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Abstract. We present the first scalable bound analysis that achieves
amortized complexity analysis. In contrast to earlier work, our bound
analysis is not based on general purpose reasoners such as abstract in-
terpreters, software model checkers or computer algebra tools. Rather,
we derive bounds directly from abstract program models, which we ob-
tain from programs by comparatively simple invariant generation and
symbolic execution techniques. As a result, we obtain an analysis that is
more predictable and more scalable than earlier approaches. We demon-
strate by a thorough experimental evaluation that our analysis is fast
and at the same time able to compute bounds for challenging loops in a
large real-world benchmark. Technically, our approach is based on lossy
vector addition systems (VASS). Our bound analysis first computes a
lexicographic ranking function that proves the termination of a VASS,
and then derives a bound from this ranking function. Our methodology
achieves amortized analysis based on a new insight how lexicographic
ranking functions can be used for bound analysis.

1 Introduction

Automatic methods for computing bounds on the resource consumption of pro-
grams are an active area of research [22,19,7,20,28,8,5,21,6]. We present the first
scalable bound analysis for imperative programs that achieves amortized com-
plexity analysis. Our techniques can be applied for deriving upper bounds on how
often loops can be iterated as well as on how often a single or several control
locations can be visited in terms of the program input.

The majority of earlier work on bound analysis has focused on mathemati-
cally intriguing frameworks for bound analysis. These analyses commonly employ
general purpose reasoners such as abstract interpreters, software model check-
ers or computer algebra tools and therefore rely on elaborate heuristics to work
in practice. In this paper we take an orthogonal approach that complements
previous research. We propose a bound analysis based on a simple abstract pro-
gram model, namely lossy vector addition systems with states. We present a
static analysis with four well-defined analysis phases that are executed one af-
ter each other: program abstraction, control-flow abstraction, generation of a
lexicographic ranking function and bound computation.
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A main contribution of this paper is a thorough experimental evaluation.
We compare our approach against recent bounds analysis tools [7,5,6,12], and
show that our approach is faster and at the same time achieves better results.
Additionally, we demonstrate the scalability of our approach by a comparison
against our earlier tool [28], which to the best of our knowledge represents the
only tool evaluated on a large publicly available benchmark of C programs.
We show that our new approach achieves better results while increasing the
performance by an order of magnitude. Moreover, we discuss on this benchmark
how our tool achieves amortized complexity analysis in real-world code.

Our technical key contribution is a new insight how lexicographic ranking
functions can be used for bound analysis. Earlier approaches such as [7] simply
count the number of elements in the image of the lexicographic ranking function
in order to determine an upper bound on the possible program steps. The same
idea implicitly underlies the bound analyses [15,19,16,20,28,6,12]. However, this
reasoning misses arithmetic dependencies between the components of the lexi-
cographic ranking function (see Section 2). In contrast, our analysis calculates
how much a lexicographic ranking function component is increased when another
component is decreased. This enables amortized analysis.

Related Work. An interesting line of research studies the amortized analysis
of first-order functional programs (e.g. [22,21]) formulated as type rules over a
template potential function with unknown coefficients; these coefficients are then
found by linear programming. It is not clear how to transfer this approach to an
imperative setting. Promising first steps for the amortized analysis of imperative
programs are reported in [8]. Quantifier elimination is applied for simplifying a
constraint system over template cost functions. Since quantifier elimination is
expensive, the technique does not yet scale to larger programs.

Lexicographic ranking functions in automated termination analysis have been
pioneered by Bradley et al. (see [10] and follow-up papers) who employ an elab-
orate constraint solving technique. A recent paper experimentally compares ter-
mination analysis by lexicographic ranking and transition invariants [13] imple-
mented on top of a software model checker. [7] iteratively constructs a lexico-
graphic ranking function by solving linear constraint systems. [11] is a hybrid of
the approaches [13] and [7]. [10], [13] and [11] compute a lexicographic ranking
function for a single control location (i.e., one loop header) at a time, while
the application of bound analysis requires to find a common lexicographic rank-
ing function for all control locations. [7] computes such a ranking function, but
is limited to fairly small programs. Our approach complements the cited ap-
proaches as it represents a simple and scalable construction of a lexicographic
ranking function for all control locations.

Bound Analysis. The COSTA project (e.g. [5,6]) studies the extraction of cost
recurrence relations from Java bytecode programs and proposes new methods for
solving them with the help of computer algebra systems. [15] proposes to extend
the polyhedra abstract domain with max- and non-linear expressions. [19] intro-
duces multiple counters and exploits their dependencies such that upper bounds
have to be computed only for restricted program parts. [16] proposes an abstract
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void main(uint n) {
int a = n, b = 0;

l1 : while (a > 0) {
a--; b++;

l2 : while (b > 0) {
b--;

l3 : for (int i = n-1; i > 0; i--)

if (a > 0 && ?) {
l4 : a--; b++;

} } } }

begin

l1

l2

l3

l4

end

a = n
b = 0
i = 0

τ1 ≡
a′ ≤ a − 1

b′ ≤ b + 1

i′ ≤ i

τ2 ≡
a′ ≤ a

b′ ≤ b − 1

i′ ≤ i + (n − 1)

Id τ3 ≡
a′ ≤ a

b′ ≤ b

i′ ≤ i − 1

τ4 ≡
a′ ≤ a − 1

b′ ≤ b + 1

i′ ≤ i − 1

Id

Id

Id

Fig. 1. Our running example, ’?’ denotes non-determinism (arising from a condition
not modeled in the analysis). On the right we state the lossy VASS obtained by ab-
straction, Id denotes a′ ≤ a, b′ ≤ b, i′ ≤ i.

interpretation-guided program transformation that separates the different loop
phases such that bounds can be computed for each phase in isolation. [20] employs
proof-rules for bound computation combinedwithdisjunctive abstract domains for
summarizing inner loops. [28] proposes a bound analysis based on the size-change
abstract domain. [17,12] discuss how to alternate between bound analysis and in-
variant analysis for the mutual benefit of the computed bounds and invariants.

