
G4LTL-ST: Automatic Generation of PLC Programs

Chih-Hong Cheng1, Chung-Hao Huang2, Harald Ruess3, and Stefan Stattelmann1

1 ABB Corporate Research, Ladenburg, Germany
2 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

3 fortiss - An-Institut Technische Universität München, München, Germany

Abstract. G4LTL-ST automatically synthesizes control code for industrial Pro-
grammable Logic Controls (PLC) from timed behavioral specifications of input-
output signals. These specifications are expressed in a linear temporal logic (LTL)
extended with non-linear arithmetic constraints and timing constraints on signals.
G4LTL-ST generates code in IEC 61131-3-compatible Structured Text, which is
compiled into executable code for a large number of industrial field-level devices.
The synthesis algorithm of G4LTL-ST implements pseudo-Boolean abstraction
of data constraints and the compilation of timing constraints into LTL, together
with a counterstrategy-guided abstraction-refinement synthesis loop. Since tem-
poral logic specifications are notoriously difficult to use in practice, G4LTL-ST
supports engineers in specifying realizable control problems by suggesting suit-
able restrictions on the behavior of the control environment from failed synthesis
attempts.

Keywords: industrial automation, synthesis, theory combination, assumption gen-
eration.

1 Overview

Programmable Logic Controllers (PLC) are ubiquitous in the manufacturing and pro-
cessing industries for realizing real-time controls with stringent dependability and safety
requirements. A PLC is designed to read digital and analog inputs from various sensors
and other PLCs, execute a user-defined program, and write the resulting digital and
analog output values to various output elements including hydraulic and pneumatic ac-
tuators or indication lamps. The time it takes to complete such a scan cycle typically
ranges in the milliseconds.

The languages defined in the IEC 61131-3 norm are the industry standard for pro-
gramming PLCs [1]. Programming in these rather low-level languages can be very inef-
ficient, and yields inflexible controls which are difficult to maintain and arduous to port.
Moreover, industry is increasingly moving towards more flexible and modular produc-
tion systems, where the control software is required to adapt to frequent specification
changes [2].

With this motivation in mind, we developed the synthesis engine G4LTL-ST for gen-
erating IEC 61131-3-compatible Structured Text programs from behavioral specifica-
tions. Specifications of industrial control problems are expressed in a suitable extension
of linear temporal logic (LTL) [14]. The well-known LTL operators G, F, U, and X
denote “always”, “eventually”, “(strong) until”, and “next”s relations over linear exe-
cution traces. In addition to vanilla LTL, specifications in G4LTL-ST may also include

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 541–549, 2014.
c© Springer International Publishing Switzerland 2014

542 C.-H. Cheng et al.

1 Input: x, y ∈ [0, 4] ∩ R, err ∈ B, Output: grant1, grant2, light ∈ B, Period: 50ms
2
3 G (x + y > 3 → X grant1)
4 G (x2 + y2 < 7

2
→ X grant2)

5 G (¬(grant1 ∧ grant2))
6 G (err → 10sec(light))
7 G ((G¬err) → (FG¬light))

Fig. 1. Linear temporal logic specification with arithmetic constraints and a timer

– non-linear arithmetic constraints for specifying non-linear constraints on real-valued
inputs;

– timing constraints based on timer constructs specified in IEC 61131-3.

A timing constraint of the form 10sec(light), for example, specifies that the light signal
is on for 10 seconds. Moreover, the semantics of temporal specifications in G4LTL-ST
is slightly different from the standard semantics as used in model checking, since the
execution model of PLCs is based on the concept of Mealy machines. Initial values for
output signals are therefore undefined, and the synthesis engine of G4LTL-ST assumes
that the environment of the controller makes the first move by setting the inputs.

