the
worst-case scenario approach in a binomial model to price derivatives. Korn and
Wilmott [9] were the first to apply this approach to portfolio optimization, and Korn
and Menkens [10] developed a stochastic control framework for this approach, while
Korn and Steffensen [12] considered this approach as a stochastic differential game.
Korn and Menkens [10] and Menkens [16] looked at changing market coefficients
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after a crash. Seifried [22] evolved a martingale approach for the worst-case sce-
nario. Moreover, the worst-case scenario approach has been applied to the optimal
investment problem of an insurance company (see Korn [11]) and to optimize rein-
surance for an insurance company (see Korn et al. [13]). Korn et al. [13] show also
in their setting that the worst-case scenario approach has a negative diversification
effect. Furthermore, both portfolio optimization under proportional transaction costs
(see Belak et al. [4]) and the infinite time consumption problem (see Desmettre
et al. [7]) have been studied in a worst-case scenario optimization setting. Mönnig
[18] applies the worst-case scenario approach in a stochastic target setting to com-
pute option prices. Finally, Belak et al. [2, 3] allow for a random number of crashes,
while Menkens [15] analyzes the costs and benefits of using the worst-case scenario
approach.

Notice that there is a different worst-case scenario optimization problem which
is also known as Wald’s Maximin approach (see Wald [23, 24]). The following
quotation is taken from Wald [23, p. 279]:

A problem of statistical inference may be interpreted as a zero sum two person game as
follows: Player 1 is Nature and player 2 is the statistician. […] The outcome K [θ, w(E)] of
the game is the risk r [θ |w(E)] of the statistician. Clearly, the statistician wishes to minimize
r [θ |w(E)]. Of course, we cannot say that Nature wants to maximize r [θ |w(E)]. However, if
the statistician is in complete ignorance as to Nature’s choice, it is perhaps not unreasonable to
base the theory of a proper choice of w(E) on the assumption that Nature wants to maximize
r [θ |w(E)].

This is a well-known concept in decision theory and is also known as robust opti-
mization (see e.g., Bertsimas et al. [5] or Rustem and Howe [21] and the references
therein). However, while the ansatz is the same, it is usually assumed that the parame-
ters (in our case r0, μ0, and σ0) are unknown within certain boundaries. Therefore,
this is a parameter uncertainty problem which is solved using a worst-case scenario
approach—instead of using perturbation analysis. Observe that this usually involves
optimization procedures done by a computer. Finally, note that the optimal strate-
gies can be computed directly only in the special case that only μ0 is uncertain (see
Mataramvura and Øksendal [14], Øksendal and Sulem [19], or Pelsser [20] for a
recent application in an insurance setting).

By comparison, the worst-case scenario approach considered in this paper is
taking (possibly external) shocks/jumps/crashes into account—and not parameter
uncertainty. While the original idea and the wording are similar or even the same, it
is clear that the worst-case scenario approach of Korn and Wilmott [9] is different
from the robust optimization approach in decision theory.

The remainder of this paper is organized as follows. Section 2 introduces the set up
of the model which will be considered; and Sect. 3 solves the optimization problem
if the probability of a potential crash is known. As a consequence, the q-quantile
crash hedging strategy will be developed in Sect. 4. Section 5 gives examples of
the q-quantile crash hedging strategy, while Sect. 6 shows that stochastic portfolio
strategies are always inferior to their corresponding deterministic portfolio strategies.
Finally, Sect. 7 concludes.
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2 Setup of the Model

Let us work with the model introduced above and let us make the following refine-
ments. First, it has been tacitly assumed that the investor is able to realize that the
crash has happened. Thus, let us model its occurrence via a F—stopping time τ . To
model the fact that the investor is able to realize that a jump of the stock price has hap-
pened it is supposed that the investor’s decisions are adapted to the P-augmentation
{Ft } of the filtration generated by the Brownian motion W (t). The difficulty of this
approach is to determine the optimal strategy after a crash because the starting point
is random, however Seifried [22] solved this problem.

Let us further suppose that the market conditions change after a possible crash.
Let therefore k (with k ∈ [k∗, k∗]) be the arbitrary size of a crash at time τ . The price
of the bond and the risky asset after a crash of size k happened at time τ is assumed
to be

dP1,0(t) = P1,0(t) r1 dt , P1,0(τ ) = P0,0(τ ) , (9)

dP1,1(t) = P1,1(t) [μ1 dt + σ1 dW (t)] , P1,1(τ ) = (1 − k) P0,1(τ ) , (10)

with constant market coefficients r1, μ1, and σ1 > 0 after a possible crash of size k
at time τ . That is, this is the same market model as before the crash except that the
market parameters are allowed to change after a crash has happened.