2 Motivation and Overview

The example presented in Figure 1 (encountered during our experiments) is
challenging for an automated bound analysis: (C1) There are loops whose loop
counter is modified by an inner loop: the innermost loop modifies the counter
variables a and b of the two outer loops. Thus, the inner loop cannot be ignored
(i.e., cannot be sliced away) during the analysis of the two outer loops. (C2) The
middle loop with loop counter b requires a path-sensitive analysis to establish the
linear loop bound n: it is not enough to consider how often the innermost loop
can be executed (at most n2 times) but rather how often the if-branch of the
innermost loop (on which b is actually incremented) can be executed (at most n
times). (C3) Current bound analysis techniques cannot model increments and
instead approximate increments by resets, e.g., approximate the increment of
b by an assignment to a value between 0 and n (using the fact that n is an
upper bound of b)! Because of this overapproximation no bound analysis from
the literature is able to compute the linear loop bound n for the middle loop.
We now illustrate the main steps of our analysis:

1. Program Abstraction: First, our analysis abstracts the program to the VASS
depicted in Figure 1. We introduce VASSs in Section 3. In this paper we are
using parameterized VASSs, where we allow increments that are symbolic but
constant throughout the program (such as n− 1). We extract lossy VASSs from
C programs using simple invariant generation and symbolic execution techniques
(described in Section 7).
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2. Control Flow Abstraction: We propose a new abstraction for bound anal-
ysis, which we call control flow abstraction (CA) (described in Section 4). CA
abstracts the VASS from Figure 1 into a transition system with four transitions:
ρ1 ≡ a′ ≤ a− 1∧ b′ ≤ b+ 1∧ i′ ≤ i, ρ2 ≡ a′ ≤ a∧ b′ ≤ b− 1∧ i′ ≤ i+ (n− 1),
ρ3 ≡ a′ ≤ a ∧ b′ ≤ b ∧ i′ ≤ i− 1, ρ4 ≡ a′ ≤ a− 1 ∧ b′ ≤ b+ 1 ∧ i′ ≤ i− 1.
CA effectively merges loops at different control locations into a single loop cre-
ating one transition for every cyclic path of every loop (without unwinding inner
loops). This significantly simplifies the design of the later analysis phases.

3. Ranking Function Generation: Our ranking function generation (Algorithm
2 stated in Section 5) finds an order on the transitions resulting from CA such
that there is a variable for every transition, which decreases on that transi-
tion and does not increase on the transitions that are lower in the order. This
results in the lexicographic ranking function l = 〈a, a, b, i〉 for the transitions
ρ1, ρ4, ρ2, ρ3 in that order. Our soundness theorem (Theorem 1) guarantees that
l proves the termination of Figure 1.

4. Bound Analysis: Our bound analysis (Algorithm 3 stated in Section 6)
computes a bound for every transition ρ by adding for every other transition
τ how often τ increases the variable of ρ and by how much. In this way, our
bound analysis computes the bound n for ρ2, because ρ2 can be incremented
by ρ1 and ρ4, but this can only happen n times, due to the initial value n of
a. Further, our bound analysis computes the bound n ∗ (n − 1) for ρ3 from the
fact that only ρ2 can increase the counter i by n− 1 and that ρ2 has the already
computed transition-bound n. Our soundness result (Theorem 2) guarantees
that the bound n obtained for ρ2 is indeed a bound on how often the middle
loop of Figure 1 can be executed.

Our bound analysis solves the challenges (C1)-(C3): CA allows us to analyze
all loops at once (C1) creating one transition for every loop path (C2). The
abstract model of lossy VASS is precise enough to model counter increments,
which is a key requirement for achieving amortized complexity analysis (C3).

2.1 Amortized Complexity Analysis

In his influential paper [27] Tarjan introduces amortized complexity analysis us-
ing the example of a stack, which supports two operations push (which puts an
element on the stack) and popMany (which removes several elements from the
stack). He assumes that the cost of push is 1 and the cost of popMany is the
number of removed elements. We use his example (see Figure 2) to discuss how
our bound analysis achieves amortized analysis: Our analysis first abstracts the
program to a VASS and then applies CA. This results in the three transitions
ρ1 ≡ i′ = i− 1∧n′ = n+1, ρ2 ≡ i′ = i− 1∧n′ = n, ρ3 ≡ i′ = i∧n′ = n− 1 (the
first two transitions come from the outer loop, the last transition from the inner
loop). Algorithm 2 then computes the lexicographic ranking function 〈i, i, n〉 for
the transitions ρ1, ρ2, ρ3 in that order. Our bound analysis (Algorithm 3) then
computes the joint bound m for the transitions ρ1 and ρ2. Our bound analysis
further computes the bound m for transition ρ3 from the fact that only ρ1 can
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void main(int m) {
int i=m, n = 0; //stack = emptyStack();

l1 : while (i > 0) {
i--;

if (?) //push

n++; //stack.push(element);

else //popMany

l2 : while (n > 0 && ?)

