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Abstract. This paper introduces the Averroes formal verification sys-
tem which exploits the power of two complementary approaches: counter-
example-guided abstraction and refinement (CEGAR) of the design’s
datapath and the recently-introduced IC3 and PDR approximate reach-
ability algorithms. Averroes is particularly suited to the class of hardware
designs consisting of wide datapaths and complex control logic, a class
that covers a wide spectrum of design styles that range from general-
purpose microprocessors to special-purpose embedded controllers and
accelerators. In most of these designs, the number of datapath state
variables is orders of magnitude larger than the number of control state
variables. Thus, for purposes of verifying the correctness of the control
logic (where most design errors typically reside), datapath abstraction is
particularly effective at pruning away most of a design’s state space leav-
ing a much reduced “control space” that can be efficiently explored by
the IC3 and PDR method. Preliminary experimental results on a suite
of industrial benchmarks show that Averroes significantly outperforms
verification at the bit level. To our knowledge, this is the first empir-
ical demonstration of the possibility of automatic scalable unbounded
sequential verification.

1 Introduction

This paper explores the possibility of scaling formal verification of complex hard-
ware systems beyond what is possible today by exploiting the power of two com-
plementary approaches: counterexample-guided datapath abstraction and refine-
ment and the recently-introduced IC3 [1] and PDR [2] approximate reachability
algorithms. Our prototype implementation of this verification framework, which
we call the Averroes system for sequential verification, is premised on the conjec-
ture that the complexity of sequential verification can be reduced significantly
by a) abstracting away irrelevant datapath “state” that basically clutters reach-
ability analysis without providing any useful guidance for its convergence, and
b) performing approximate reachability on this abstracted state space. The ap-
proach can be viewed as a “layering” of two CEGAR loops: an inner loop that
performs approximate reachability on the datapath-abstracted state space, and
an outer datapath refinement loop that tightens the abstraction based on the
spurious counterexamples generated by the inner loop. Initial empirical evalua-
tion of this approach shows that it significantly outperforms bit-level verification
on a set of industrial RTL benchmarks and suggests that the combination of
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datapath abstraction and approximate reachability makes it possible to perform
automatic unbounded scalable verification on real-world industrial benchmarks.

The rest of the paper is organized in 9 sections. Sections 2 and 3 briefly review
previous work and cover preliminaries. We then provide a high-level description
of the IC3/PDR approach in Section 4 followed by an example, in Section 5,
to motivate datapath abstraction. Sections 6 and 7 provide an overview and a
detailed description of the Averroes algorithm. Preliminary experimental evalua-
tion is covered in Section 8, and Section 9 ends the paper with some conclusions.

2 Previous Work

The recently introduced IC3 algorithm [1] and its re-implementation in PDR [2]
represent a major milestone in the decades’ long quest for scalable model check-
ing (MC). Both can be described as SAT-based induction methods and both
share some features of the earlier attempts at using induction [3,4]. In particu-
lar, assuming that a given safety property P holds but is not inductive (i.e., is
not closed under the transition relation), induction methods can be viewed as
ways of performing approximate reachability with the goal of finding an assertion
that strengthens (i.e., restricts) P so that it becomes an inductive invariant [5].
Alternatively, such methods can be seen as an application of counterexample-
guided abstraction refinement (CEGAR) [6,7,8] whereby overapproximations of
the reachable states are refined iteratively until enough unreachable states have
been eliminated to prove that P does in fact hold or to produce a counterexam-
ple trace. Eliminating the need to compute exact reachability makes it possible
for induction methods to converge in a number of iterations that can be much
smaller than the sequential depth of the transition relation. Additionally, induc-
tion methods can be applied without having to unroll the transition relation
which allows them to have better scalability than the earlier memory-intensive
BDD [9,10] or BMC [11,12] approaches.

Several extensions of the IC3/PDR approach have already been proposed. In
[13], the authors describe an extension to PDR that enables reasoning about
nonlinear predicate transformers and linear real arithmetic. In [14], IC3-style
reachability is generalized to handle transition systems described by first-order
formulas, combined with control flow graph (CFG) analysis, and used to verify
safety properties of software. The work that is closest to ours is [15] where
Kurshan’s visible variable abstraction [6] is layered on top of IC3 to significantly
scale performance, over just IC3, on a set of large industrial benchmarks.

The datapath/control dichotomy has been addressed by many authors. In [16],
properties are classified as control, data, and data/control, and various degrees
of data sensitivity are introduced and analyzed. A formal model of systems that
can be decomposed into an interconnection of datapath and controller modules
is described in [17] and used to automatically generate an abstraction by datap-
ath reduction. In [18], datapath abstraction is shown to yield significant savings
in both runtime and memory in a symbolic verification system. The Reveal veri-
fication system [19] performs automatic datapath abstraction from Verilog RTL
models and iteratively refines them in a standard CEGAR flow. It is important
to note that all of these approaches were limited to bounded verification that
involved unrolling a design’s transition relation a fixed number of times. To our
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knowledge, the approach described in this paper is the first to couple datapath
abstraction and refinement with unbounded model checking.