It is important to keep in mind that the investor does not know for certain that a
crash will occur—the investor only thinks that it is possible. An investor who knows
that a crash will happen within the time horizon [0, T ] has additional information
and is therefore an insider. The set of possible crash heights of the insider is indeed
K I := [k∗, k∗], while the set of possible crash heights of the investor who thinks that
a crash is possible is K := {0} ∪ [k∗, k∗]. In this paper, only the portfolio problem
of the investor, who thinks a crash is possible, is considered.

For simplicity, the initial market will also be called market 0, while the market
after a crash will be called market 1. In order to set up the model, the following
definitions are needed.

Definition 1 (i) For i = 0, 1, let Ai (s, x) be the set of admissible portfolio
processes π(t) corresponding to an initial capital of x > 0 at time s, i.e.,
{Ft , s ≤ t ≤ T }–progressively measurable processes such that

(a) the wealth equation in market i in the usual crash-free setting

dXπ,s,x
i (t) = Xπ,s,x

i (t) [(ri + π(t) [μi − ri ]) dt + π(t)σi dWi (t)] , (11)

Xπ,s,x
i (s) = x (12)

has a unique non-negative solution Xπ,s,x
i (t) and satisfies
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T∫

s

[
π(t)Xπ,s,x

i (t)
]2 dt < ∞ P–a.s. , (13)

i.e. Xπ,s,x
i (t) is the wealth process in market i in the crash-free world, which

uses the portfolio strategy π and starts at time s with initial wealth x .

Furthermore, Xπ
i (t) := Xπ,0,x

i (t) will be used as an abbreviation.
(b) π(t) has left-continuous paths with right limits.

(ii) the corresponding wealth process Xπ (t) in the crash model, defined as

Xπ (t) =
{

Xπ
0 (t) for s ≤ t < τ

[1 − π(τ)k] X
π,τ,Xπ

0 (τ )

1 (t) for t ≥ τ ≥ s ,
(14)

given the occurrence of a jump of height k at time τ , is strictly positive. Thereby,
it is assumed that the crash time τ is a F–stopping time. The set of admissible
portfolio strategies is obviously given by A0(s, x) as long as no crash happens.
After a crash at time τ , the set is given by A1(τ, x), which is defined scenario-
wise, that is via A1(τ (ω), x) for all ω ∈ Ω . Hence,

A(s, x) :=
{
φ(t) with t ∈ [s, T ] : φ

∣∣[s,τ ] ∈ A0(s, x)
∣∣[s,τ ] and φ

∣∣[τ,T ] ∈ A1(τ, x)
}

.

(iii) A(x) is used as an abbreviation for A(0, x).

Finally, it is clear how to extend the definitions given above only for i = 0 to
i = 1. Simply, replace the zeros by ones.

3 Optimal Portfolios Given the Probability of a Crash

In this section, let us suppose that the investor knows the probability of a crash
occurring. Let p, with p ∈ [0, 1], be the probability that a crash can happen (but
must not necessarily happen)1. Note that the following argument holds also for time-
dependent p (that is p(t)), however to simplify the notation, it is assumed that p is
constant. In this situation, the optimization problem can be split up into two problems
(crash can occur, no crash happens) which have to be solved simultaneously. To that
end define for p ∈ [0, 1]

1 Observe that the important information is that no crash will happen with a probability of at least
1 − p. If one would say that a crash will happen with probability p, the investor would become an
insider with an adjusted optimization problem as described in Sect. 2, p. 9. However, this insider
approach would make the discussion way more difficult. Therefore, to simplify the discussion, the
approach of no crash happens/a crash can happen is taken here.
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Ep
[
ln

(
Xπ,t,x (T )

)] := p E
[
ln

(
Xπ,t,x (T )

)]

︸ ︷︷ ︸
A crash can occur.

+ (1 − p)E
[
ln

(
Xπ,t,x

0 (T )
)]

︸ ︷︷ ︸
No crash happens.

.