n--; //element = stack.pop();

} }

Fig. 2. Model of Tarjan’s stack example [27] for amortized complexity analysis

increase the counter n by 1 and that ρ1 has the already computed bound m.
Adding these two bounds gives the amortized complexity bound 2m for Figure 2.
We highlight that our analysis has actually used the variable n of transition ρ3
as a potential function (see [27] for a definition)! A lexicographic ranking func-
tion 〈x1, . . . , xn〉 can be seen as a multidimensional potential function. Consider,
for example, the ranking function 〈a, a, b, i〉 for the transitions ρ1, ρ4, ρ2, ρ3 of
Figure 1. The potential of ρ3 can be increased by ρ2 whose potential in turn can
be increased by ρ1 and ρ4.

3 Lossy VASSs and Basic Definitions

In this section we define lossy VASSs (introduced in [9]) and state definitions
that we need later on. We will often drop the ‘lossy’ in front of ‘VASS’ because
we do not introduce non-lossy VASSs and there is no danger of confusion. In
this paper, we will use VASSs as minimal program model for bound analysis of
sequential programs without procedures. We leave the extension to concurrent
and recursive programs for future work.

Definition 1 (Lossy Vector Addition System with States (VASS)). We
fix some finite set of variables Var = {x1, . . . , xn}. A lossy vector addition
system with states (VASS) is a tuple P = (L,E), where L is a finite set of

locations, and E ⊆ L × Z
n × L is a finite set of transitions. We write l1

d−→ l2
to denote an edge (l1, d, l2) for some vector d ∈ Z

n. We often specify the vector
d ∈ Z

n by predicates x′
i ≤ xi + di with di ∈ Z.

A path of P is a sequence l0
d0−→ l1

d1−→ · · · with li
di−→ li+1 ∈ E for all i.

A path is cyclic, if it has the same start- and end-location. A path is simple,
if it does not visit a location twice except for start- and end-location. We write
π = π1 ·π2 for the concatenation of two paths π1 and π2, where the end-location
of π1 is the start-location of π2. We say π′ is a subpath of a path π, if there are
paths π1 and π2 with π = π1 · π′ · π2.

The set of valuations of Var is the set VVar = Var → N of mappings from Var

to the natural numbers. A trace of P is a sequence (l0, σ0)
d0−→ (l1, σ1)

d1−→ · · ·
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such that l0
d0−→ l1

d1−→ · · · is path of P , σi ∈ VVar and σi+1(xj) ≤ σi(xj) + di
for all i and 1 ≤ j ≤ n. P is terminating, if there is no infinite trace of P .

Values of VASS variables are always non-negative. We describe how to obtain
VASSs from programs by abstraction in Section 7. The non-negativity of VASS
values has two important consequences: (1) Transitions in VASSs contain implicit
guards: for example a transition x′ ≤ x + c can only be taken if x + c ≥ 0. (2)
VASS transitions can be used to model variable increments as well as variable
resets: we replace the assignment x := k, where k ∈ Z, by the VASS transition
x′ ≤ x+k during program abstraction (we point out that lossiness is essential for
abstracting assignments). This only increases the set of possible program traces
and thus provides a conservative abstraction.

Parameterized VASSs. In our implementation we use a slight generalization of
lossy VASSs. We allow the increment n in a transition predicate x′ ≤ x+n to be
symbolic but constant; in particular, we require that n does not belong to the
set of variables Var . Our bound algorithm works equally well with symbolic in-
crements under the condition that we know the sign of n. We call these extended
systems parameterized VASSs. See Figure 1 for an example.

In the following we introduce some standard terminology that allows us to
precisely speak about loops and related notions.

Definition 2 (Reducible Graph, Loop Header, Natural Loop, Loop-
nest Tree, e.g. [4]). Let G = (V,E) be a directed graph with a unique entry
point such that all nodes are reachable from the entry point. A node a dominates
a node b, if every path from entry to b includes a. An edge l1 → l2 is a back edge,
if l2 dominates l1. G is reducible, if G becomes acyclic after removing all back
edges. A node is a loop header, if it is the target of a back edge. The (natural)
loop of a loop header h in a reducible graph is the maximal set of nodes L such
that for all x ∈ L (1) h dominates x and (2) there is a back edge from some
node n to h such that there is a path from x to node n that does not contain h.

In the rest of this paper we restrict ourselves to VASSs and programs whose
control flow graph is reducible. This choice is justified by the fact that irreducible
control flow is very rare in practice (e.g. see the study in [26]). For analyzing
irreducible programs we propose to use program transformations that make the
program reducible; we do not elaborate this idea further due to lack of space.

Next, we define a special case of path, which corresponds to the notion of
bound used in this paper (defined below).

Definition 3 (Loop-path). A loop-path π is a simple cyclic path, which starts
and ends at some loop header l, and visits only locations inside the natural loop
of l.