3 Preliminaries

Our concern in this paper is to determine if a sequential hardware design satisfies
a specified safety property. We assume that the design’s behavior is encoded by
a transition relation T (X,X+) where X and X+ denote n-bit vectors of current-
and next-state variables. In general, T is easily derivable from any suitable design
description, e.g., a netlist or a model in a hardware description language such
as Verilog. Furthermore, T may involve additional non-state variables including
primary inputs and signals that model combinational blocks in the design. These
extra variables are assumed to be part of the definition of T even when not ex-
plicitly listed. In the sequel, we will assume that T is available as a propositional
formula in conjunctive normal form (CNF). We also assume the existence of
two additional predicates (also available as CNF formulas) on the design’s state
variables: I(X) denoting the design’s initial (reset) state(s), and P (X) denoting
the set of states that satisfy the desired safety property. We will informally re-
fer to the states that satisfy (resp. violate) P (X) as good (resp. bad or error)
states. Finally, we denote by R(X) the design’s set of reachable states, i.e., those
states that can be reached from I(X) in one or more transitions. A trace Π is a
state sequence 〈s0 (X) , s1 (X) , · · · , sk−1 (X)〉 such that each si is a set of states,
s0(X) ∈ I(X), and si(X) ∧ T (X,X+) → si+1(X

+) holds for 0 ≤ i ≤ k− 2. The
length of a trace with k states is k − 1. An empty trace is one whose state
sequence (as a set) is empty; its length is undefined.

The verification task can now be stated as follows: prove that all states in
R are good or derive a counterexample trace that starts in I and ends in ¬P .
The algorithms we consider in this paper solve this task by induction. Using
Bradley’s terminology [5], these algorithms consist of two main steps:

– Initiation: prove that the initial states are good: I → P .
– Consecution: derive a strengthening assertion A(X) such that A∧P ∧T →

A+ ∧ P+, where A+ and P+ are shorthand for A(X+) and P (X+).

What distinguishes these algorithms from earlier induction approaches is that
the strengthening assertion A is derived incrementally rather than monolithically
[1,2]. Furthermore, in contrast to methods that perform exact image computa-
tions (symbolically using BDDs or through SAT-based unrolling of the transition
relation), these algorithms create and repeatedly tighten a sequence of approxi-
mate reachability frontiers without having to unroll the transition relation. Thus,
they do not suffer from the memory explosion inherent in earlier approaches and
are demonstrably more scalable. The first such algorithm in this category was
Bradley’s IC3 [1] which was subsequently re-implemented and enhanced by Een
et al. [2] who dubbed it PDR. In the rest of this paper we will refer to this class
of algorithms as IC3/PDR to emphasize their incremental inductive nature (the
first two Is in IC3) and their property-directed slant (the PDR viewpoint).
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1. trace Reach-CEGAR(T,I,P){
2. F0 = I;
3. if (F0 & !P)
4. then return CE trace;// len(CEX)=0
5. if (F0 & T & !P+)
6. then return CE trace;// len(CEX)=1
7. k = 1;
8. Fk = P; 
9. while (true){
10. Fk+1 = P;
11. while (Fk & T & !P+)// CTI
12. if Reachable(CTI,I)
13. then return CEX trace;// len(CEX) k+1
14. else Refine(1,k+1);
15. if (Fi = Fi-1 for some 2 i k+1)
16. then return empty trace;// P holds
17. k++;
18. }
19. }

Fig. 1. High-Level Pseudo Code for CEGAR-Based Reachability

4 Reachability Approximation and Refinement

For our purposes we find it useful to view the IC3/PDR approach as a clever
application of CEGAR whereby a series of reachability overapproximations are
systematically refined based on counterexamples to induction (CTIs) [5] until
either a) a feasible state sequence from the initial state to an error state (a
counterexample trace) is found or b) the refinements become sufficient to render
the property being checked inductive, i.e., an overapproximation of the reachable
states that satisfies the property is found. A sketch of this approach, loosely mim-
icking IC3, is given in Fig. 1. The procedure, which we call Reach-CEGAR,
takes as input T , I, and P , and returns a trace. An empty trace indicates that
P holds; otherwise the returned trace represents a counterexample CEX demon-
strating how P is violated.

Reach-CEGAR maintains an array of frontiers F0, F1, · · · , Fk, · · · such that
F0 = I and Fj , j > 0 is an overapproximation of what is reachable after j
steps from I. After checking for 0- and 1-step counterexamples (lines 2 to 6),
Reach-CEGAR enters its main loop (lines 9 to 18). At iteration k > 0, the
goal is to check for the existence of CTIs that correspond to counterexample
traces whose length is at least k + 1. Each satisfying assignment to the current-
state variables in the query on line 11 is a CTI that is checked to determine
if it is reachable from I (line 12). If unreachable, the CTI is used to tighten
the approximations of frontiers 1 to k + 1 (line 14) by constraining them with
appropriate refinement clauses. This process continues until either a reachable
CTI is found (line 13) or all CTIs from the current frontier have been ruled out
as unreachable. At that point Reach-CEGAR checks for convergence (line 15)
which is indicated when two frontier approximations become equal. If converged,
Reach-CEGAR returns an empty trace signaling that P is satisfied (line 16).
Otherwise, it increments the iteration counter (line 17) and proceeds to check
for the existence of CTIs that correspond to longer counterexample traces.
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This sketch hides many details that are critical to the performance of the
algorithm. Specifically, in IC3/PDR Reachable and Refine are not separate
procedures. Instead, the reachability check implied byReachable is decomposed
into a collection of 1-step backward reachability checks that are queued and
processed in some order. Each such check may spawn further checks and/or yield
one or more refinements that are propagated backward and forward to tighten
the frontier approximations. The checks and attendant refinements, which are
performed through appropriate calls to an incremental SAT solver, are closely
choreographed to improve the quality of the derived refinement clauses and speed
up convergence. Different implementations will thus yield different refinements
that can lead to drastically different performance.