Using this definition, the optimization problem can be written as

sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

Ep
[
ln

(
Xπ,t,x (T )

)]

= sup
π(·)∈A(t,x)

⎧
⎨

⎩
p

⎧
⎨

⎩
inf

t≤τ≤T,

k∈K

E
[
ln

(
Xπ,t,x (T )

)]
⎫
⎬

⎭
+ (1 − p)E

[
ln

(
Xπ,t,x

0 (T )
)]

⎫
⎬

⎭

= sup
π(·)∈A(t,x)

⎧
⎨

⎩
p ·

⎧
⎨

⎩
inf

t≤τ≤T,

k∈K

ν1

(
τ, Xπ,t,x

0 (τ ) (1 − π(τ)k)
)
⎫
⎬

⎭
+ (1 − p)J0 (t, x, π)

⎫
⎬

⎭
.

(15)

Observe that the two extremes, p ∈ {0, 1} are straightforward to solve:

(A) p = 1:

sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

E1
[
ln

(
Xπ,t,x (T )

)] = sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

E
[
ln

(
Xπ,t,x (T )

)]
.

Thus, this is the original worst-case scenario portfolio problem. The solution is
already known.

(B) p = 0:

sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈K

E0
[
ln

(
Xπ,t,x (T )

)] = sup
π(·)∈A0(t,x)

E
[
ln

(
Xπ,t,x

0 (T )
)]

,

which is the classical optimal portfolio problem of Merton. The solution is well
known and is given in our notation (compare with Eq. (2)) by π∗

0 .

Let us now consider the case p ∈ (0, 1). Denoting the optimal crash hedging
strategy in this situation by π̂p, Eq. (15) can be rewritten as

J0
(
t, x, π̂p

) = p · ν1
(
t, x

(
1 − π̂p(t)k

∗)) + (1 − p)J0
(
t, x, π̂p

)

⇐⇒ J0
(
t, x, π̂p

) = ν1
(
t, x

(
1 − π̂p(t)k

∗)) ,

where the last equation is obtained from the first equation by solving the first equation
forJ0. Since the latter equation is the indifference Eq. (5) in this setting, which leads
to the same ODE and boundary condition as in Korn and Wilmott [9], it follows that
π̂p ≡ π̂ (see the paragraph between Eqs. (5) and (6) for details). This result shows
that the crash hedging strategy remains the same even if the probability of a crash
is known. Thus, this result justifies the wording worst-case scenario of the above-
developed concept. This is due to the fact that the worst-case scenario should be
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independent of the probability of the worst case and which has been shown above.
Let us summarize this result in a proposition.

Proposition 1 Given that the probability of a crash is positive, the worst-case sce-
nario portfolio problem as it has been defined in Eq. (3) is independent of the prob-
ability of the worst-case occurring.

If the probability of a crash is zero, the worst-case scenario portfolio problem
reduces to the classical crash-free portfolio problem.

4 The q-quantile Crash Hedging Strategy

Obviously, the concept of the worst case scenario has the disadvantage that additional
information (namely the given probability of a crash and the probability distribution
of the crash sizes) is not used. However, if the probability of a crash and the probability
of the crash size is known, it is possible to construct the (lower) q-quantile crash
hedging strategy.

Assume that p(t) ∈ [0, 1] is the given probability of a crash at time t ∈ [0, T ] and
assume that f (k, t) ∈ [0, 1] is the given density of the distribution function for a crash
of size k ∈ [

k∗, k∗] at time t . Moreover, suppose that a function q : [0, T ] −→ [0, 1]
is given. With this, define

kq (t; π) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if 1 − p(t) ≥ q(t)

inf

{

kq : 1 − p(t) + p(t)
kq∫

k∗
f (k, t) dk ≥ q(t)

}

if 1 − p(t) < q(t) and π ≥ 0

sup

{

kq : 1 − p(t) + p(t)
k∗∫

kq

f (k, t) dk ≥ q(t)

}

if 1 − p(t) < q(t) and π < 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

for any given portfolio strategy π . This has the following interpretation. The prob-
ability that at most a crash of size kq(t) at time t happens is q(t). Equivalently, the
probability that a crash higher than kq(t) will happen at time t is less than 1 − q(t).
Obviously, this is a value at risk approach which relaxes the worst-case scenario
approach.