Example: l2
τ2−→ l3

Id−→ l2 is a loop-path for the VASS in Figure 1. However,

l2
Id−→ l1

τ1−→ l2 is not a loop-path because it does not stay inside the natural loop

of l2. l2
τ2−→ l3

Id−→ l4
τ4−→ l3

Id−→ l2 is not a loop-path, because it is not simple (l3
is visited twice).
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Procedure: CA(P )
Input: a reducible VASS P
Output: a transition system T
T := ∅;
foreach loop header l in P do

foreach loop-path π = l
d1−→ l1 · · · ln−1

dn−−→ l do
T := T ∪ {d1 + · · ·+ dn};

return T ;

Algorithm 1. CA creates a transition system from a given VASS

Definition 4 (Instance of a loop-path). Let π = l1
d1−→ l2

d2−→ · · · ln−1
dn−1−−−→

l1 be a loop-path. A path ν is an instance of π iff ν is of the form l1
d1−→ l2∗ l2

d2−→
l3 ∗ l3 · · · ln−1 ∗ ln−1

dn−1−−−→ ln = l1, where li ∗ li denotes any (possibly empty) path
starting and ending at location li which does not contain l1. A path p contains
an instance ν of π iff ν is a subpath of p. Let be ν be an instance of π contained

in p; a transition t on p belongs to ν, if t is on ν and t = li
di−→ li+1 for some i.

We note the following facts about instances: Every transition in a path belongs
to at most one instance of a loop-path. Every transition in a given cyclic path
belongs to exactly one instance of a loop-path.

Example: There are four instances of loop-paths in the path π = l1
τ1−→ l2

τ2−→
l3

Id−→ l4
τ3−→ l3

Id−→ l2
τ2−→ l3

Id−→ l2
Id−→ l1 of the VASS in Figure 1: l1

τ1−→ l2
Id−→ l1,

l2
τ2−→ l3

Id−→ l2 (twice) and l3
Id−→ l4

τ3−→ l3.

Definition 5 (Path-bound). A path-bound for a loop-path π is an expression

b over Var such that for every trace (l0, σ0)
d0−→ · · · of P the path l0

d0−→ · · ·
contains at most b(σ0) instances of π.

Path-bounds have various applications in bound and complexity analysis: the
computational complexity of a program can be obtained by adding the bounds of
the loop-paths of all loops; a loop bound can be obtained by adding the bounds
of all loop-paths of a given loop; the number of visits to a single control location
l can be obtained by adding the bounds of the loop-paths that include l (our
notion of a path-bound can be seen as a path-sensitive generalization of the
notion of a “reachability-bound” [20]); similarly one can obtain a bound on the
number of visits to a set of control locations. More generally, one can obtain
resource bounds for a given cost model by multiplying the bound on the number
of visits to a control location with the cost for visiting this location.

4 Control Flow Abstraction

Control flow abstraction (CA), stated in Algorithm 1, is based on two main
ideas: (1) Given a program P , CA results into one transition for every loop-path
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Procedure: Ranking(T )
Input: a transition system T
Output: a lexicographic ranking function l , which has one component for every

transition ρ ∈ T
S := T ;
l := “lexicographic ranking function with no components”;
while there is a transition ρ ∈ S and a variable x such that ρ |= x′ < x and for
all ρ′ ∈ S we have ρ′ |= x′ ≤ x do

S := S \ ρ;
l := l .append(x);

if S = ∅ then return lelse return “Transitions S maybe non-terminating”

Algorithm 2. Ranking computes a lexicographic ranking function

π for all loop headers l of P . This enables a path-sensitive analysis, which
ensures high precision during ranking function generation and bound analysis.
(2) The control structure is abstracted: effectively, all loops are merged into a
single loop. This allows to compute a common lexicographic ranking function for
all loops later on. CA maps VASSs to transition systems. Transition systems are
not meant to be executed; their sole purpose is to be used for ranking function
generation and bound analysis.

Definition 6 (Transition System). A transition system is a set of vectors
d ∈ Z

n. We often specify a transition d ∈ Z
n by predicates x′

i ≤ xi + di, where
di ∈ Z. We also write d |= x′

i ≤ xi (resp. d |= x′
i < xi) for di ≤ 0 (resp. di < 0).

Loop-PathContraction. Algorithm1creates one transition for every loop-pathπ =

l
d1−→ l1 · · · ln−1

dn−→ l. The transitiond1+· · ·+dn represents the accumulated effect
of all variable increments along the path. The key idea of loop-path contraction is
to ignore any inner loop on π.We will incorporate the effects of the inner loops only
later on during the ranking function generation and bound analysis phase.

CA Represents Our Choice of Precision in the Analysis: CA facilitates a high
degree of disjunctiveness in the analysis, where we keep one disjunct for every
loop-path. By encapsulating the level of precision in a single analysis phase, we
achieve a modular analysis (only during CA we need to deal with the control
structure of the VASS). This simplifies the design of the later termination and
bound analysis and also allows us to easily adjust the analysis precision if the
number of paths is prohibitively high (see the discussion on path merging in [25]).