Consider, for example, the PLC specification in Figure 1 with a specified scan cycle
time of 50ms (line 1). The input variables x, y, err store bounded input and sensor
values, and output values are available at the end of each scan cycle at grant1, grant2,
and light (line 1). According to the specification in line 6, the output light must be on for
at least 10 seconds whenever an error occurs, that is, input signal err is raised. Line 7
requires that if err no longer appears, then eventually the light signal is always off.
The transition-style LTL specifications 3 and 4 in Figure 1 require setting grant1 (resp.
grant2) to true in the next cycle whenever the condition x+ y > 3 (resp. x2 + y2 < 7

2)
holds. Finally, grant1 and grant2 are supposed to be mutually exclusive (line 5).

The synthesis engine of G4LTL-ST builds on top of traditional LTL synthesis tech-
niques [13,9,15,4] which view the synthesis problem as a game between the (sensor)
environment and the controller. The moves of the environment in these games are de-
termined by setting the input variables, and the controller reacts by setting output vari-
ables accordingly. The controller wins if the resulting input-output traces satisfy the
given specification. Notably, arithmetic constraints and timers are viewed as theories
and thus abstracted into a pseudo-Boolean LTL formula. This enables G4LTL-ST to
utilize CEGAR-like [8,12,10] techniques for successively constraining the capabilities
of the control environment.

Since specifications in linear temporal logic are often notoriously difficult to use in
practice, G4LTL-ST diagnoses unrealizable specifications and suggests additional as-
sumptions for making the controller synthesis problem realizable. The key hypothesis
underlying this approach is that this kind of feedback is more useful for the engineer
compared to, say, counter strategies. The assumption generation of G4LTL-ST uses
built-in templates and heuristics for estimating the importance and for ordering the gen-
erated assumptions accordingly.

Synthesis of control software, in particular, has been recognized as a key Indus-
trie 4.0 technology for realizing flexible and modular controls (see, for example, [3],

G4LTL-ST: Automatic Generation of PLC Programs 543

Table 1. Real-time specification patterns and their encodings

Real-time specification pattern Encoding in LTL

Whenever a, then b for t seconds G (a → (t1.start ∧ b ∧ X(b U t1.expire)))
Whenever a continues for more than t seconds, then b (a ↔ t1.start) ∧ G(¬(a ∧ X a) ↔ X t1.start)

∧G(t1.expire → b)
Whenever a, then b, until c for more than t seconds G(a ↔ t1.start) ∧ G(¬(c ∧ X c) ↔ X t1.start)

∧G (a → (b ∧ X((b U t1.expire)) ∨ G¬t1.expire))

RE-2 on page 44). The synthesis engine G4LTL-ST is planned to be an integral part
of a complete development tool chain towards meeting these challenges. G4LTL-ST is
written in Java and is available (under the GPLv3 open source license) at

http://www.sourceforge.net/projects/g4ltl/files/beta

In the following we provide an overview of the main features of G4LTL-ST in-
cluding Pseudo-Boolean abstractions of timing constraints, the abstraction-refinement
synthesis loop underlying G4LTL-ST and its implementation, and, finally, the template-
based generation for suggesting new constraints of the behavior of the environment for
making the control synthesis problem realizable. These features of G4LTL-ST are usu-
ally only illustrated by means of examples, but the initiated reader should be able to fill
in missing technical details.

2 Timing Abstractions

The timing constraint in Figure 1 with its 10 seconds time-out may be encoded in LTL
by associating each discrete step with a 50ms time delay. Notice, however, that up to
200 consecutive X operators are needed for encoding this simple example.

Instead we propose a more efficient translation, based on standard IEC 61131-3 tim-
ing constructs, for realizing timing specifications. Consider, for example, the timed spec-
ification G (err → 10sec(light)). In a first step, fresh variables t1.start and t1.expire
are introduced, where t1 is a timer variable of type TON in IEC 61131-3. The additional
output variable t1.start starts the timer t1, and the additional input variable t1.expire
receives a time-out signal from t1 ten seconds after this timer has been started. Now, the
timing specification G (err → 10sec(light)) is rewritten as an LTL specification for a
function block in the context of a timer.

G (t1.start → X F t1.expire) → G (err → (t1.start ∧ light ∧ X(light U t1.expire))

The antecedent formula ensures that the expire signal is eventually provided by the
timing block of the environment. Since no provision is being made that there is a time-
out exactly after 10 seconds, however, the precise expected behavior of the time-out
environment is over-approximated.