Notice that the worst case of a non-negative portfolio strategy is either a crash
of size k∗ or no crash. On the other hand, the worst case of a negative portfolio
strategy is either a crash of size k∗ or no crash. Correspondingly, the q-quantile
calculates differently for negative portfolio strategies (see the third row) than for the
non-negative portfolio strategies (see the second row). Furthermore, denote by

Kq(t) :=
⎧
⎨

⎩

{0} if kq(t) = 0
{0} ∪ [

k∗, kq(t)
]

if kq(t) �= 0 and π ≥ 0
{0} ∪ [

kq(τ ), k∗] if kq(t) �= 0 and π < 0

⎫
⎬

⎭
.
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Definition 2 (i) The problem to solve

sup
π(·)∈A(x)

inf
0≤τ≤T,

k∈Kq (τ )

E
[
ln

(
Xπ (T )

)]
, (16)

where the terminal wealth Xπ (T ) in the case of a crash of size k at time τ is
given by

Xπ (T ) = [1 − π(τ)k] X
π,τ,Xπ

0 (τ )

1 (T ) , (17)

with X
π,τ,Xπ

0 (τ )

1 (t) as above, is called the (lower) q-quantile scenario portfolio
problem.

(ii) The value function to the above problem is defined via

wq(t, x) := sup
π(·)∈A(t,x)

inf
t≤τ≤T,

k∈Kq (τ )

E
[
ln

(
Xπ,t,x (T )

)]
. (18)

(iii) A portfolio strategy π̂q determined via the equation

wq (t, x) = ν1
(
t, x

(
1 − π̂q(t)kq(t)

))
for all t ∈ [0, T ] with kq(t) > 0

will be called a (lower) q-quantile crash hedging strategy.
(iv) A portfolio strategy π̃q is a partial (lower) q-quantile crash hedging strategy,

if it is for any t ∈ [0, T ] either a q-quantile crash hedging strategy or a solution
to the q-quantile scenario portfolio problem.

It is straightforward to see that the 1-quantile scenario portfolio problem is equiv-
alent to the worst-case scenario portfolio problem given in Eq. (3). Moreover, the
1-quantile crash hedging strategy is equivalent to the crash hedging strategy in Def-
inition 3.1 in Menkens [16, p. 602].

Remark 1 (i) Clearly, the definition given in Eq. (16) is different from the corre-
sponding definition given in Sect. 3 and it leads only to the same solution in the
two extreme cases of either p = 1 or p = 0.

(ii) Notice that the q-quantile scenario portfolio problem is only a q-quantile con-
cerning the crash. The randomness of the market movement represented in the
model by a geometric Brownian motion has been averaged out, namely by taking
the expectation—and not the q-quantile.

Define the support of kq to be

supp
(
kq

) := {
t ∈ [0, T] : kq(t) > 0

}
.

Using this, it is possible to show the following.

Theorem 1 Let us suppose that kq is continuously differentiable on supp
(
kq

)
with

respect to t .
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(i) Then there exists a unique (lower) q-quantile crash hedging strategy π̂q , which
is on supp

(
kq

)
given by the solution of the differential equation

π̂ ′
q (t) =

(
π̂q (t) − 1

kq (t)

)[
σ 2

0
2

(
π̂q (t) − π∗

0
)2 + Ψ1 − Ψ0

]

− π̂q (t)k′
q (t), (19)

π̂q (T ) = 0. (20)

For t ∈ [0, T ] \ supp
(
kq

)
set π̂q(t) := π∗

0 .

Moreover, if Ψ1 ≥ r0, then the q-quantile crash hedging strategy is bounded by

0 ≤ π̂q(t) <
1

kq(t)
≤ 1

k∗
for t ∈ supp

(
kq

)
.

Additionally, if Ψ1 ≤ Ψ0 and π∗
0 ≥ 0, the q-quantile crash hedging strategy has

another upper bound with π̂q(t) < π∗
0 −

√
2
σ 2

0
(Ψ0 − Ψ1).

On the other side, if Ψ1 < r0 the q-quantile crash hedging strategy is bounded
by

π∗
0 −

√
2

σ 2
0

(Ψ0 − Ψ1) < π̂q(t) < 0 for t ∈ [0, T ).

