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Abstract. In this paper we address the synthesis problem for specifications given
in linear temporal single-agent epistemic logic, KLTL (or K L1), over single-
agent systems having imperfect information of the environment state. [17] have
shown that this problem is 2Exptime complete. However, their procedure relies
on complex automata constructions that are notoriously resistant to efficient im-
plementations as they use Safra-like determinization.

We propose a ”Safraless” synthesis procedure for a large fragment of KLTL.
The construction transforms first the synthesis problem into the problem of check-
ing emptiness for universal co-Biichi tree automata using an information-set con-
struction. Then we build a safety game that can be solved using an antichain-
based symbolic technique exploiting the structure of the underlying automata.
The technique is implemented and applied to a couple of case studies.

1 Introduction

The goal of system verification is to check that a system satisfies a given property.
One of the major achievements in system verification is the theory of model checking,
that uses automata-based techniques to check properties expressed in temporal logics,
for systems modelled as transitions systems. The synthesis problem is more ambitious:
given a specification of the system, the aim is to automatically synthesise a system that
fulfils the constraints defined by the specification. Therefore, the constraints do not need
to be checked a posteriori, and this allows the designer to focus on defining high-level
specifications, rather than designing complex computational models of the systems.
Reactive systems are non-terminating systems that interact with some environment,
e.g., hardware or software that control transportations systems, or medical devices. One
of the main challenge of synthesis of reactive systems is to cope with the uncontrollable
behaviour of the environment, which usually leads to computationally harder decision
problems, compared to system verification. For instance, model-checking properties
expressed in linear time temporal logic (LTL) is PSpace-c while LTL synthesis is
2Exptime-c [14]. Synthesis of reactive systems from temporal specifications has gain a
lot of interest recently as several works have shown its practical feasibility [13,4,3,12,9].
These progresses were supported by Kupferman and Vardi’s breakthrough in automata-
based synthesis techniques [13]. More precisely, they have shown that the complex
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Safra’s determinization operation, used in the classical LTL synthesis algorithm [14],
could be avoided by working directly with universal co-Biichi automata. Since then,
several other “Safraless” procedures have been defined [13,16,10,9]. In [16,9], it is
shown that LTL synthesis reduces to testing the emptiness of a universal co-Biichi tree
automaton, that in turn can be reduced to solving a safety game. The structure of the
safety games can be exploited to define a symbolic game solving algorithm based on
compact antichain representations [9].

In these works, the system is assumed to have perfect information about the state of
the environment. However in many practical scenarios, this assumption is not realistic
since some environment information may be hidden to the system (e.g. private vari-
ables). Towards the (more realistic) synthesis of partially informed systems, imperfect
information two-player games on graphs have been studied [15,7,2,8]. However, they
consider explicit state transition systems rather than synthesis from temporal specifica-
tions. Moreover, the winning objectives that they consider cannot express fine properties
about imperfect information, i.e., cannot speak about knowledge.

Epistemic Temporal Logics. [11] are logics formatted for reasoning about multi-agent
situations. They are extensions of temporal logics with knowledge operators K; for
each agent. They have been successfully used for verification of various distributed
systems in which the knowledge of the agents is essential for the correctness of the
system specification.

Synthesis problem with temporal epistemic objectives. Vardi and van der Meyden [17]
have considered epistemic temporal logics to define specifications that can, in addition
to temporal properties, also express properties that refer to the imperfect information,
and they studied the synthesis problem. They define the synthesis problem in a multi-
agent setting, for specifications written in LTL extended with knowledge operators K;
for each agent (KLTL). In such models, transitions between states of the environment
model depend on actions of the environment and the system. The system does not see
which actions are played by the environment but get some observation on the states
in which the environment can be (observations are subsets of states). An execution of
the environment model, from the point of view of the system, is therefore an infinite
sequence alternating between its own actions and observations.

The goal of the KLTL synthesis problem is to automatically generate a strategy for
the system (if it exists) that tells it which action should be played, depending on fi-
nite histories, so that whatever the environment does, all the (concrete) infinite exe-
cutions resulting from this strategy satisfy the KLTL formula. In [17], this problem
was shown to be undecidable even for two agents against an environment. For a sin-
gle agent, they show that the problem is 2Exptime-c, by reduction to the emptiness
of alternating Biichi automata. This theoretically elegant construction is however diffi-
cult to implement and optimize, as it relies on complex Safra-like automata operations
(Muller-Schupp construction).

Contributions. In this paper, we follow the formalisation of [17] and, as our main contri-
bution, define and implement a Safraless synthesis procedure for the positive fragment
of KLTL (KLTL™), i.e., KLTL formulas where the operator & does not occur under any
negations. Our procedure relies on universal co-Biichi tree automata (UCT). More pre-
cisely, given a KLTL™ formula ¢ and some environment model M , we show how to
constructa UCT 7, whose language is exactly the set of strategies that realize ¢ in M g.
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Despite the fact that our procedure has 2-ExpTime worst-case complexity, we have
implemented it and shown its practical feasibility through a set of examples. In partic-
ular, based on ideas of [9], we reduce the problem of checking the emptiness of T, to
solving a safety game whose state space can be ordered and compactly represented by
antichains. Moreover, rather than using the reduction of [9] as a blackbox, we further
optimize the antichain representations to improve their compactness. Our implemen-
tation is based on the tool Acacia [5] and, to the best of our knowledge, it is the first
implementation of a synthesis procedure for epistemic temporal specifications. As an
application, this implementation can be used to solve two-player games of imperfect in-
formation whose objectives are given as LTL formulas, or universal co-Biichi automata.