It is straightforward to generate PLC code using timing function blocks from winning
strategies of the controller (see below for the automatically generated code). Whenever
t1.start is set to true the instruction t1(IN:=0, PT:=TIME#10s) is generated for starting
the timer t1. Instructions that set t1.start to false is ignored based on the underlying

544 C.-H. Cheng et al.

semantics of timers. Finally, time-out signals t1.expire are simply replaced with the
variable t1.Q of the IEC 61131-3 timing construct.

FUNCTION_BLOCK FB_G4LTL

VAR_INPUT error: BOOL; END_VAR

VAR_OUTPUT light: BOOL; END_VAR

VAR cstate : INT := 0; t1: TON; END_VAR

VAR CONST T1_VALUE : TIME := TIME#10s; END_VAR

CASE cstate OF

0: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (TRUE)) THEN cstate := 6; light := FALSE;

END_IF;

43: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (TRUE)) THEN cstate := 43; light := FALSE;

END_IF;

6: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (TRUE)) THEN cstate := 6; light := FALSE;

END_IF;

396: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (t1.Q = FALSE)) THEN cstate := 396; light := TRUE;

ELSIF ((error = FALSE) AND (t1.Q = TRUE)) THEN cstate := 43; light := FALSE;

END_IF;

81: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (t1.Q = FALSE)) THEN cstate := 396; light := TRUE;

ELSIF ((error = FALSE) AND (t1.Q = TRUE)) THEN cstate := 43; light := FALSE;

END_IF;

12: IF ((error = TRUE) AND (TRUE)) THEN cstate := 12; light := TRUE; t1(IN:=0, PT:=T1_VALUE);

ELSIF ((error = FALSE) AND (t1.Q = FALSE)) THEN cstate := 81; light := TRUE;

ELSIF ((error = FALSE) AND (t1.Q = TRUE)) THEN cstate := 6; light := FALSE;

END_IF;

END_CASE;

END_FUNCTION_BLOCK

In Table 1 we describe some frequently encountered specification patterns and their
translations using IEC 61131-3-like timing constructs. Each of these patterns requires
the introduction of a fresh timer variable t1 together with the assumption G (t1.start →
X F t1.expire) on the environment providing time-outs. These specification patterns,
however, are not part of the G4LTL-ST input language, since there is no special support
in the synthesis engine for these language constructs, and G4LTL-ST is intended to
be used in integrated development frameworks, which usually come with their own
specification languages.

3 Abstraction-Refinement Synthesis Loop

The input to the synthesis engine of G4LTL-ST are LTL formulas with non-linear arith-
metic constraints with bounded real (or rational) variables, and the workflow of this
engine is depicted in Figure 2. Notice, however, that the abstraction-refinement loop in
Figure 2 is more general in that it works for any decidable theory Th.

In a preliminary step Abstract simply replaces arithmetic constraints on the inputs
with fresh Boolean input variables. The resulting specification therefore is (like the
timer abstraction in Section 2) an over-approximation of the behavior of the environ-
ment. In our running example in Figure 1 (ignoring line 6, 7), Abstract creates two
fresh Boolean variables, say req1 and req2, for the two input constraints x+y > 3 and
x2 + y2 < 7

2 to obtain the pseudo-Boolean specification

G(req1 → X grant1) ∧ G(req2 → X grant2) ∧ G(¬(grant1 ∧ grant2)) (1)

G4LTL-ST: Automatic Generation of PLC Programs 545

Clearly, this pseudo-Boolean specification with input variables req1 and req2 over-
approximates the behavior of the environment, since it does not account for inter-
relationships of the arithmetic input constraints.