(ii) If Ψ1 < Ψ0 and π∗
0 < 0, there exists a partial q-quantile crash hedging strategy

π̃q at time t (which is different from π̂q), if

Sq(t) := T − ln
(
1 − π∗

0 kq(t)
)

Ψ0 − Ψ1
> 0 for t ∈ supp

(
kq

)
. (21)

With this, π̃q(t) is given by the unique solution of the differential equation

π̃ ′
q(t) =

(
π̃q(t) − 1

kq(t)

)[
σ 2

0

2

(
π̃q(t) − π∗

0

)2 + Ψ1 − Ψ0

]

− π̃q(t)k′
q(t),

π̃q
(
Sq(t)

) = π∗
0 .

For Sq(t) ≤ 0 set π̃q(t) := π∗
0 . This partial crash hedging strategy is

bounded by

π∗
0 −

√
2

σ 2
0

(Ψ0 − Ψ1) < π̃q(t) ≤ π∗
0 < 0.

If kq is independent of the time t, the optimal portfolio strategy for an investor, who
wants to maximize her q-quantile scenario portfolio problem, is given by
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π̄q(t) := min
{
π̂q(t), π̃q(t), π∗

0

}
for all t ∈ [0, T ], (22)

where π̃q will be taken into account, if it exists. π̄q will also be called the optimal
q-quantile crash hedging strategy.

Remark 2 Let us write π̂k(t) (instead of π̂q(t)) to emphasize the dependence on k,
whenever needed. It follows from Eqs. (19) and (20) that

π̂ ′
k(T ) = −1

k
[Ψ1 − r0]

k↓0,k �=0−→
⎧
⎨

⎩

∞ if Ψ1 < r0
0 if Ψ1 = r0
−∞ if Ψ1 > r0

⎫
⎬

⎭
. (23)

(a) First, observe that this implies that π̂q(t) ≡ 0 if Ψ1 = r0, that is this is the only
case where both the optimal q-quantile crash hedging strategy and the optimal
crash hedging strategy are constant. That is, everything is invested in the risk-free
asset if Ψ1 = r0.

(b) Second, notice that π̂ ′
k1

< π̂ ′
k2

for k1 < k2. Hence, π̂k1 ≥ π̂k2 with strict
inequality applying on [0, T ). Thus, in particular, π̂q(t) > π̂(t) for t ∈ [0, T )

for any q which satisfies q(t) < 1 for t ∈ [0, T ).
(c) Third, for the remainder of this remark, let us consider only the case that Ψ1 ≤ Ψ0

and π∗
0 ≥ 0 (the other cases follow similarly). In this situation, one has that

π̂k(t) ≤ π∗
0 −

√
2
σ 2

0
(Ψ0 − Ψ1). Thus, it is clear that

ψ(t) :=
{

0 for t = T

π∗
0 −

√
2
σ 2

0
(Ψ0 − Ψ1) else

}

is an upper bound for any π̂k with k > 0. It follows that

π̂k(t) −→ ψ(t) pointwise for k ↓ 0 with k �= 0 ,

because of the convergence (23). Finally, keep in mind that the case k = 0 yields
π∗

0 as the optimal portfolio with π∗
0 �≡ ψ . An example is given in Fig. 4.

Proof (of Theorem 1) If kq(t) is constant in t this theorem follows from Theorem
4.1 in Korn and Wilmott [9, p.181], (for generalizations of this theorem see either
Theorem 4.2 in Korn and Menkens [10, p.135] or Theorem 3.1 in Menkens [16,
p.603]) by replacing k∗ with kq . To verify the differential equation in the general
case, keep in mind that by differentiating the—modified—Equation (A.5) in Korn and
Wilmott [9, p.183] (or Eq. (3.1) in Menkens [16, p.602]) with respect to t , kq(t) has
also to be differentiated with respect to t . This leads to the differential equation (19).
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Fig. 4 Example of k −→ 0 for Ψ1 = Ψ0 and π∗
0 ≥ 0

5 Examples

5.1 Uniformly Distributed Crash Sizes

Suppose that the crash time has probability p(t) = p and that the crash size is
uniformly distributed on

[
k∗, k∗], that is

f (k, t) =
{ 1

k∗−k∗ for k ∈ [
k∗, k∗]

0 otherwise

}
.

Using the defining equation for kq , that is

1 − p + p

kq∫

k∗

1

k∗ − k∗
dk = q

this leads to the following equation for kq

kq = k∗ + q + p − 1

p

[
k∗ − k∗

]
.



Worst-Case Scenario Portfolio Optimization Given the Probability of a Crash 283

For q = 1, we get the worst case back, that is k1 = k∗, as constructed.