Organization of the paper. In Section 2, we define the KLTL synthesis problem. In
Section 3, we define universal co-Biichi automata for infinite words and trees. In Sec-
tion 4, we consider the particular case of LTL synthesis in an environment model with
imperfect information. The construction explained in that section will be used in the
generalization to KLTL"and moreover, it can be used to solve two-player imperfect
information games with LTL (and more generally w-regular) objectives. In Section 5,
we define our Safraless procedure for KLTL™, and show in Section 6 how to implement
it with antichain-based symbolic techniques. Finally, we describe our implementation
in Section 7. Full proofs can be found in the full version of the paper[6] in which, for
self-containdness, we also explain the reduction to safety games.

2 KLTL Realizability and Synthesis

In this section, we define the realizability and synthesis problems for KLTL specifica-
tions, for one partially informed agent, called the system, against some environment.

Environment Model. We assume to have, as input of the problem, a model of the be-
haviour of the environment as a transition system. This transition system is defined over
two disjoint sets of actions X'y and X5, for the system and the environment respectively.
The transition relation from states to states is defined with respect to pairs of actions
in 2y x Ys. Additionally, each state s of the environment model carries an interpre-
tation 7.(s) over a (finite) set of propositions P. However, the system is not perfectly
informed about the value of some propositions, i.e., some propositions are visible to the
system, and some are not. Therefore, we partition the set P into two sets P, (the visible
propositions) and P; (the invisible ones).
An environment model is a tuple Mg = (P, X1, X3, Se, So, Ae, 7e ) Where

— P is a finite set of propositions, 2; and X' are finite set of actions for the system
and the environment resp.,

— S, is a set of states, Sy C S, a set of initial states,

- 7, : S. — 2% is a labelling function,

- A, C 8, x X x X9 xS, is a transition relation.

The model is assumed to be deadlock-free, i.e. from any state, there exists at least one
outgoing transition. Moreover, the model is assumed to be complete for all actions of the
system, i.e. for all states and all actions of the system, there exists an outgoing transition.
The set of executions of M g, denoted by exec(M g), is the set of infinite sequences of
states p = sgs1 -+ € S¢ such that sy € Sy and for all ¢ > 0, (s;,a1,a2,si+1) € A
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(=tout,lon), S

Fig. 1. Environment model M g of Example 1

for some (a1, a2) € X1 x Xo. Given a sequence of states p = sgsy ... andaset P C P,
we denote by tracep(p) its projection over P, i.e. tracep(p) = (7e(s0) N P)(7e(s1) N
P).... The visible trace of p is defined by trace,(p) = tracep, (p). The language of
Mg with respect to P is defined as Lp(Mpg) = {tracep(p) | p € exec(Mg)}. The
language of Mg is defined as Lp(Mg). The visible language of Mg is defined as
Lp,(Mg). Finally, given an infinite sequence of actions a = afa3--- € (X1.X5)
and an execution p = s¢s1... of Mg, we say that a is compatible with p if for all
i>0,(s;,al,ab,8,401) € Ae.

This formalization is very close to that of [17]. However in [17], partial observation
is modeled as a partition of the state space. The two models are equivalent. In particular,
we will see that partitioning the propositions into visible and invisible ones also induces
a partition of the state space into observations.

Example 1. We illustrate the notion of environment model on the example of [17], that
describes the behaviour of an environment against a system acting on a timed toggle
switch with two positions (on,off) and a light. It is depicted in Fig. 1. The set P = {¢,1}
contains two propositions ¢ (true iff the toggle is on) and [ (true iff the light is on).
Actions of the system are 3y = {7, S’} for “toggle” and “skip” respectively. The system
can change the position of the toggle only if it plays 7', and S has no effect. Actions
of the environment are Xs = {(tout, lon) | tout; lon € {0,1}}. The boolean variables
tout and [,, indicate that the environment times out the toggle and that it switches
on the light. The transition function is depicted on the figure as well as the labelling
function 7, : S, — 27. The star * means “any action”. The light can be on only if the
toggle in on (state sp), but it can be off even if the toggle is on (state s3), in case it is
broken. This parameter is uncontrollable by the system, and therefore it is controlled
by the environment (action [,,). The timer is assumed to be unreliable and therefore
the environment can timeout at any time (action £,,,.). The system sees only the light,
i.e. P, = {l} and P; = {t}. The goal of the system is to have a strategy such that he
always knows the position of the toggle.