There is, however, a critical detail in the implementation of Reach-CEGAR
that deserves mention. Let ρj denote the CNF formula corresponding to the
refinement clauses associated with frame j. With a slight abuse of notation, we
will also view ρj as a set of clauses. At the beginning of each major iteration
k, Reach-CEGAR insures that the sets of refinement clauses are distinct and
subsumption-free, i.e., ω � υ where ω ∈ ρj and υ ∈ ρi for i � j. The frontier
overapproximations can now be expressed as:

Fj = P ∧ k+1∧
i=j

ρi, j ∈ [1, k + 1]

which in turn implies that F1 → F2 → · · · → Fk+1, and reduces the convergence
check on line 15 to checking that the set of refinement clauses at some frame j
has become empty (ρj = 1). At that point, the refinement clauses at the last
frontier serve as an inductive strengthening assertion [5] that helps prove the
property: ρk+1 ∧ P ∧ T → ρ+k+1 ∧ P+

5 Motivating Example

Fig. 2 gives the Verilog description and corresponding state transition graph
(STG) of an example sequential circuit that will serve to demonstrate the poten-
tial benefits of combining datapath abstraction with approximate reachability.
The circuit clearly satisfies the specified property P (X,Y ) = (Y ≤ X) since, as
can be seen from the STG, the reachable states satisfy R(X,Y ) = (Y = X).

When IC3 is run on this example it proves the property after eliminating two
CTIs and generating three refinement clauses. At exit the refinement clauses and
corresponding frontier approximations are:

ρ1 = ¬x1 F1 = P ∧ ρ1 ∧ ρ2 ∧ ρ3
ρ2 = 1 F2 = P ∧ ρ2 ∧ ρ3
ρ3 = (¬x0 ∨ y0) ∧ (¬x1 ∨ y1) F3 = P ∧ ρ3

Note that the clause set for frontier 2 is empty (ρ2 = 1) implying that F3 = F2.
In contrast, PDR proves the property by eliminating 6 CTIs and learning 7

refinement clauses. The difference between the two programs is due to their par-
ticular choices for the initial frontier approximations (PDR sets Fk = 1 instead
of Fk = P ) and the manner in which they perform backward reachability and
refinement. The difference becomes more pronounced when the bit width of the
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`define W 2
`define MAX `W'b11
module example(CLK);
input wire CLK;
reg [`W-1:0] X, Y;
initial begin
X = `W'd0;
Y = `W'd0;

end
always @(posedge CLK) begin
X <= (Y>X)? X :

((Y==X) || (X!=`MAX))? (X+`W'd1) : Y;
Y <= (Y==X)? (Y+`W'd1) :

((Y>X) || (X!=`MAX))? Y : X;
end
wire P = (Y<=X);

endmodule

0,0

1,12,2

3,3

0,3

3,0

2,0

1,0

1,3

3,1

2,1

1,2 0,2 0,1

2,3

3,2

R(X, Y)

P(X, Y)

¬P(X, Y)

Fig. 2. Verilog description and corresponding STG of an example sequential circuit
with a specified safety property. The state variables are 2-bit unsigned integers X =
x1x0 and Y = y1y0 and their values are used to label the states (X followed by Y )
in the STG. The good states are represented by circles (reachable states) and squares
(unreachable states); squares with rounded corners correspond to bad states. Note that
the circuit’s sequential depth is exponential in the bit width W : 2W = 22 = 4.

state variables in the example is increased from 2 to 64. The results are shown in
Table 1. For each bit width, the table compares five measures of performance for
IC3 and PDR: runtime, number of frames, number of CTI checks, total and net
number of refinement clauses, and total and net number of refinement literals.
The number of net refinement clauses and literals reflects the effect of clause
subsumption. With a time-out of 1500 seconds, both programs completed the
verification up to a bit width of 8; neither program finished for larger bit widths.
In most cases PDR outperformed IC3, carrying out many more CTI checks while
learning fewer refinement clauses (after subsumption). However, for both pro-
grams the number of accumulated refinement clauses grows rapidly as the bit