Abstract

theory atoms

LTL(Th) formula ϕ

ϕabs

pseudo-Boolean

input variables Xabs

Input variables X Output variables Y

pseudo-Boolean

LTL

LTL controller

check whether the input

formula is realizable

synthesis

No, with

strategy

unchecked
pseudo-Boolean
input valuations

Check whether every

sin ∈ S is (Th)-satisfiable

Schecked :=

Schecked ∪ Sproven

Yes

Report Report ϕ is REALIZABLE

No, with counter-

ϕabs :=

(G(Xabs �= sin)) → ϕabs

S

Theory checker

example sin and

Refine

Extract

with proven-realizable
inputs Sproven ⊆ S

Memorize

Schecked

NOT-REALIZABLE
by controller Mctrl

counter

Menv

Yes

Fig. 2. Abstraction-refinement synthesis loop

In the next step, LTL controller
synthesis checks whether or not the
pseudo-Boolean LTL formula gener-
ated by Abstract is realizable. If the
engine is able to realize a winning
strategy for the control, say Mctrl,
then a controller is synthesized from
this strategy. Otherwise, a candidate
counter-strategy, say Menv , for de-
feating the controller’s purpose is gen-
erated.

The pseudo-Boolean specification
(1), for example, is unrealizable. A
candidate counter-strategy for the en-
vironment is given by only using the
input (true, true), since, in violation
of the mutual exclusion condition (1),
the controller is forced to subsequently
set both grant1 and grant2 .

The Extract module extracts candidate counter-strategies with fewer pseudo-Boolean
input valuations (via a greedy-based method) whose validity are not proven at the the-
ory level. Consequently, the Extract module generates a candidate counter-strategy that
only uses (req1, req2) = (true, true) and the input valuations S = {(true, true)} are
passed to the Theory Checker.

A candidate counter-strategy is a genuine counter-strategy only if all pseudo-Boolean
input patterns are satisfiable at the theory level; in these cases the environment wins
and Theory Checker reports the un-realizability of the control problem. In our running
example, however, the input (true, true) is not satisfiable at the theory level, since the
conjunction of the input constraints x + y > 3 and x2 + y2 < 7

2 is unsatisfiable for
x, y ∈ [0, 4]. G4LTL-ST uses the JBernstein [5] verification engine for discharging
quantifier-free verification conditions involving non-linear real arithmetic. In order to
avoid repeated processing at the theory level, all satisfiable inputs are memorized.

Unsatisfiable input combinations sin are excluded by Refine. In our running exam-
ple, the formula G(¬(req1∧ req2)) is added as a new assumption on the environment,
since the input pair (true, true) has been shown to be unsatisfiable.

G(¬(req1 ∧ req2)) → (1) (2)

In this way, Refine successively refines the over-approximation of the behavior of the
environment. Running the LTL synthesis engine on the refined specification 2 yields a
controller: if one of req1 (x + y > 3) and req2 (x2 + y2 < 7

2) holds, the controller
may grant the corresponding client in the next round, since req1 and req2 do not hold
simultaneously.

546 C.-H. Cheng et al.

Refinement of Timer Environments. The refinement of over-approximations of environ-
mental behavior also works for the abstracted timer environments. Recall from Section 2
that the initial abstraction is given by G (t1.start → X F t1.expire). Assuming, for ex-
ample, that t1.expire appears two iterations after t1.start in a candidate counter-strategy,
one might strengthen this initial assumption with G (t1.start → ((X¬t1.expire) ∧
(XX¬t1.expire) ∧ (XXX F t1.expire))).

Constraints over input and output variables. Even though the current implementation
of G4LTL-ST is restricted to specifications with arithmetic constraints on inputs only,
the abstraction-refinement synthesis loop in Figure 2 works more generally for arith-
metic constraints over input and output variables. Consider, for example, the specifica-
tion G(x > y → X(z > x)) with input variables x, y ∈ [1, 2] ∩ R and output variable
z ∈ [0, 5] ∩ R. Abstraction yields a pseudo-Boolean specification G(in → Xout) with
in, out fresh input variables for the constraints x > y and z > x, respectively. Now,
pseudo-Boolean LTL synthesis generates a candidate winning strategy Mctrl for the
controller, which simply sets the output out to be always true. The candidate controller
Mctrl is realizable if every pseudo-Boolean output assignment of Mctrl is indeed sat-
isfiable on the theory level. This condition amounts to demonstrating validity of the
quantified formula (∀x ∈ [1, 2] ∩ R) (∃z ∈ [0, 5] ∩ R) z > x. Using the witness, say, 3
for the existentially quantified output variable z, a winning strategy for the controller is
to always set the output z to 3, and the control synthesis problem therefore is realizable.