Observations. The partition of the set of propositions P into a set of visible proposi-
tions P, and a set of invisible propositions P; induces an indistinguishability relation
over the states S.. Two states are indistinguishable, denoted s; ~ so, if they have the
same visible propositions, i.e. 7¢(s1) NP, = 7e(s2) N P,. It is easy to see that ~ is



Safraless Synthesis for Epistemic Temporal Specifications 445

an equivalence relation over S.. Each equivalence class of S, induced by ~ is called
an observation. The equivalence class of a state s € S, is denoted by o(s) and the
set of observations is denoted by O. The relation ~ is naturally extended to (finite or
infinite) executions: p; ~ po if trace,(p1) = trace,(p2). Similarly, two executions
p=5ps1... and p’ = s(s} ... are said to be indistinguishable up to some position i if
trace, (so . .. $;) = trace, (s - . . s;). This indistinguishability notion is also an equiva-
lence relation over executions that we denote by ~;.

Coming back to Example 1, since the set of visible propositions is P,, = {i} and the
set of invisible ones is P; = {t}, the states so and s3 are indistinguishable (in both s,
s3 the light is off) and therefore O = {0, 01} with o9 = {s2,s3} and 01 = {s1}.

Given an infinite sequence u = a101a202 - - - € (X1.0)% of actions of Player 1, and
observations, we associate with u the set of possible executions of M g that are com-
patible with u. Formally, we define exec(M g, u) the set of executions p = sps1 -+« €
exec(Mp) such that for all i > 1, o(s;) = o; and there exists an action b; of the en-
vironment such that (s;_1, a;, b;, s;) € A.. We also define the traces of u as the set of
traces of all executions of M g compatible with u, i.e. traces(u) = {traces(p) | p €

exec(Mpg, u)}.

Epistemic Linear Time Temporal Logic (KLTL). We now define the logic KLTL for
one-agent (the system). The logic KLTL extends the logic LTL with an epistemic oper-
ator K ¢, modelling the property that the system knows that the formula ¢ holds. KLTL
formulae are defined over the set of atomic propositions P by:

pu=p | o | oV | Q¢ | pillps | Ko

in which p € P and () and U are the ’next” and “until” operators from linear temporal
logic. Formulas of the type K¢ are read as “the system knows that ¢ holds”. We de-
fine the macros ¢ (eventually) and [] (always) as usual. LTL is the fragment of KLTL
without the K operator.

The semantics of a KLTL formula ¢ is defined for an environment model Mg =
(P, X1, X9, 8¢, S0, A, 7e), a set of executions R C exec(Mg), an execution p =
SpS1 - -+ € R and a position ¢ > 0 in p. It is defined inductively:

- R,p,i Epifp € 7e(s:),

- R,,O,i ): _‘Lplvapvl % 2

- R,p,iE @1 Veaif R,p,if=@1or R, p,i = o,

- Rapai }Z O@lvapaZ+1 >: P>

- Rapai }Z 901U@2 llej > st Rap’j >: P2 andVi < k < Js Rapak ': #15
- R,p,i E Kypifforall p’ € Rs.t. p~; p',wehave R, p',i = ¢.

In particular, the system knows ¢ at position ¢ in the execution p, if all other execu-
tions in R whose prefix up to position ¢ are indistinguishable from that of p, also satisfy
». Wewrite R,p = pif R,p,0 = ¢,and R |= ¢ if R, p |= ¢ for all executions p € R.
We also write M g = ¢ to mean exec(Mpg) = . Note that Mg = ¢ iff Mg E K.

Consider Example 1 and the set R of executions that eventually loop in s;. Pick
any p in R. Then R, p,0 = OK{(1). Indeed, take any position i in p and any other
executions p’ € R such that p ~; p’. Then since p’ will eventually loop in s1, it will
satisfy ¢(1). Therefore R, p,i = K{(1), for all ¢ > 0.

KLTL Realizability and Synthesis. As presented in [9] for the perfect information
setting, the realizability problem, given the environment model Mg and the KLTL



446 R. Bozianu, C. Dima, and E. Filiot

formula ¢, is best seen as a turn-based game between the system (Player 1) and the
environment (Player 2). In the first round of the play, Player 1 picks some action a €
2’1, then Player 2 picks some action in ag € X5 and solves the nondeterminism in A,,
and a new round starts. The two players play for an infinite duration and the outcome is
an infinite sequence w = a{ajalal .. .. The winning objective is given by some KLTL
formula . Player 1 wins the play if for all executions p of Mg that are compatible
with w, we have Mg, p = .

Player 1 plays according to strategies (called protocols in [17]). Since Player 1 has
only partial information about the state of the environment, his strategies are based
on the histories of his own actions and the observations he got from the environment.
Formally, a strategy for Player 1 is a mapping A : (X10)* — X, where, as defined
before, O denotes the set of observations of Player 1 over the states of M . Fixing a
strategy A of Player 1 restricts the set of executions of the environment model M g. An
execution p = sps1 -+ - € exec(M ) is said to be compatible with \ if there exists an
infinite sequence of actions a = a%aj... € (X1.X2)“, compatible with p, such that for
alli > 0, al = Aa%0(s)ato(s1)...ai  o(s;_1)). We denote by exec(M g, \) the set
of executions of M compatible with \.