Table 1. IC3 v. PDR on Example Circuit of Figure 2 for Different Bit Widths

Bit
Width

Sequential
Depth

Runtime, sec Frames CTI Checks
Refinement Clauses Refinement Literals

Total Net Total Net

IC3 PDR IC3 PDR IC3 PDR IC3 PDR IC3 PDR IC3 PDR IC3 PDR

2 4.00E+00 0.02 0.02 2 4 2 6 3 12 3 7 5 22 5 12
4 1.60E+01 0.07 0.05 15 15 16 71 84 114 34 32 258 328 87 69
8 2.56E+02 59.59 3.82 232 141 293 4782 31527 6503 740 195 178736 38364 3267 679
16 6.55E+04 T.O. T.O. 311 1074 402 299511 179776 327581 1241 9576 2273502 4252418 13779 113497
32 4.29E+09 T.O. T.O. 207 1080 200 313973 28018 327958 325 11431 724242 3932210 6786 126096
64 1.84E+19 T.O. T.O. 200 923 241 244916 11470 259737 356 8922 636123 2857933 13744 97484
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1. trace DP-CEGAR(T,I,P){
2. = DP-Abstract(T,I,P);
3. = 1; // Initialize datapath lemmas
4. while (true){
5. ACEX = Reach-CEGAR         ;
6. if empty(ACEX)
7. then return empty trace;// P holds
8. CEX = DP-Concretize(ACEX);
9. if Feasible(CEX)
10. then return CEX trace;// P fails
11. else   =   && DP-Refine ;
12. }
13. }

ˆ ˆ ˆ(T,I,P)

ˆ ˆ ˆ(T,I,P, )

(ACEX)

Fig. 3. High-Level Pseudo Code for CEGAR-Based Datapath Abstraction

width increases. The large gap between the total and net number of refinement
clauses also indicates that both programs learn weak clauses that end up being
subsumed by stronger ones in later iterations. This suggests that the refinement
process gets mired in irrelevant bit-level details that miss the big picture about
the property being checked.

6 Datapath Abstraction and Refinement

Our proposed procedure for integrating an IC3/PDR-style reachability compu-
tation within a datapath abstraction and refinement framework is summarized
in Fig. 3. The initial datapath abstraction is performed by DP-Abstract which
returns first-order logic (FOL) versions of the bit-level transition, initial, and
property formulas (line 2) by, basically, replacing wide datapath signals with
uninterpreted terms, and datapath operators and predicates with, respectively,
uninterpreted functions and predicates. Single-bit control signals are not ab-
stracted [19]. The abstract formulas are overapproximations of the bit-level ver-
sions and, thus, represent a sound abstraction. The procedure then initializes Δ
(line 3) which serves as a database of derived datapath refinement lemmas. The
reachability computation is carried out by calling a modified version of Reach-
CEGAR (line 5) that operates on the abstract formulas. Note, in particular,
that this version of Reach-CEGAR takes as a fourth argument a formula rep-
resenting the learned datapath lemmas which it augments to all the queries
it performs. If Reach-CEGAR returns an empty trace, DP-CEGAR termi-
nates with the conclusion that the property holds (line 7). However, if Reach-
CEGAR returns a non-empty abstract trace ACEX, a concrete bit-level version
is constructed by DP-Concretize (line 8) and checked for feasibility (line 9).
If found to be feasible, CEX is returned as a witness for the violation of the
property (line 10). Otherwise, a datapath refinement procedure, similar to that
in [20], is called to refute this spurious CEX by generating one or more data-
path lemmas (line 11), and another round of abstract reachability is invoked.
The hypothesis behind this architecture is that the approximate CEGAR-based
reachability computation is now performed on an abstracted version of the
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design that eliminates irrelevant bit-level details and, thus, is more scalable.
More specifically, the abstract CEGAR-based reachability procedure is now op-
erating on approximate reachability frontiers in an abstract approximate state
space. The combination of these two orthogonal approximations can lead to
drastic pruning by generating two types of refinement lemmas: reachability re-
finement lemmas, and datapath refinement lemmas. The latter are “universal”
in that they are invariants that tighten the datapath abstraction by relating the
uninterpreted terms, functions, and predicates. The former are derived during
the approximate reachability computation, except they are now in terms of the
abstract state variables. They are, thus, expected to be much stronger than the
bit-level refinement clauses derived by IC3 and PDR.

To illustrate the potential of this approach, consider its application to the
example sequential design from Section 5. Datapath abstraction creates the fol-
lowing uninterpreted variables, constants, predicates, and functions from the
corresponding bit-level equivalents1:

ˆ ˆ,

ZERO

MAX
ˆ ˆGT( , )
ˆINC( )
ˆINC( )

X Y

Y X

X

Y

reg [`W-1:0] X, Y;

`W'd0
`W'd11...1

Y > X

X + `W’d1

Y + `W’d1

DP-Abstract

DP-Concretize

When Reach-CEGAR is applied to the abstract transition relation it returns
the 0-step counterexample

ACEX = (X̂ = ZERO) ∧ (Ŷ = ZERO) ∧ (GT(Ŷ , X̂))

since it does not know the semantics of the abstract constant ZERO and the
abstract predicate GT. However, upon concretization and bit-level feasibility
checking, DP-CEGAR concludes that this counterexample is spurious and de-
rives the following datapath lemma

δ1 = ¬GT(ZERO, X̂)

to rule it out. The second call to Reach-CEGAR returns a 1-step abstract
counterexample which is also found to be infeasible and is refuted by the data-
path lemma

δ2 = ¬[(Ŷ = X̂) ∧ (X̂+ = INC(X̂))∧
(Ŷ + = INC(Ŷ )) ∧ (GT(Ŷ +, X̂+))]

This lemma is a constraint that relates the uninterpreted GT predicate and the
uninterpreted INC function: in words, it states that applying INC to equal values

1 Note that this abstraction is reversible; we just need to maintain the correspondence
between the abstract entities and their bit-level counterparts.
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cannot yield results in which one is greater than the other. The third, and final
call, to Reach-CEGAR returns an empty trace after eliminating two CTIs and
generating two abstract single-literal refinement clauses: ¬GT(X̂, Ŷ ) and (Ŷ =

X̂). Thus, after eliminating 0- and 1-step counterexamples with two datapath
lemmas, DP-CEGAR is able to prove the property in just one reachability
iteration regardless of the bit width of the state variables.