5 Ranking Function Generation

In this section we introduce our algorithm for ranking function generation: Algo-
rithm 2 reads in a transition system obtained fromCA and returns a lexicographic
ranking function that provides a witness for termination. The key idea of the al-
gorithm is to incrementally construct a lexicographic ranking function from local
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ranking functions. We call a variable x a local ranking function for a transition
ρ, if ρ |= x′ < x. A tuple l = 〈y1, y2, · · · , yk〉 ∈ Vark is a lexicographic ranking
function for a transition system T iff for each ρ ∈ T there is a ranking function
component yi that is a local ranking function for ρ and ρ |= y′j ≤ yj for all j < i.
Algorithm 2 maintains a candidate lexicographic ranking function l and a set of
transitions S for which no ranking function component has been added to l . In
each step the algorithm checks if there is a transition ρ in S and a variable x
such that (1) x is a local ranking function for ρ and (2) no remaining transition
increases the value of x, i.e., the condition ∀ρ′ ∈ S.ρ′ |= x′ ≤ x is satisfied. If
(1) and (2) are satisfied, ρ is removed from the set of remaining transitions S
and x is added as the component for ρ in the lexicographic ranking function l .
Conditions (1) and (2) ensure that the transition ρ cannot be taken infinitely
often if only transitions from S are taken. The algorithm stops, if no further
transition can be removed. If S is empty, the lexicographic ranking function l is
returned. Otherwise it is reported that the remaining transitions S might lead
to non-terminating executions.

Next we state the correctness of the combined application of Algorithm 1 and
Algorithm 2. The proof can be found in [25].

Theorem 1. If Algorithm 2 returns a lexicographic ranking function l for the
transition system T obtained from Algorithm 1 then VASS P is terminating.

Reasons for Failure. There are two reasons why our ranking function generation
algorithm may fail: (1) There is a transition ρ without a local ranking function,
i.e., there is no variable x with ρ |= x′ < x. Such a transition ρ will never
be removed from S. (2) There is a cyclic dependency between local ranking
functions, i.e., for every transition ρ ∈ S there is a local ranking function x
but the condition “ρ′ |= x′ ≤ x for all ρ′ ∈ S” is never satisfied. We found
cyclic dependencies to be very rare in practice (only 4 instances); we provide a
discussion of the failures encountered in our experiments in [25].

Non-determinism. We note that in presence of transitions with more than one
local ranking function, the result of Algorithm 2 may depend on the choice for
x. However, it is straight-forward to extend Algorithm 2 to generate all possible
lexicographic ranking functions.

6 Bound Computation

In this section we introduce our bound algorithm: Algorithm 3 computes a bound
b for a transition ρ of the transition system T . The main idea of Algorithm 3 is
to rely only on the components of the lexicographic ranking function l for bound
computation. Let x be the component of ρ in l . We recall that the termination
algorithm has already established that x is a local ranking function for ρ and
therefore we have ρ |= x > x′. Thus ρ can be executed at most InitialValue(x)
often unless x is increased by other transitions: Algorithm 3 initializes b :=
InitialValue(x) and then checks for every other transition ρ′ if it increases x,
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Procedure: Bound(ρ)
Input: a transition ρ
Output: a bound for transition ρ
Global: transition system T , lexicographic ranking function l
x := ranking function component of ρ in l ;
b := InitialValue(x);
foreach transition ρ′ ∈ T with ρ′ �|= x′ ≤ x do

Let k ∈ N s.t. x′ ≤ x+ k in ρ′;
b := b + Bound(ρ′) · k;

Let k ∈ N s.t. x′ ≤ x− k in ρ;
return b = b/k;

Algorithm 3. Bound returns a bound for transition ρ

i.e., ρ′ 
|= x′ ≤ x. For every such transition ρ′ Algorithm 3 recursively computes a
bound, multiplies this bound by the height of the increase k and adds the result
to b. Finally, we divide b by the decrease k of x on transition ρ.

Termination. Algorithm 3 terminates because the recursive calls cannot create a
cycle. This is because Algorithm 3 uses only the components of l for establishing
bounds and the existence of the lexicographic ranking function l precludes cyclic
dependencies.

Soundness. Our soundness result (Theorem 2, for a proof see [25]) rests on the
assumption that the CFG of P is an SCC whose unique entry point is also its
unique exit point. We can always ensure this condition by a program transforma-
tion that encloses P in a dummy while-loop while(y > 0){P ;y--;}, where y is a
fresh variable with InitialValue(y) = 1. We point out that this program trans-
formation enable us to compute path-bounds in terms of the program inputs for
CFGs with multiple SCCs (e.g., a program with two successive loops).

Theorem 2. Let b be a bound computed by Algorithm 3 for a transition ρ ob-
tained from a loop-path π during CA. Then b is a path-bound for π.

Greedy Bound Computation. The bound computed by Algorithm 3 depends on
the lexicographic ranking function l. Clearly, it is possible to run the algorithm
for multiple lexicographic ranking functions and choose the minimum over the
generated bounds. However, we found the greedy approach to work well in prac-
tice and did not see a need for implementing the enumeration strategy.

Complexity of the Algorithm / Size of Bound Expressions. For ordinary VASS,
the complexity of Algorithm 3 is polynomial in the size of the input with a small
exponent (depending on the exact definition of the complexity parameters). Un-
fortunately, this statement does not hold for parameterized VASSs, for which
bound expressions can be exponentially big: We consider n transitions ρ1, . . . , ρn
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with the local ranking functions x1, . . . , xn and the lexicographic ranking func-
tion 〈x1, . . . , xn〉. We assume that transition ρi increments xj by some constant
cij for i < j. Then, Algorithm 3 computes the bound stated in the following
formula, which is exponentially big for symbolic coefficients cij :

b(ρn) =
∑

k∈[0,n−1]

∏

i1<···<ik∈[1,n−1]

InitialValue(xi1)ci1i2 · · · cikn

However, in practical examples the variable dependencies are sparse, i.e., most
coefficients cij are zero (confirmed by our experiments). We highlight that Algo-
rithm 3 exploits this sparsity as it does not compute the bound using the explicit
formula stated above but rather computes the bound for the current transition
ρ using only the bounds of the transitions that actually increase the counter
of ρ (i.e., cij > 0). We note that in our experiments the computed bounds are
small and the running time of Algorithm 3 is basically linear in the number of
transitions. We conclude that in practice one should make use of the fine-grained
precision offered by the possibly exponentially-sized bound expressions.