Definition 1. A KLTL formula p is realizable in M g if there exists a strategy \ for the
system such that exec(Mpg, \) = ¢.

Theorem 1 (R. van der Meyden and M. Vardi in [17]). The KLTL realizability prob-
lem (for one agent) is 2ExpTime-complete.

If a formula is realizable, the synthesis problem asks to generate a finite-memory
strategy that realizes the formula. Such a strategy always exists if the specification is
realizable [17]. Finite memory strategies can be represented by Moore machines that
read observations and output actions of Player 1. We refer the reader to [9] for a formal
definition of finite-memory strategies.

Considering again Example 1, the formula ¢ = O(K (¢) V K (—t)) expresses the fact
that the system knows at each step the position of the toggle. As argued in [17], this
formula is realizable if the initial set of the environment is {s1, s2} since both states are
labelled with ¢. Then, a winning strategy of the system is to play first time 7'(it will lead
to s3) and then always play S in order to stay in that state. Following this strategy, in the
first step the formula K (¢) is satisfied and then K (—t) becomes true forever. However,
the formula is not realizable if the set of initial states of the environment is {s2, s3}
since from the beginning the system doesn’t know the value of the toggle.

3 Automata for Infinite Words and Trees

Automata on Infinite Words. An infinite word automaton over some (finite) alphabet
Yisatuple A = (X, Q, Qo, 4, a) where X is the finite input alphabet, () is the finite
set of states, Q9 C @ is the set of initial states, « C @ is the set of final states (accepting
states) and A C ) x X x ( is the transition relation.

Forall ¢ € Q and all 0 € X, we let A(q,0) = {¢|(¢,0,¢') € A}. We let |[A] =
|Q| + | Al. We say that A is deterministic if |Qo| = 1 and Vg € Q,Vo € X, |A(q,0)| <
1. It is complete if Vg € Q,Vo € X, A(q,0) # 0. In this paper we assume, w.l.o.g.,
that the word automata are always complete.
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A run of the automaton A on an infinite input word w = wowiws..., is a sequence
r = qoqige... € Q¥ such that (g;, w;,q;i+1) € Aforalli > 0and qo € Qo. We denote
by Runsa(w) the set of runs of A on w and by Visit(r, ¢) the number of times the
state ¢ is visited along the run r(or oo if the path visit the state ¢ infinitely often). Here,
we consider two accepting conditions for infinite word automata and name the infinite
word automata according to the accepting condition being used. Let B € N. A word
w € XY is accepted by A if (according to the accepting condition):

Universal Co-Biichi : Vr € Runs4(w),¥q € o, Visit(r,q) < oo
Universal B-Co-Biichi : Vir € Runsa(w),Vq € a, Visit(r,q) < B

The set of words accepted by A with the universal co-Biichi (resp. B-co-Biichi)
accepting condition is denoted by L,,.(A) (resp. Ly, 5(A)) . We say that A is a univer-
sal co-Biichi word automaton (UCW) if the first acceptance condition is used and that
(A, B) is an universal B-co-Biichi word automaton (UBCW) if the second one is used.

Given an LTL formula ¢, we can translate it into an equivalent universal co-Biichi
word automaton A, . This can be done with a single exponential blow-up by first negat-
ing ¢, then translating — into an equivalent nondeterministic Biichi word automaton,
and then dualize it into a universal co-Biichi word automaton [9,13].

Automata on Infinite Trees. Given a finite set D of directions, a D—tree is a prefix-
closed set T' C D*,ie.,ifx-d € T, where d € D, then x € T. The elements of T'
are called nodes and the empty word ¢ is the root of T'. For every x € T, the nodes
x - d, ford € D, are the successors of x. A node x is a leaf if it has no successor in
T,ie,Vd € D,x-d ¢ T. Thetree T is complete if for all nodes, there are successors
in all directions, formally, Vo € T,Vd € D,z - d € T. Finite and infinite branches 7
in a tree T are naturally defined, respectively, as finite and infinite paths in T’ starting
from the root node. Given an alphabet X, a X'—labelled D—tree is a pair (T, 7) where
Tisatreeand 7 : T — X maps each node of T to a letter in 2. We omit 7 when it
is clear from the context. Then, in a tree 7', an infinite (resp. finite) branch 7 induces
an infinite (resp. finite) sequence of labels and directions in (X.D)% (resp. (X.D)*X).
We denote this sequence by 7(7). For instance, for a set of system’s actions X; and a
set of observations O, a strategy A : (X10)* — X of the system can be seen has a
X -labelled O-tree whose nodes are finite outcomes'.