7 The Averroes Algorithm

In this section we describe the Averroes program, a prototype implementation
of DP-CEGAR. Averroes2 is written in C++ and accepts design descriptions
in a variety of formats including RTL Verilog. It calls DP-Abstract to create an
initial abstraction of T , I, and P , similar to that described in [19], and passes it
on to Reach-CEGAR, an IC3/PDR approximate reachability procedure to be
described shortly. Abstract counterexample traces returned byReach-CEGAR
are bit blasted and checked for feasibility one transition at a time. Each infeasible
transition in a counterexample triggers the generation of one or more datapath
refinement lemmas using a simplified version of the minimal unsatisfiable subset
(MUS) extractor in [20]. Feasibility checking is done using the bit vector (BV)
theory in the Yices (version 1.0.35) SMT solver [21].

Fig. 4 highlights the major steps of the approximate reachability computation
in Reach-CEGAR (lines 9–18 in Fig. 1). The formulas processed by Reach-
CEGAR are all in the first-order logic of equality with uninterpreted functions
(EUF) and all reasoning is done using the Yices SMT solver. Satisfying solutions
returned from the SMT solver are converted to a conjunction of literals which
take several forms:

– positive or negated bit-level variables
– positive or negated uninterpreted predicates
– equalities or disequalities between uninterpreted constants, terms, and func-

tions

The procedure utilizes a queue Q of proof obligations each of which is a pair
(c(X), k) where c(X) is a conjunction of literals (a cube) and k is a frame number.
The following numbered list corresponds to the numbered boxes in Fig. 4:

1. At the start of major iteration k, frame k is overapproximated to P (Fk = P ).
The iteration then repeatedly checks for CTIs using the function 1-step which
calls the SMT solver with the query: Fk ∧ T ∧Δ ∧ ¬P+

2. A satisfying solution s(X) ∈ Fk(X) to this query indicates a CTI that must
now be checked for reachability from I(X). Before proceeding with that
check, however, the solution is “expanded” to remove irrelevant literals using
a) cone of influence (COI) reduction, and b) finding MUSes, if any exist, of

the formula3 s ∧ P ∧ T ∧Δ ∧ P+[22]. The enlarged cube
�
s is now added to

2 The Averroes tool and some hand-crafted examples are available at
http://web.eecs.umich.edu/~suholee/AVERROES.html

3 PDR does this at the bit level using 3-valued simulation. In our case, this formula
may be satisfiable and not yield an expansion of the cube!

http://web.eecs.umich.edu/~suholee/AVERROES.html
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Fig. 4. Implementation of Reach-CEGAR in the Averroes Verifier.Reach-CEGAR
performs approximate reachability computation on an EUF abstraction of the bit-level
transition relation.

the Q as a proof obligation in frame k, meaning “can
�
s be eliminated from

Fk by showing that it is unreachable from I along paths whose length is at
least k?”

3. An empty queue signifies that the current CTI has been successfully elimi-
nated and the algorithm proceeds to check for the existence of another CTI
from the current frame.

4. The reachability computation starts here by retrieving a proof obligation
(t, j) from the queue.

5. The 1-step function checks the formula Fj−1 ∧T ∧Δ∧ t+ ∧P+ to determine
if t can be reached in one step from frame j − 1.

6. If t is not reachable from frame j − 1, it is enlarged to
�

t by extracting one

or more MUSes from the UNSAT formula in step 5. The negation of
�

t is
now added as a refinement clause to frame j (which means that all frames
1 ≤ i ≤ j are tightened as a result of the unreachability of t in frame j).

7. The processing of cube t terminates if we reach the last frontier k.
8. Otherwise, t is added as a proof obligation in frame j + 1. This step is

optional but, as pointed out in [2], it helps to improve performance and to
find counterexample traces that are longer than k + 1.

9. If the current proof obligation is (t, 1) and t is found to be reachable from
frame 0, then we have found an abstract counterexample trace ACEX and
the procedure terminates.

10. If t in frame j is found to be reachable (in one step) from frame j − 1, the
satisfying solution r to the query in step 5 is enlarged similarly to how s was
enlarged in step 2. Specifically, irrelevant literals are removed from r by COI
reduction and MUS extraction, if any exist, from r ∧P ∧ T ∧Δ∧¬t+ ∧P+.