Preprocessing: Merging Transitions. Before the bound computation our analy-
sis applies the following rule until no more transitions can be merged: Let ρ1
and ρ2 be two transitions with the same local ranking function x in l such
that x′ ≤ x + k ∈ ρ1 and x′ ≤ x + k ∈ ρ2 for some k (i.e., both transitions
decrement x by the same amount). We replace ρ1 and ρ2 by the transition
ρ = {y′ ≤ y +max{k1, k2} | y′ ≤ y + k1 ∈ ρ1 ∧ y′ ≤ y + k2 ∈ ρ2}. It is not dif-
ficult to see that merging transitions is sound and always improves the bound
computed by Algorithm 3 (we do not give a formal proof here for lack of space).

Example: We have obtained the loop bound of the middle loop in Figure 1 from
the path-bound n of its single transition ρ2 (see Section 2). We have obtained
2m as the amortized complexity of Figure 2 by adding the path-bounds of its
transitions ρ1, ρ2, ρ3 applying merging to ρ1 and ρ2 (see Section 2.1).

7 Program Abstraction

In this section we describe how to abstract programs to VASSs.

Definition 7 (Program). Let Σ be a set of states. The set of transition rela-
tions Γ = 2Σ×Σ is the set of relations over Σ. A program is a tuple P = (L,E),
where L is a finite set of locations, and E ⊆ L× Γ × L is a finite set of tran-

sitions. We write l1
ρ−→ l2 to denote a transition (l1, ρ, l2). We assume the set

of reachable states Reach(l) is defined for every location l ∈ L in the standard
way. Let e1, e2 ∈ Σ → Z be integer-valued expressions over the states, and let
c ∈ Z be some integer. We say e1 ≥ 0 is invariant for l, if e1(s) ≥ 0 holds for all

s ∈ Reach(l). We say e′2 ≤ e1 + c is invariant for l1
ρ−→ l2, if e2(s2) ≤ e1(s1) + c

holds for all (s1, s2) ∈ ρ with s1 ∈ Reach(l1). We say e1 is a norm, if e1 ≥ 0 is
invariant for every location l.
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Definition 8 (Abstraction of a Program). A VASS V = (L,E′) with vari-
ables Var is an abstraction of a program P = (L,E) iff (1) every x ∈ Var is a

norm and (2) for each transition l1
ρ−→ l2 ∈ E there is a transition l1

d−→ l2 ∈ E′

such that every x′ ≤ x+ c ∈ d is invariant for l1
ρ−→ l2.

The above definition suggests a three-step methodology for abstracting pro-
grams: (1) Guess a set of norms N ⊆ Σ → Z. (2) For every x ∈ N show that
x ≥ 0 is invariant at all locations l. If this is not the case, discard the norm x. (3)

For every x ∈ N and every transition l1
ρ−→ l2 find a constant expression c such

that x′ ≤ x + c is invariant for l1
ρ−→ l2. Next, we describe how we implement

this methodology.

7.1 Abstracting Programs to VASSs: Our Implementation

Guessing Norms. The key idea of Algorithm 2 is to find a local ranking function
for every transition. We recall that a transition is obtained from a loop-path
during CA. For this reason, our main heuristic is to consider expressions as
norms that are local ranking functions for at least one loop-path of the program

under analysis. Our implementation iterates over all loop-paths π = l
ρ1−→ l1

ρ2−→
· · · ln−1

ρn−→ l: Let rel(π) = ρ1 ◦ · · · ◦ ρn be the transition relation obtained by
contracting all transition relations along π. We implement the computation of
rel(π) by symbolic backward execution, which returns a set of guards e ≥ 0 (we
note that guards are normalized, e.g., n ≥ i is transformed into n − i ≥ 0) and
updates x′ = e, where e is some expression over the program variables and x′

denotes the value of x after executing π. A local ranking function is an expression
r such that (a) r ≥ 0 is a guard of rel(π) and (b) δr = r − r ′ > 0, where r ′

denotes the expression r where every variables x is replaced by expression e
according to the update x′ = e of rel(π). For every local ranking function r
our implementation adds the expression max{r + δr , 0} to the set of norms N .
Clearly, all norms x = max{r + δr , 0} ∈ N satisfy the invariant x ≥ 0.