A universal co-Biichi tree automaton (UCT) is a tuple T = (X, Q, Qo, D, A, )
where Y is the finite alphabet, ) is a finite set of states, Qg C @ is the set of initial
states, D is the set of directions, A : Qx X x D — 2@ is the transition relation (assumed
to be total) and « is the set of final states. If the tree automaton is in some state ¢ at some
node z labelled by some o € X, it will evaluate, for all d € D, the subtree rooted at
x.d in parallel from all the states of A(q, o, d). Let us define the notion of run formally.
Forall ¢ € Q and o € X, we denote by A(q,0) = {(¢q1,d1), .- -, (gn,dn)} the disjoint
union of all sets A(q, o, d) foralld € D. A run of T on an infinite ¥'—labelled D—tree
(T,7)is a (Q x D*)—labelled N—tree (T}, 7,) such that 7.(€) € Q¢ x {€} and, for

! Technically, a strategy X is defined also for histories that are not accessible by ) itself from the
initial (empty) history €. The tree represents only accessible histories but we can, in the rest
of the paper, assume that strategies are only defined for their accessible histories. Formally,
we assume that a strategy is a partial function whose domain H satisfies ¢ € H and for all
h € Handallo € O, h.A(h).0 € H, and H is minimal (for inclusion) w.r.t. this property.
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all z € T, such that 7,.(x) = (¢, v), if A(q, 7(v)) = {(g1,d1),- .., (gn,dn)}, we have
x-i € Tpand 7-(z - i) = (¢;,v - d;) forall 0 < i < n, . Note that there is at most one
run per input tree (up to tree isomorphism). A run (T, 7,-) is accepting if for all infinite
branches 7 of T,., 7,-(m) visits a finite number of accepting states. The language of T,
denoted by L,,.(7), is the set of X-labelled D-trees such that there exists an accepting
run on them. Similarly, we define universal B-co-Biichi tree automata by strengthening
the acceptance conditions on all branches to the B-co-Biichi condition.

As noted in [9,16], testing the emptiness of a UCT automaton reduces to testing the
emptiness of a universal B-co-Biichi accepting condition for a sufficiently large bound
B, which in turn reduces to solving a safety game. Symbolic techniques, that are also
exploited in this paper, have been used to solve the safety games[9].

4 LTL Synthesis under Imperfect Information

In this section, we first explain an automata-based procedure to decide realizability
under imperfect information of LTL formulas against an environment model. This pro-
cedure will be extended in the next section to handle the K operator.

Take an environment model Mg = (P, X, Yo, Se, So, Ae, 7c). Then, a complete
X1—labelled O-tree (T, 7) defines a strategy of the system. Any infinite branch 7 of
(T, T) defines an infinite sequence of actions and observations of M g, which in turn
corresponds to a set of possible traces in M g. We denote by traces(7) this set of traces,
and it is formally defined by traces(w) = traces(7(m)) (recall that the set of traces of a
sequence of actions and observations has been defined in Section 2).

Given an LTL formula v, we construct a universal co-Biichi tree automaton 7 =
(X1,Q,Qo, O, A, ) that accepts all the strategies of Player 1 (the system) that realize
1 under the environment model M g. First, one converts 1 into an equivalent UCW
A= (27,Q4,Q¢', A4, ). Then, as a direct consequence of the definition of KLTL
realizability:

Proposition 1. Given a complete X1 —labelled O-trees (T, 7), (T, T) defines a strategy
that realizes ¢ under Mg iff for all infinite branches 7 of (T, T) and all traces p €
traces(), p € L(A).

We now show how to construct a universal tree automaton that checks the property
mentioned in the previous proposition, for all branches of the trees. We use universal
transitions to check, on every branch of the tree, that all the possible traces (possibly
uncountably many) compatible with the sequence of actions in X'; and observations in
O defined by the branch satisfy . Based on finite sequences of observations that the
system has received, it can define its knowledge I of the possible states in which the
environment can be, as a subset of states of S.. Given an action a; € Xy of the system
and some observation o € O, we denote by post, (I, 0) the new knowledge that the
system can infer from observation o, action a and its previous information /. Formally,
post,(I,0) ={s € SeNo|3as € X5,3s" € I st. (¢, a,a2,5) € A}

The states of the universal tree automaton 7 are pairs of states of A and knowledges,
plus some extra state (g, @), i.e. Q = Q* x 2% U {(qu, @)} where (¢, @) is added
for completeness. The final states are defined as @ = o x 2% and initial states as
Qo = Qg x Sp. To define the transition relation, let us consider a state ¢ € Q*, a
knowledge set I C S,, an action a € X; and some observation o € O. We now define
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A((g,I), a,0). It could be the case that there is no transition in M g from a state of I to
a state of o, i.e. post, (I, 0) = @. In that case, all the paths from the next o-node of the
tree should be accepting. This situation is modelled by going to the extra state (¢, &),
i.e. Al(g, 1), a,0) = (qu, 2).

Now suppose that post,(/,0) is non-empty. Since the automaton must check that
all the traces of M g that are compatible with actions of X'; and observations are ac-
cepted by A, intuitively, one would define A((g, I), a, 0) as the set of states of the form
(¢, post,(I,0)) for all states ¢’ such that there exists s € I such that (¢, 7.(s),q’) €
AA. However, it is not correct for several reasons. First, it could be that s has no suc-
cessor in o for action a, and therefore one should not consider it because the traces
up to state s die at the next step after getting observation o. Therefore, one should
only consider states of I that have a successor in o. Second, it is not correct to as-
sociate the new knowledge post, (I, 0) with ¢/, because it could be that there exists a
state s’ € post,(I,0) such that for all its predecessors s” in I, there is no transition
(q,7e(s"),q") in A#4, and therefore, one would also take into account sequences of
interpretations of propositions that do not correspond to any trace of M g.