5.2 Conditional Exponential Distributed Crash Sizes

Assume that the crash sizes are exponential distributed on the interval
[
k∗, k∗]. This

means that

f (k, t) =
{

λe−λk

e−λk∗−e−λk∗ for k ∈ [
k∗, k∗]

0 otherwise

}

.

With this, kq calculates to

kq = −1

λ
ln

(
1 − q − p

p

[
e−λk∗ − e−λk∗] + e−λk∗

)
.

Again, kq = k∗ for q = 1.

5.3 Conditional Exponential Distributed Crash Sizes
with Exponential Distributed Crash Times

Suppose that not only the crash height has a conditional exponential distribution,
but also the crash time has a conditional distribution, independent of the crash size,
that is

p(t) = q + (p − q)
1 − e−θ t

1 − e−θT
. (24)

This means that the probability of a crash happening is moving from q if t = 0 to
p if t = T in an exponential decreasing way if q > p. The defining equation of kq

writes in this case to

1 − q − (p − q)
1 − e−θ t

1 − e−θT
+

[
q + (p − q)

1 − e−θ t

1 − e−θT

]
e−λk∗ − e−λkq (t)

e−λk∗ − e−λk∗ = q.

This gives

kq(t) = −1

λ
ln

⎛

⎝e−λk∗ +
[1 − q]

[
1 − e−θT

] [
e−λk∗ − e−λk∗]

q
[
1 − e−θT

] + (p − q)
[
1 − e−θ t

]

⎞

⎠ .

Clearly, this is an example where kq depends on the time t . Its derivative calculates
to
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Fig. 5 The range of (optimal) q-quantile crash hedging strategies for Ψ1 = Ψ0 and π∗
0 ≥ 0. This

graphic shows π̂k∗ (solid line), π̂k∗ (dotted line), the range of possible optimal q–quantile crash
hedging strategies (grey area) if kq is constant, and π∗

0 (solid straight line). The dash–dotted line is
a uniform distributed example (see Sect. 5.1), the dashed line is an exponential distributed example
(see Sect. 5.2), and the dotted line is a time–varying example (see Sect. 5.3).

dkq

dt
(t) = − 1

λ

−(p−q)[1−q]θe−θ t
[
1−e−θT

]

[
q
[
1−e−θT

]+(p−q)
[
1−e−θ t

]]2

[
e−λk∗ − e−λk∗]

e−λk∗ + [1−q]
[
1−e−θT

]

q
[
1−e−θT

]+(p−q)
[
1−e−θ t

]
[
e−λk∗ − e−λk∗]

= 1

λ
[
q
[
1 − e−θT

] + (p − q)
[
1 − e−θ t

]]

×
(p − q) [1 − q] θe−θ t

[
1 − e−θT

] [
e−λk∗ − e−λk∗]

(p − q)
[
1 − e−θ t

]
e−λk∗ + [

1 − e−θT
] [

e−λk∗ [1 − q] − e−λk∗ [1 − 2q]
] .

Figure 5 shows the potential range of the optimal q-quantile crash hedging strategy
(the gray shaded area) if kq(t) �= 0 is constant. Obviously, in the case of kq(t) = 0,
one has that π̂q(t) = π∗

0 (that is the optimal strategy is to invest according to the Mer-
ton fraction). Moreover, if kq(t) is not constant, it can happen that the corresponding
q-quantile crash hedging strategy moves outside the given range. However, this usu-
ally happens only if the derivative dkq

dt is sufficiently large—which is not the case
for most situations. The parameters used in these figures are k∗ = 0.5, k∗ = 0.1,
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π∗
0 = 0.75, and σ0 = 0.25. Additionally, the examples discussed above are plotted

for the choices of p = 0.1 and q = 0.95. The dashed line is the example of a uniform
distribution with p = 10 % and q = 5 %. The dash–dotted line is the example of
an exponential distribution with the additional parameter λ = 10 (where the other
parameters are as above) and the dotted line is the example of a time varying crash
probability given in Eq. (24) with the additional parameter θ = 0.1. Notice that the
first two examples lead to similar strategies as in Korn and Wilmott [9], just that
k∗ is replaced by kq , which is constant in those two examples. The third example
is clearly different from that. Starting with an investment horizon of T = 50 years,
the optimal strategy is to increase the fraction invested in the risky asset up to an
investment horizon of about 30 years. This is due to the fact that the probability of a
crash happening is 95 % at T = 50 and it is exponentially decreasing to 10 % as the
investment horizon is reached.