Processing continues by re-inserting (t, j) into the queue and adding (
�
r , j−1)

as a new proof obligation.
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Table 2. Statistics of the Large Industrial Benchmarks

Benchmark Regs FFs
State
Bits

%Regs
%Reg
Bits

AIG
Size

mult hold 1 6 2 258 75 99 24452
mult hold 2 6 2 514 75 100 98052
mult hold 3 6 2 1026 75 100 392708
mult hold 4 6 10 266 38 96 24638
mult viol 1 7 2 268 78 99 25008
mult viol 2 7 2 524 78 100 99119
mult viol 3 7 2 1036 78 100 394797
mult viol 4 7 10 279 41 96 25193
mult viol 5 7 10 279 41 96 25193
mult viol 6 7 10 279 41 96 25190
mult viol 7 7 10 279 41 96 25190

fifo hold 2 28 10 474 74 98 6848
fifo hold 3 44 10 866 81 99 17968
fifo hold 4 76 10 1642 88 99 53904

M0+ hold 56 26 1306 68 98 41630

11. When all CTIs from the current frontier k have been eliminated, refinement
clauses from earlier iterations are checked to see if they can be moved forward
to tighten later frontiers. A refinement clause ω ∈ Fj , 1 ≤ j ≤ k that causes
the query Fj ∧ T ∧ Δ ∧ ¬ω+ ∧ P+ to be UNSAT indicates that cube ¬ω
in frame j + 1 is unreachable in one step from frame j and can thus be
eliminated from frame j + 1. This is accomplished by propagating clause ω
forward: Fj+1 = Fj+1 ∧ ω.

12. The procedure terminates proving that P holds if two successive frames
become equal, i.e., if Fj = Fj+1 for some 1 � j � k. This check is equivalent
to finding the clause set associated with frame j has become empty.

13. Otherwise, a new frame is created and initialized to P and the procedure
continues to check for CTIs corresponding to longer counterexample traces.

8 Experimental Evaluation

Anecdotally, abstracting a design’s datapath is commonly believed to yield scal-
able verification of its control logic. However, unlike verification at the bit-level
which enjoys a large corpus of benchmarks and published results, there is little
documentation in the open literature of the effectiveness of datapath abstrac-
tion on a diverse set of word-level benchmarks. The dearth of publicly-available
RTL benchmarks that preserve the word-level semantics of a design was one
of the main challenges we faced when evaluating the effectiveness of Averroes.
Realizing that reporting on hand-crafted synthetic benchmarks would not be
convincing, we opted instead to evaluate performance on a set of 139 indus-
trial Verilog benchmarks that we obtained under non-disclosure agreements.4

4 Companies understandably want to protect the IP of their, or their customers’, RTL
designs. However, to spur further research in this space, it is important to find a way
to make such RTL designs publicly available without compromising their owners’ IP
rights.
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Fig. 5. Verification Results of the Generic Industrial Benchmarks

Of these, 124 were medium-sized “generic” benchmarks that were used for ini-
tial calibration. Their code sizes ranged between 298 and 805 lines; in terms of
flip-flops, the smallest had 514 and the largest had 931. The remaining 15 bench-
marks included 11 large multipliers, 3 FIFO designs, and the ARM Cortex-M0+
core [23]. The code sizes for these ranged from 116 to 10,226 lines. Table 2
lists additional statistics including the number of multi-bit registers (Regs), the
number of single-bit flip-flops (FFs), the total number of state bits (FFs + the
number of bits in the registers), the percentage of registers and register bits in
the benchmark, and the number of AND nodes in the AIG representation [24]
of its synthesized bit-level netlist. The multiplier benchmarks involved checking
the sequential equivalence before and after clock gating optimizations; in four of
these the property holds, and in the remaining seven it fails. The FIFO bench-
marks check a “read-after-write” property for different FIFO depths. Finally,
the M0+ experiment involved checking self-equivalence under partial initializa-
tion (i.e., when only a subset of the state bits are initialized on reset); this is
sometimes referred to as self-equivalence with don’t-cares or SEQX. In all cases,
the verification involved an unbounded check to determine if the given safety
property holds, on all, or is violated, by some, reachable states.

We compared the performance of Averroes to that of IC3 and PDR with and
without pre-processing. In their default modes, IC3 and PDR simplify the input
design before they start the approximate reachability loop: IC3 applies AIG
sweeping [25]; PDR invokes the ABC dprove command [26]. Such pre-processing
can greatly reduce the size of the input circuit which helps with the subsequent
reachability computation. All experiments were run on a 3.2GHz Xeon desktop
computer with a 16 GB memory. A time-out of 10,000 seconds was used for
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Table 3. Verification Results of the Large Industrial Benchmarks

Benchmark
Runtime, sec Frames CTI Checks Refinement Clauses Solver Calls

IC3 PDR AVR IC3 PDR AVR IC3 PDR AVR IC3 PDR AVR IC3 PDR AVR

mult hold 1 T.O. T.O. 0.02 1 3 1 41595 3 4 256 131720 3 776723 6331714 22
mult hold 2 T.O. T.O. 0.02 1 3 1 9559 3 4 512 13008 3 159978 1032718 22
mult hold 3 ERR T.O. 0.02 N/A 3 1 N/A 3 4 N/A 5986 3 N/A 546718 22
mult hold 4 ERR T.O. 0.04 N/A 2 2 N/A 2 8 N/A 1 8 N/A 10 56
mult viol 1 ERR 116.15 0.05 N/A 2 1 N/A 2 5 N/A 3 3 N/A 21 15
mult viol 2 ERR 256.32 0.18 N/A 2 1 N/A 2 5 N/A 2 3 N/A 16 15
mult viol 3 ERR 1483.92 0.75 N/A 2 1 N/A 2 5 N/A 2 3 N/A 16 15
mult viol 4 ERR T.O. 0.54 N/A 2 7 N/A 2 30 N/A 262365 29 N/A 8177493 335
mult viol 5 ERR T.O. 11.88 N/A 2 22 N/A 2 47 N/A 252987 69 N/A 7961852 3040
mult viol 6 ERR T.O. 299.23 N/A 2 115 N/A 2 120 N/A 247035 275 N/A 8102702 55251
mult viol 7 ERR T.O. 1884.52 N/A 2 451 N/A 2 536 N/A 239809 754 N/A 7826919 425892