Taking into account these two remarks, we define, for all states ¢, the set Iyqg =
{s€1|(q,7(s),q") € A*}. Then, A((q, I),a,0) is defined as the set

A((g,1),a,0) = {(d',post, (Ip.,0)) | 3s € I, (¢,7(s),¢) € A%}

Note that, since J ¢4 post,(Ig,q;0) = post, (] ; o? and the automaton is universal,
the system does not have better knowledge by restricting the knowledge sets.

Lemma 1. The LTL formula 1) is realizable in Mg iff L(T ) # @.

Moreover, it is known that if a UCT has a non-empty language, then it accepts a
tree that is the unfolding of a finite graph, or equivalently, that can be represented by a
Moore machine. Therefore if 1) is realizable, it is realizable by a finite-memory strategy.
In this paper we will also use the notation 7y, x for the UCT built for the LTL formula
1) where the executions of M g start from the set X C S..i.e., Qp = Qé“ x X.

S Safraless Procedure for Positive KLTL Synthesis

In this section, we extend the construction of Section 4 to the positive fragment of
KLTL. Positive formulas are defined by the following grammar:

pu=plplenpleVe|Op|Op| K| oUp

Note that this fragment is equivalent to the fragment of KLTL in which all the knowl-
edge operators K in formulas occur under an even number of negations. This is obtained
by straightforwardly pushing the negations downwards the atoms. We denote this frag-
ment of KLTL by KLTL™.

Sketch of the Construction. Given a KLTL™ formula ¢ and an environment model
Mg = (P, X1, %2, 5, S0, A, 7e), we show how to construct a UCT 7T such that
L(T) # @ iff ¢ is realizable in M g. The construction is compositional and follows,
for the basic blocks, the construction of Section 4 for LTL formulas. The main idea
is to replace subformulas of the form Ky by fresh atomic propositions k- so that we
get an LTL formula for which the realizability problem can be transformed into the
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emptiness of a UCT. The realizability of the subformulas K that have been replaced
by k is checked by branching universally to a UCT for +, constructed as in Section
4. Since transitions are universal, this will ensure that all the infinite branches of the
tree from the current node where a new UCT has been triggered also satisfy . The
UCTs we construct are defined over an extended alphabet that contains the new atomic
propositions, but we show that we can safely project the final UCT on the alphabet 3; .
The assumption on positivity of KLTL formulas implies that there is no subformulas of
the form —K~. The rewriting of subformulas by fresh atomic propositions cannot be
done in any order. We now describe it formally.

We inductively define a sequence of formulas associated with ¢ as: ¢° = ¢ and,
for all i > 0, ¢ is the formula ©'~! in which the innermost subformulas K~ are
replaced by fresh atomic propositions k.. Let d be the smallest index such that o? is
an LTL formula (in other words, d is the maximal nesting level of K operators). Let
K denote the set of new atomic propositions, i.e., K = U?:o{kv | Ky € ¢'}, and let
P’ = P UK. Note that by definition of the formulas *, for all atomic proposition k.,
occurring in ¢, 7y is an LTL formula over P’. E.g. if ¢ = p — K(q — Kr V Kz) and
P = {p,q,r, z}, then the sequence of formulasis: ©° = ¢, p! = p — K(q — k,VEk,)
0> =p— k, wherey = q — k. V k..

Then, we construct incrementally a chain of universal co-Biichi tree automata
T, ..., T%such that £L(T9) D L(T?1) D --- D L(T?) and, the following invariant
is satisfied: for all i € {0,...,d}, T* accepts exactly the set of strategies that realize
©" in M g. Intuitively, the automaton 7 is defined by adding new transitions in 7°*1,
such that for all atomic propositions k- occurring in 1, 7 will ensure that Ky is
indeed satisfied, by branching to a UCT checking v whenever the atomic proposition
k- is met. Since formulas ¢° are defined over the extended alphabet P’ = P UK and
Mg is defined over P, we now make clear what we mean by realizability of a formula
o' in Mg. It uses the notion of extended model executions and extended strategies.

Extended Actions, Model Executions and Strategies. We extend the actions of the
system to X} = X; x 2K (call e-actions). Informally, the system plays an e-action
(a, K) if it considers formulas K+ for all k, € K to be true. An extended execu-
tion (e-execution) of Mg is an infinite sequence p = (sg, Kp)... € (S, x 2K)
such that sgsj... € exec(Mpg). We denote sosi... by proj,(p) and KoK ... by
proj, (p). The extended labelling function 7/ is a function from S, x 2% to P’ defined by
7.(s, K) = 7e(s) U K. The indistinguishability relation between extended executions is
defined, for any two extended executions p1, pa, by p1 ~ pa iff proj; (p1) ~ proj; (p2)
and proj,(p1) = projs(p2), i.e., the propositions in K are visible to the system. We de-
fine ~; over extended executions similarly. Given the extended labelling functions and
indistinguishability relation, the KLTL satisfiability notion R, p, i = 1) can be naturally
defined for a set of e-execution R, p € R and v a KLTL formula over P’ = P UK.
An extended strategy is a strategy defined over e-actions, i.e. a function from (X} O)*
to Xj. For an infinite sequence u = (ag, Ko)oo(a1, K1)o1--+ € (X10)¥, we de-
fine proj, (u) as agop . ... The sequence u defines a set of compatible e-executions
exec(M g, u) as follows: it is the set of e-executions p = (sq, Ko)(s1, K1)... € (Se %
2%)« such that proj, (p) € exec(M g, proj; (u)). Similarly, we define for e-strategies \’
the set exec(Mpg,\') of e-executions compatible with A’. A KLTL formula 1
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over P’ is realizable in Mg if there exists an e-strategy A’ such that for all runs
p € exec(Mpg, '), we have exec(Mpg, \'), p,0 = 1.