6 Deterministic Portfolio Strategies

Definition 3 Let π be an admissible portfolio strategy.

πd(t) := E [π(t)] for all t ∈ [0, T ]

will be called the (to π ) corresponding deterministic portfolio strategy.

If πd = π , then πd is admissible because π is admissible. If πd(t) �= π(t) for
some t ∈ [0, T ], then there exist ω1, ω2 ∈ Ω , which depend on t , such that

π (t, ω1) ≤ πd(t) ≤ π (t, ω2) .

Thus, πd is bounded and therefore admissible.

Definition 4 Let us define

kπ (t) := k∗ · 1l{π(t)≥0} + k∗ · 1l{π(t)<0}.

Lemma 1 Let π be an admissible portfolio strategy. Then the corresponding deter-
ministic portfolio strategy to π yields in the initial crash-free market at least the
same expected utility of terminal wealth as π . If, additionally π(t) < 1

k∗ holds for
all t ∈ [0, T ], then πd yields in the initial market with a possible crash at least the
same worst case expected utility of terminal wealth as π .

Remark 3 This Lemma is important because often an optimization problem is solved
only on the set of deterministic strategies (see e.g., Korn and Wilmott [9], Korn and
Menkens [10], or Christiansen [6]) and not on the set of stochastic strategies (which
include the deterministic ones). This is done because it is often simpler to solve the
optimization problem on the set of deterministic strategies.
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Proof (of Lemma 1) Using the Theorem of Fubini, one has for any admissible port-
folio strategy π

J0 (t, x, π) = ln(x) + E

⎡

⎣
T∫

t

Ψ0 − σ 2
0

2

(
π(s) − π∗

0

)2 ds

⎤

⎦

= ln(x) +
T∫

t

Ψ0 − σ 2
0

2
E

[(
π(s) − π∗

0

)2
]

ds

= ln(x) +
T∫

t

Ψ0 − σ 2
0

2

(
E [π(s)] − π∗

0

)2 − σ 2
0

2
Var (π(s)) ds

= ln(x) +
T∫

t

Ψ0 − σ 2
0

2

(
πd(s) − π∗

0

)2 − σ 2
0

2
Var (π(s)) ds

= J0 (t, x, πd) − σ 2
0

2

T∫

t

Var (π(s)) ds

≤ J0 (t, x, πd) .

This is the case if no crash happens. In the case that a crash has happened, one gets
with the definition

Aπ (t) := ln
(
1 − E [π(t)] kπd (t)

) − E [ln (1 − π(t)kπ (t))]

the following

ν1 (t, x (1 − π(t)kπ (t))) = ln(x) + E [ln (1 − π(t)kπ(t))] + Ψ1 (T − t)

= ln(x) + ln
(
1 − πd(t)kπd (t)

) + Ψ1 (T − t) − Aπ (t)

= ν1
(
t, x

(
1 − πd(t)kπd (t)

)) − Aπ (t)

≤ ν1
(
t, x

(
1 − πd(t)kπd (t)

))
,

where it has been used for the last inequality that Aπ (t) ≥ 0. However, this is Jensen’s
inequality which holds if 1 − π(t)kπ (t) ≥ 0. The latter holds for π(t) < 1

k∗ , which
is the assumption. This proves the assertion.

Remark 4 The condition π(t) < 1
k∗ is natural if a crash of size k∗ can happen,

because it avoids that the investor can go bankrupt. Since k∗ ≤ 1, the condition
means that the investor is not allowed to be too much leveraged.
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7 Conclusion

It has been shown that the worst-case scenario approach of Korn and Wilmott [9] will
not make use of additional probabilistic information of a crash happening. This is
overcome by introducing a q-quantile approach which is a Value at Risk ansatz to the
worst-case scenario method. Examples are given; in particular, one extreme example
shows that it is possible with the q-quantile approach to obtain optimal portfolio
strategies which are first increasing and then decreasing. Finally, it is shown that any
stochastic portfolio strategy will give a lower expected utility of terminal wealth (or
a lower worst-case scenario bound) than the corresponding deterministic portfolio
strategy (defined by taking the expectation of the stochastic portfolio strategy)).
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