fifo hold 2 13.79 14.87 1.35 9 12 8 1599 12 115 1691 4030 115 30060 94230 1574
fifo hold 3 249.94 201.58 12.88 16 20 16 6455 20 355 6759 17772 317 306131 612147 9711
fifo hold 4 5322.7 746.94 264.85 33 31 28 29898 36984 1804 25700 24609 1403 2602365 1611008 103590

M0+ hold ERR T.O. 917.76 N/A 8 17 N/A 5315 1154 N/A 3783 911 N/A 75898 45755

a. IC3 and PDR were run with pre-processing.

mult hold 1 ERR T.O. 0.02 N/A 2 1 N/A 134 4 N/A 217 3 N/A 1307 22
mult hold 2 ERR T.O. 0.02 N/A 2 1 N/A 257 4 N/A 512 3 N/A 3147 22
mult hold 3 ERR T.O. 0.02 N/A 2 1 N/A 521 4 N/A 612 3 N/A 2915 22
mult hold 4 ERR T.O. 0.04 N/A 2 2 N/A 189 8 N/A 250 8 N/A 1611 56
mult viol 1 ERR 0.62 0.05 N/A 2 1 N/A 256 5 N/A 383 3 N/A 1439 15
mult viol 2 ERR 10.86 0.18 N/A 2 1 N/A 386 5 N/A 532 3 N/A 2129 15
mult viol 3 ERR 219.93 0.75 N/A 2 1 N/A 537 5 N/A 798 3 N/A 3396 15
mult viol 4 ERR T.O. 0.54 N/A 2 7 N/A 181 30 N/A 284 29 N/A 1821 335
mult viol 5 ERR T.O. 11.88 N/A 2 22 N/A 191 47 N/A 252 69 N/A 1596 3040
mult viol 6 ERR T.O. 299.23 N/A 2 115 N/A 177 120 N/A 273 275 N/A 1751 55251
mult viol 7 ERR T.O. 1884.52 N/A 2 451 N/A 179 536 N/A 260 754 N/A 1660 425892

fifo hold 2 19.67 21.12 1.35 9 16 8 1944 7191 115 2090 5544 115 38000 192592 1574
fifo hold 3 259.1 1252.89 12.88 17 29 16 6468 28402 355 8000 39937 317 273378 2525164 9711
fifo hold 4 4715.67 10454.09 264.85 32 32 28 29359 98122 1804 42802 153114 1403 2453754 7618089 103590

M0+ hold ERR T.O. 917.76 N/A 8 17 N/A 5532 1154 N/A 4363 911 N/A 77808 45755

b. IC3 and PDR were run without pre-processing.

each verification run. Each of the 124 generic benchmarks was provided with a
single specified safety property and were meant to calibrate the performance of
Averroes against that of IC3 and PDR. Fig. 5 compares the runtime of Averroes
against that of IC3 and PDR as a function of the number of flip-flops in these
benchmarks. In almost all cases, Averroes is the fastest verifier and, unlike IC3
and PDR, its performance is largely independent of the number of flip-flops. This
validates the hoped-for benefit of datapath abstraction. Oddly, the performance
of IC3 and PDR with pre-processing was worse than without! This seems to
be due to the fact that there was not much structural reduction due to pre-
processing causing pre-processing overhead to outweigh its benefit.

Table 3 shows the results of our experiments on the 15 large benchmarks;
time-outs are indicated as T.O., and ERR indicates that IC3 reported an error
and was unable to process the benchmark5. As with the generic benchmarks,
Averroes was the fastest verifier across this entire set of 15 benchmarks. IC3
and PDR had particular difficulty with the multiplier benchmarks. IC3 either

5 We traced this error to an incorrect time-out exit that occurred before the specified
time-out value!
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Table 4. Runtimes (in Seconds) of FIFO on Various Depths

depth State Bits IC3 PDR AVR AVR MA AVR MAA

22 474 13.79 14.87 1.35 1.8 8.28
23 866 249.94 201.58 12.88 10.92 20.57
24 1642 5322.7 746.94 264.85 120.51 21.93
25 3186 T.O. T.O. T.O. 2538.49 23.31
26 6266 T.O. T.O. T.O. T.O. 19.17
27 12418 T.O. T.O. T.O. T.O. 24.02
28 24714 T.O. T.O. T.O. T.O. 20.58
29 49298 T.O. T.O. T.O. T.O. 21.15
210 98458 T.O. T.O. T.O. T.O. 27.9
211 196770 T.O. T.O. T.O. T.O. 29.02
212 393386 T.O. T.O. T.O. T.O. 23.57
213 786610 T.O. T.O. T.O. T.O. 33.79
214 1573050 T.O. T.O. T.O. T.O. 46.85
215 3145922 T.O. T.O. T.O. T.O. 57.04
216 6291658 T.O. T.O. T.O. T.O. 79.19