Proposition 2. There exists an e-strategy \' : (X10)* — X realizing ©° in Mg iff
there exists a strategy \ : (210)* — X1 realizing ¢° in Mg.

Proof. Let see e-strategies and strategies as Xj —labelled (resp. X;-labelled) O-trees.
Given a tree representing \’, we project its labels on X; to get a tree representing .
The strategy A defined in this way realises (°, as ¢ does not contain any occurrence of
propositions in K. Conversely, given a tree representing A, we extend its labels with () to
get a tree representing \’. It can be shown for the same reasons that \’ realizes ©°. O

Incremental Tree Automata Construction. The invariant mentioned before can now be
stated more precisely: for all 7, 7 accepts the e-strategies \' : (X]0) — Y] that realise
©' in M g. Therefore, the UCT T are labelled with e-actions X]. We now explain how
they are constructed.

Since ¢ is an LTL formula, we follow the construction of Section 4 to build the UCT
7. Then, we construct 7 from 71!, for 0 < i < d. The invariant tells us that 7¢+1
defines all the e-strategies that realize ¢**! in M g. It is only an over-approximation of
the set of e-strategies that realize ¢° in Mg (and a fortiori ¢°), since the subformulas
of ¢* of the form Ky correspond to atomic propositions k-~ in ¢**1, and therefore 71
does not check that they are satisfied. Therefore to maintain the invariant, 7 is obtained
from 7+ such that whenever an action that contains some formula k., € sub(p™!)
occurs on a transition of 71, we trigger (universally) a new transition to a UCT 75 j,
for the current information set I in 71, that will check that K ~ indeed holds. The
assumption on positivity of KLTL formulas is necessary here as we do not have to
check for formulas of the form — K+, which could not be done without an involved
“non Safraless” complementation step. Since -y is necessarily an LTL formula over P’
by definition of the formula ('*!, we can apply the construction of Section 4 to build
Ty1. .

Formally, from the incremental way of constructing the automata 77 for j > i, we
know that 7°*! has a set of states Q;11 where all states are of the form (g, I) where
I C S, is some knowledge. In particular, it can be verified to be true for the state space
of T¢ by definition of the construction of Section 4. Let also A;1; be the transition
relation of 7. For all formulas ~ such that k. occurs in 1, we let Q- be the set
of states of 7., ; and A, its set of transitions. Again from the construction of Section 4,
we know that ), = @Q X 2% where Q is the set of states of a UCW associated with ~
(assumed to be disjoint from that of 7**!) and Q9 = Q x I.

We define the set of states Q; of 7 by Q; 1 U Ukve",ub(wﬂ) Q. Its set of tran-
sitions A; is defined as follows. Assume w.l.o.g. that there is a unique initial state
go € @ in the UCW A,. If (¢/,I') € Ai11((¢g,]),(a,K),0) where I,I' C S,
a € Y1, K CK,o0€ Oandk, € K is such that kv occurs in ¢**1, then we let
(¢, I') € Ai((q,1), (a,K),0) and A, ((qgo, I), (a, K),0) C A;((q,]),(a, K),0). The
whole construction is given in [6], as well as the proof of its correctness. The invariant
is satisfied:

Lemma 2. Foralli > 0, L(T?) accepts the set of e-strategies that realize o' in M.
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From Lemma 2, we know that £(7°) accepts the set of e-strategies that realize
¢ = ¢ in M g. Then by Proposition 2 we get:

Corollary 1. The KLTL" formula  is realizable in Mg iff L(T°) # @.
We now let 7, be the UCT obtained by projecting 79 on X;. We have:

Theorem 2. For any KLTL" formula o, one can construct a UCT T, such that L(T,)
is the set of strategies that realize p in Mg.

The number of states of 7, is (in the worst-case) 2|Se|.(2“"d‘ + ZkveK 2171, and
since [ + > .k |7] is bounded by ||, the number of states of T, is O(2/5¢ 1),

6 Antichain Algorithm

In the previous sections, we have shown how to reduce the problem of checking the
realizability of a KLTL™ formula ¢ to the emptiness of a UCT T, (Theorem 2). In this
section, we describe an antichain symbolic algorithm to test the emptiness of 7.