Otherwise, the candidate controller strategy is not realizable at the theory level, and,
for pseudo-Boolean outputs, refinement due to un-realizability of the control synthe-
sis problem is achieved by adding new constraints as guarantees to the pseudo-Boolean
specification. For example the constraint G(¬(grant1∧grant2)) is added to the pseudo-
Boolean specification, if pseudo-Boolean outputs grant1 and grant2 are mutually ex-
clusive at the theory level.

In this way, the abstraction-refinement synthesis loop in Figure 2 may handle arbi-
trary theory constraints on input and output variables as long as corresponding verifica-
tion conditions in a first-order theory with one quantifier-alternation can be decided. The
implementation of G4LTL-ST could easily be extended in this direction by using, for ex-
amples the verification procedure for the exists-forall fragment of non-linear arithmetic
as described in [7]. So far we have not yet encountered the need for this extensions,
since the PLC case studies currently available to us are restricted to Boolean outputs.

4 Assumption Generation

An unrealizable control synthesis problem can often be made realizable by restrict-
ing the capabilities of the input environment in a suitable way. In our case studies
from the manufacturing domain, for example, suitable restrictions on the arrival rate
of workpieces were often helpful. G4LTL-ST supports the generation of these as-
sumptions from a set of given templates. For example, instantiations of the template
G(?a → (X(¬?a U ?b))), where ?a and ?b are meta-variables for inputs, disallows
successive arrivals of an input signal ?a. For a pre-specified set of templates, G4LTL-
ST performs a heuristic match of the meta-variables with input variables by analyzing
possible ways of the environment to defeat the control specification.

G4LTL-ST: Automatic Generation of PLC Programs 547

Table 2. Experimental result based on the predefined unroll depth (3) of G4LTL-ST. Execution
time annotated with “(comp)” denotes that the value is reported by the compositional synthesis
engine.

Example

(synthesis)

Timer(T)/

Data(d)

lines of spec Synthesis

Time

Lines of

ST

Ex1 T, D 9 1.598s (comp) 110
Ex2 T 13 0.691s 148
Ex3 T 9 0.303s 80
Ex4 T 13 21s 1374
Ex5 T 11 0.678s (comp) 210
Ex6 - 7 0.446s 41
Ex7 D 8 17s 43
Ex8 T 8 0.397s (comp) 653
Ex9 abstract D,T 3 + model (< 200 loc) 1.55s 550
Ex10 abstract D,T 3 + model (< 200 loc) 3.344s 229
Ex11 abstract D,T 3 + model (< 200 loc) 0.075s 105

Example

(Assup. gen)

Learned

Assump.

Time of

Learning

Ex1 1 0.127s
Ex2 1 0.452s
Ex3 1 3.486s
Ex4 4 22s (DFS)
Ex5 1 2.107s
Ex6 1 1.046s
Ex7 1 0.154
Ex8 1 2.877
Ex9 1 8.318

The underlying LTL synthesis engine performs bounded unroll [15] of the negated
property to safety games. Therefore, whenever the controller can not win the safety
game, there exists an environment strategy which can be expanded as a finite tree, whose
leaves are matched with the risk states of the game. Then, the following three steps are
performed successively:
• Extract a longest path from the source to the leaf. Intuitively, this path represents

a scenario where the controller endeavors to resist losing the game (without inten-
tionally losing the game). For example, assume for such a longest path, that the
environment uses (a)(¬a)(¬a)(¬a) to win the safety game.

• Generalize the longest path. Select from the set of templates one candidate which
can fit the path in terms of generalization. For example, the path above may be gen-
eralized as FG¬a. For every such template, the current implementation of G4LTL-
ST defines a unique generalization function.