Abstracting Transitions. In our implementation we derive a transition predicate

x′ ≤ x + c for a given norm x = max{e, 0} ∈ N and transition l1
ρ−→ l2 as

follows: We obtain the expression e′ from e by replacing variables with their
updates according to ρ. The expression e′ either constitutes an increment, i.e.,
e′ = e + k1, or a reset, i.e., e′ = k2, for some expression ki. For now, assume ki
is constant. We proceed by a case distinction: If e′ = e + k1 and e + k1 ≥ 0 is

invariant for l1
ρ−→ l2, then our implementation derives the transition predicate

x′ ≤ x + k1. This derivation is sound, because of the invariant e + k1 ≥ 0. (We
motivate this derivation rule as follows: assume r ≥ 0 and δr = r − r ′ hold on
ρ, we have e′ = e + (−δr ) ≥ 0 for e = r + δr .) Otherwise, our implementation
derives the transition predicate x′ ≤ x + max{ki, 0}. This derivation is sound
because of properties of maxima. If ki is not constant, we first search for an
invariant ki ≤ u with u constant, and then proceed as above (replacing ki with
u). We implement invariant analysis by symbolic backward execution (see [25]).
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Bounded 1 logn n nlogn n2 n3 n>3 EXP Time w/o Time-outs # Time-outs
Loopus 383 131 0 151 0 81 16 4 0 437s 5
KoAT 321 121 0 142 0 54 0 3 0 682s 282
PUBS 279 116 5 129 5 15 4 0 6 1000s 58
Rank 84 56 0 19 0 8 1 0 0 173s 6

Fig. 3. Analysis results for the benchmark from [12]

Non-linear Local Ranking Functions. In our experiments we only found few loops
that do not have a linear local ranking function. However, these loops almost
always involve the iterated division or multiplication of a loop counter by a
constant such as in the transition relation ρ ≡ x > 1 ∧ x′ = x/2. For such loops
we can introduce the logarithm of x as a norm, i.e., y = log x, and then try to
establish y > 0 from the condition x > 1 and derive the transition relation by
y′ ≤ y − 1 from the update x′ = x/2.

Data Structures. Previous approaches [18,24] have described how to abstract
programs with data structures to integer programs by making use of appropri-
ate norms such as the length of a list or the number of elements in a tree. In
our implementation we follow these approaches using a light-weight abstraction
based on optimistic aliasing assumptions.

8 Experiments

We implemented the discussed approach as an intraprocedural analysis (we use
function inlining) based on the LLVM [23] compiler framework. Our tool Loopus
computes loop bounds (depending on a command-line parameter, see [1]) either
in terms of (1) the inputs to the SCC to which the loop belongs, or (2) the
function inputs (this is implemented by enclosing the function body in a dummy
loop as described in Section 6). At the same time Loopus also computes the
asymptotic complexity of the considered SCC. We use the Z3 SMT solver [14]
for removing unsatisfiable paths during the analysis. Given a loop condition of
form a 
= 0 Loopus heuristically decides to either assume a > 0 or a < 0 as loop-
invariant; this assumption is reported to the user. Similarly, Loopus assumes
x > 0 when an update of a loop counter of the form x = x ∗ 2 or x = x/2 is
detected. The task of validating these assumptions is orthogonal to our approach
and can be performed by standard tools for invariant generation. Loopus and
more details on our experimental evaluation are available at [1].

8.1 Comparison to Tools from the Literature

We compare Loopus against the tools KoAT [12], PUBS [5,6] and Rank [7]. For
the comparison we use the benchmark [2], which consists of small example pro-
grams from the bound analysis literature and the benchmark suite which was
used to evaluate T2 [11]. Since Loopus expects C code but KoAT expects a
transition system as input, we needed to obtain C programs for comparison,
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Analyzed Outer Dep. Inner Dep. Paths > 1 Non-Trivial
Loops 4210 255 305 1276 1475
Bounded 3205[3060] 120 [112] 148 [129] 744 [695] 831 [812]
/ Overall 76% [73%] 47% [44%] 49% [42%] 58%[54%] 56% [55%]
SCCs 2833 181 193 902 937
Bounded 2289 70 95 542 564
/ Overall 81% 39% 50% 60% 60%

Fig. 4. Loop and SCC Statistic of our current implementation for the cBench Bench-
mark, the results obtained with the implementation of [28] are given in square brackets

see [25] for details. Figure 3 states the results for the different tools (the results
for KoAT, PUBS and Rank were taken from [12]). Columns 2 to 9 state the num-
ber of programs that were found to have the given complexity by the respective
tool. The table shows that Loopus can compute bounds for more loops than
the other tools. Moreover one can see significant differences in analysis time,
which are due to time-outs (the table shows the analysis time without time-outs
and the number of time-outs separately; the time-out is set to 60s for all tools).
The detailed comparison available at [1] shows that there are 84 loops for which
Loopus computes an asymptotically more precise bound than any of the 3 other
tools, compared to 66 loops for which one of the 3 other tools computed an
asymptotically more precise bound than Loopus .

8.2 Evaluation on Real-World Code

We evaluated Loopus on the program and compiler optimization benchmark
Collective Benchmark [3](cBench), which contains a total of 1027 different C
files (after removing code duplicates) with 211.892 lines of code.

Data Structures. For expressing bounds of loops iterating over arrays or recursive
data structures Loopus introduces shadow variables representing appropriate
norms such as the length of a list or the size of an array. Loopus makes the
following optimistic assumptions which are reported to the user: Pointers do not
alias, a recursive data structure is acyclic if a loop iterates over it, a loop iterating
over an array of characters is assumed to be terminating if an inequality check
on the string termination character ’\0’ is found.1 We made these assumptions
in order to find interesting examples, a manual check on a sample of around
100 loops in the benchmark found the assumptions to be valid with respect to
termination. The task of validating an assumption is orthogonal to our approach
and can be performed by standard tools for shape analysis.