timed out or had an error exit. PDR timed out on eight out of the eleven cases.
A possible explanation for this behavior is that the combinational logic in the
multiplier benchmarks, which involves wide (32- to 256-bit) datapath signals, led
to bit-level formulas that were too large and complicated for IC3 and PDR to
handle effectively. An examination of the runtime per solver call for mult hold 2
and fifo hold 2 confirms this. These two benchmarks have similar sizes in terms
of state bits, but mult hold 2 leads to an AIG whose size is more than 14 times
larger than that of fifo hold 2. PDR made 3,147 solver calls in 10,000 seconds
for the multiplier benchmark, averaging about 3.18 seconds per call. The corre-
sponding data for the FIFO benchmark were 192,592 calls in 21.12 seconds, an
average of 110 micro seconds per call which is more than four orders of magnitude
faster. Additionally, the peculiarly low number of solver calls for mult hold 4 in
Table 3-a seemed too suspicious; on closer examination we found out that the
first 10 calls were very quick, but the solver timed out on the 11th. This again
suggests a difficult formula that thwarted the solver.

In contrast to PDR’s performance, Averroes was able to solve all 11 cases,
most in fractions of a second. Other performance metrics, such as the number
of net refinement clauses and number of solver calls, are significantly less than
those for PDR suggesting that datapath abstraction was effective in reducing the
“size” of the reachability search space and that the abstract refinement clauses
were much stronger than their bit-level counterparts in pruning the space. The
cases requiring longer runtimes, about 30 minutes for mult viol 7, were due to
extremely long counterexample traces that require the traversal of many frames
which, in turn, translate into many solver calls. For instance, the counterexample
trace for mult viol 7 consisted of 1002 transitions which required the traversal
of 451 frames and making 425,892 solver calls.

The three FIFO benchmarks involved checking a “read-after-write” property
for the FIFO entries. The FIFO depths (number of entries) ranged from 4 (for
fifo hold 2) to 16 (for fifo hold 4) and each benchmark had two FIFOs whose
width is 32 bits and two FIFOs whose width is 16 bits. Again, Averroes outper-
forms both IC3 and PDR on these benchmarks, on average being about 20 times
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faster. This is another indication of the effectiveness of datapath abstraction. To
dramatize this, we carried out a parametric experiment by increasing the width of
the FIFO entries. As expected, the runtime of Averroes did not change, whereas
the runtimes of IC3 and PDR exhibited exponential behavior. However, all three
verifiers exhibited exponential behavior as FIFO depths were increased! Upon
reflection, this too should have been expected since FIFOs are basically “small”
memories and datapath abstraction alone is insufficient to handle them. While
memory abstraction is beyond the scope of this paper, we present in Table 4 data
showing the performance of Averroes when it is augmented with the structural
memory abstraction described in [27]. This type of abstraction can be layered on
top of any model checking verifier and can certainly be added to IC3 and PDR.
But as the column labeled AVR MA in this table shows, memory abstraction
scales the performance of Averroes only to a FIFO depth of 32. Further scaling
requires integrating memory abstraction with datapath abstraction of the mem-
ory addresses. This is shown in column AVR MAA. Clearly the combination of
memory abstraction and memory address abstraction yields a verification flow
that is largely independent of memory size. The linear increase in the runtime
of Averroes is due to the bit-level feasibility checks on wider memory addresses
as memory size increases.

The last benchmark in Table 3 is the SEQX instance of the Cortex-M0+. The
verification goal here was to show that the M0+ core is self-equivalent when
41 of its state bits are left uninitialized on reset (i.e., their initial value is X
or don’t care). Specifically, SEQX holds when none of these don’t-care values
propagate to observable outputs. Effectively, the verifier is establishing the state
equivalence of 241 possible initial states. We should note that SEQX becomes
quite trivial if the number of uninitialized state bits is small. In fact, bit-level
verifiers can quickly solve such problems using structural hashing techniques.
However, as the number of uninitialized state bits increases, structural hashing
ceases to be effective (not very many equivalent signals to merge) and bit-level
verifiers fail. This is clearly shown in Table 3: neither IC3 nor PDR was able to
prove self-equivalence; Averroes required about 15 minutes to show that SEQX
holds for M0+.

9 Conclusion

Many complex computational problems can be scalably handled by judicious
elimination of irrelevant details. The Averroes verifier described in this paper
integrates two orthogonal abstractions that, together, yield a scalable system for
the verification of control-centric properties in hardware designs containing wide
datapaths and complex control logic. To our knowledge, this is the first public
demonstration of an automated verification flow for unbounded model checking
of safety properties in industrial benchmarks. To be sure, there are many other
abstraction approaches that have been shown to work well in different domains.
However, for the particular control logic bugs targeted by our approach, datapath
abstraction seems to provide the most scalability. Specifically, our preliminary
evidence strongly suggests that scalability is quite achievable by augmenting
bit-level reasoning with RTL word-level abstractions.
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