• Resynthesize the controller based on the newly introduced template. For example,
given φ as the original specification, the new specification will be (¬FG¬a) →
φ, which is equivalent to (GFa) → φ. Therefore, the path is generalized as an
assumption stating that a should appear infinitely often.

If this process fails to synthesize a controller, then new assumptions are added to further
constrain the environment behavior. When the number of total assumptions reaches a
pre-defined threshold but no controller is generated, the engine stops and reports its
inability to decide the given controller synthesis problem.

5 Outlook

The synthesis engine of G4LTL-ST has been evaluated on a number of simple automa-
tion examples extracted both from public sources and from ABB internal projects1. This
synthesized function block can readily be passed to industry-standard PLC development
tools for connecting function blocks with concrete field device signals inside the main
program to demonstrate desired behavior. The evaluation results in Table 2 demon-
strate that, despite the underlying complexity of the LTL synthesis, G4LTL-ST can still

1 Due to space limits, short descriptions of the case studies have been moved to the extended
version [6].

548 C.-H. Cheng et al.

provide a practical alternative to the prevailing low-level encodings of PLC programs,
whose block size are (commonly) within 1000 LOC. This is due to the fact that many
modules are decomposed to only process a small amount of I/Os. For small sized I/Os,
the abstraction of timers and data in G4LTL-ST together with counter-strategy-based
lazy refinement are particularly effective in fighting the state explosion problem, since
unnecessary unrolling (for timing) and bit-blasting (for data) are avoided. Data analysis
is also effective when no precise (or imprecise) environment model is provided, as is
commonly the case in industrial automation scenarios.

Mechanisms such as assumption generation are essential for the wide-spread de-
ployment of G4LTL-ST in industry, since they provide feedback to the designer in the
language of the problem domain. Extensive field tests, however, are needed for cali-
brating assumption generation in practice. Moreover, a targeted front-end language for
high-level temporal specification of typical control problems for (networks of) PLCs
needs to be developed [11].

References

1. International Electrotechnical Commission IEC 61131-3 Ed. 3.0: Programmable Controllers
– Part 3: Programming languages. International Electrotechnical Commission, Geneva,
Switzerland (2013)

2. Recommendations for implementing the strategic initiative - INDUSTRIE 4.0. German Na-
tional Academy of Science and Engineering (AcaTech) (April 2013)

3. Die Deutsche Normungs-Roadmap - INDUSTRIE 4.0. DKE German Commission for Elec-
trical, Electronic & Information Technologies (December 2013)

4. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer,
Heidelberg (2012)

5. Cheng, C.-H., Ruess, H., Shankar, N.: JBernstein - a validity checker for generalized
polynomial constraints. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 656–661. Springer, Heidelberg (2013)

6. Cheng, C.-H., Huang, C.-H., Ruess, H., Stattlemann, S.: G4LTL-ST: Automated Generation
of PLC Programs (full version). arXiv:1405.2409 (2014)

7. Cheng, C.-H., Shankar, N., Ruess, H., Bensalem, S.: EFSMT: A Logical Framework for
Cyber-Physical Systems. arXiv:1306.3456 (2013)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169.
Springer, Heidelberg (2000)

9. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD, pp. 117–124. IEEE
(2006)

10. Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-Guided Control. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 886–902. Springer, Heidelberg (2003)

11. Ljungkrantz, O., Akesson, K., Fabian, M., Yuan, C.: Formal Specification and Verification
of Industrial Control Logic Components. IEEE Tran. on Automation Science and Engineer-
ing 7(3), 538–548 (2010)

G4LTL-ST: Automatic Generation of PLC Programs 549

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL modulo the-
ories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 36–50.
Springer, Heidelberg (2005)

13. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM
(1989)

14. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)
15. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T., Higashino,

T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488. Springer, Heidelberg
(2007)

	Automatic Generation of PLC Programs
	1 Overview
	2 Timing Abstractions
	3 Abstraction-Refinement Synthesis Loop
	4 Assumption Generation
	5 Outlook
	References