Results. In Figure 4, we give our results on different loop classes. We recall
that our bound analysis is based on an explicitly computed termination proof.
We do not list the results of our termination analysis separately, because a
bound was computed for 98% of all loops for which termination was proven.

1 This assumption is necessary since the type system of C does not distinguish between
an array of characters and a string.
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Details on the reasons for failure of our termination analysis and bound analysis,
which occurred during the experiments, are given in [25]. In column Analyzed
we state the results over all loops in the benchmark. We summarize the results
over all loop categories except Analyzed in the column Non-Trivial.

Challenging Loop Classes. The loop-class ‘Outer Dependent’ captures all outer
loops whose termination behavior is affected by the executions of an inner loop.
(E.g., in Figure 1 termination of loop l1 depends on loop l3, while in Figure 2
termination of loop l1 does not depend on loop l2.) We define an inner loop to
be in the set of ‘Inner Dependent’ loops if it has a loop counter that is not reset
before entering the loop. (E.g., in Figure 1 loop counter i of loop l3 is always
reset to n − 1 before entering the loop, while loop counter b of loop l2 is never
reset.) The loop-class ’Paths > 1’ contains all loops which have more than 1
path left after program slicing (see [25]). The categories for the SCCs are the
same as for the loops: we define an SCC to be in a certain category if it contains
at least one loop which is in that category. Success ratios of around 50% in the
difficult categories demonstrate that our method is able to handle non-trivial
termination and complexity behavior of real world programs.

Amortization. For 107 loops out of the 305 loops in the class ‘Inner Dependent’,
the bound that our tool computed was amortized in the sense that it is asymp-
totically smaller than one would expect from the loop-nesting depth of the loop.
In 12 cases the amortization was caused by incrementing a counter of the inner
loop in the outer loop as in Figures 1 and 2. The 12 loops are available at [1]. For
these loops a precise bound cannot be computed by any other tool (as discussed
in the beginning of Section 2).

Performance. The results were obtained on a Linux machine with a 3.2 Ghz dual
core processor and 8 GB Ram. 92 loops of the 4302 loops in our benchmark are
located in 44 SCCs with an irreducible control flow. We thus analyzed 4210 loops.
The total runtime of our tool on the benchmark (more than 200.000 LoC) did
not exceed 20 minutes. The time-out limit of maximal 420 seconds computation
time per SCC was not reached. There were only 27 out of 2833 SCCs (174 out
of 4210 loops) on which the analysis spent more than 10 seconds.

Experimental Comparison. For the purpose of a realistic comparison, we ran the
tool of [28] on the same machine with an equal time out limit of 420 second. The
results are given in square brackets in Figure 4. Note the significant increase in
the number of loops bounded in each of the challenging categories. The execution
of the tool [28] took an order of magnitude longer (nearly 13 hours) and we got
78 time-outs. The main reason for the drastic performance increase is our new
reasoning on inner loops: The approach of [28] handles inner loops by inserting
the transitive hull of an inner loop on a given path of the outer loop. This can
blow up the number of paths exponentially. We avoid this exponential blow-up
thanks to CA: CA allows us to analyze inner and outer loops at the same time
and thus eliminates the need for transitive hull computation.
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(eds.) TACAS 2014. LNCS, vol. 8413, pp. 140–155. Springer, Heidelberg (2014)

13. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61.
Springer, Heidelberg (2013)

14. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

15. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg
(2008)

16. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants
for bound analysis. In: PLDI, pp. 375–385 (2009)

17. Gulwani, S., Juvekar, S.: Bound analysis using backward symbolic execution. Tech-
nical Report MSR-TR-2004-95. Microsoft Research (2009)

18. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking par-
tition sizes. In: POPL, pp. 239–251 (2009)

http://forsyte.at/static/people/sinn/loopus/
http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity
http://ctuning.org/wiki/index.php/CTools:CBench


A Simple and Scalable Static Analysis for Bound Analysis 761

19. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: precise and efficient static esti-
mation of program computational complexity. In: POPL, pp. 127–139 (2009)

20. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: PLDI, pp. 292–304
(2010)

21. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14 (2012)

22. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: POPL, pp. 185–197 (2003)

23. Lattner, C., Adve, V.S.: Llvm: A compilation framework for lifelong program anal-
ysis & transformation. In: CGO, pp. 75–88 (2004)

24. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: Automatic numeric abstractions for
heap-manipulating programs. In: POPL, pp. 211–222 (2010)

25. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound
analysis and amortized complexity analysis. CoRR, abs/1401.5842 (2014)

26. Stanier, J., Watson, D.: A study of irreducibility in c programs. Softw. Pract.
Exper. 42(1), 117–130 (2012)

27. Tarjan, R.E.: Amortized computational complexity. SIAM Journal on Algebraic
Discrete Methods 6(2), 306–318 (1985)

28. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-
grams with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011)


	A Simple and Scalable Static Analysis for BoundAnalysis and Amortized Complexity Analysis
	1 Introduction
	2 Motivation and Overview
	2.1 Amortized Complexity Analysis

	3 Lossy VASSs and Basic Definitions
	4 Control Flow Abstraction
	5 Ranking Function Generation
	6 Bound Computation
	7 Program Abstraction
	7.1 Abstracting Programs to VASSs: Our Implementation

	8 Experiments
	8.1 Comparison to Tools from the Literature
	8.2 Evaluation on Real-World Code

	References