It is already known from [9] that checking emptiness of the language defined by a
UCT T can be reduced to checking the emptiness of £, g(7) for a sufficiently large
bound B, which in turn can be reduced to solving a safety game. Clearly, for all b > 0,
if Lyen(T) # 0, then L,.(T) # 0. This has led to an incremental algorithm that
starts with the bound 0, and the experiments have shown that in general, a small bound
b is necessary to conclude for realizability of an LTL formula (transformed into the
emptiness of a UCT). We also exploit this idea in our implementation and show that for
the KLTL™ specifications that we considered, this observation still holds: small bounds
are enough.

In [9], it is shown that the safety games can be solve on-the-fly without constructing
them explicitly, and that the fixpoint algorithm used to solve these safety games could
be optimized by using some antichain representation of the sets constructed during the
fixpoint computation. Rather than using the algorithm of [9] as a black box, we study
the state space of the safety games constructed from the UCT 7, and show that they
are also equipped with a partial order that allows one to get more compact antichain
representations. We briefly recall the reduction of [9], the full construction of the safety
games is given in [6].

Given a bound b > 0 and a UCT T, the idea is to construct a safety game G(7,b)
such that Player 1 has a winning strategy in G(7,b) iff Ly.4(7) is non-empty. The
game G(T,b) is obtained by extending the classical automata subset construction with
counters which count, up to b, the maximal number of times all the runs, up to the
current point, have visited accepting states. If () is the set of states of 7, the set of states
of the safety game G(7, b) is all the functions F' : @ — {—1,0,...,b+ 1}. The value
F(q) = —1 means that no run have reached ¢ and F'(¢) € {0,...,b} means that the
maximal number of accepting states that has been visited by some run reaching q is
F(q). The safe states are all the functions F' such that F'(qg) < b forall ¢ € Q. The
set of states can be partially ordered by the pairwise comparison between functions and
it is shown that the sets of states manipulated by the fixpoint algorithm are downward
closed for this order.
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Consider now the UCT 7, constructed from the KLTL™ formula . Its state space is
of the form @ x 25¢ where S, is the set of states of the environment, because the con-
struction also takes into account the knowledge the system has from the environment.
Given a bound b, the state space of the safety game G(7,, b) is therefore functions from
Q x 2% to {—1,...,b + 1}. However, we can reduce this state space thanks to the
following result:

Proposition 3. For all runs (T}, T) of T, on some tree T, for all branches w, " in T,
of the same length such that they follow the same sequence of observations, if T(m) =
(¢, ) and T(7') = (¢, I'), then I = I'.

In other words, given the same sequence of observations, the tree automaton ’7;,
computes, for a given state g, the same knowledge.

Based on this proposition, it is clear that reachable states F' of G (7, b) satisfy, for
all states ¢ € @ and knowledges I,I’, if F(q,I) # —1 and F(q,I') # —1 then
I = I'. We can therefore define the state space of G(7,b) as the set of pairs (F, K)
such that ' : Q — {—1,...,b+ 1} and K : Q — 2 associates with each state ¢
a knowledge (we let G(q) = 0 if F((¢) = —1). This state space is naturally ordered
by (F1, K1) 2 (Fy, K») ifforall ¢ € Q, Fi(q) < F2(q) and K1(q) € K»(q). We
show that all the sets manipulated during the fixpoint computation used to solve the
safety games are downward closed for this order and therefore can be represented by
the antichain of their maximal elements. A detailed analysis of the size of the safety
game shows that G(7, B) is doubly exponential in the size of ¢, and therefore, since
safety games can be solved in linear time, one gets a 2Exptime upper bound for KLTL ™"
realizability. The technical details are given in [6].

7 Implementation and Case Studies

In this section we briefly present our prototype implementation Acacia-K for KLTL " synthesis
[1], and provide some interesting examples on which we tested the tool, on a laptop
equipped with an Intel Core 17 2.10Ghz CPU. Acacia-K extends the LTL synthesis tool
Acacia+[5]. As Acacia+, the implementation is made in Python together with C for the

low level operations that need efficiency.

As Acacia+, the tool is available in one version working on both Linux and MacOsX
and can be executed using the command-line interface. As parameters, in addition to the
files containing the KLTL™ formula and the partition of the signals and actions, Acacia-
K requires a file with the environment model. The output of the tool is a winning
strategy, if the formula is realizable, given as a Moore machine described in Verilog
and if this strategy is small, Acacia-K also outputs it as a picture.

In order to have a more efficient implementation, the construction of the automata for
the LTL formulas +y is made on demand. That is, we construct the UCT 7 incrementally
by updating it as soon as it needs to be triggered from some state (g, I) which has not
been constructed yet.

As said before, the synthesis problem is reduced to the problem of solving a safety
game for some bound b on the number of visits to accepting states. The tool is incre-
mental: it tests realizability for small values of b first and increments it as long as it
cannot conclude for realizability. In practice, we have observed, as for classical LTL
synthesis, that small bounds b are sufficient to conclude for realizability. However if the
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formula is not realizable, we have to iterate up to a large upper bound, which in practice
is too large to give an efficient procedure for testing unrealizability. We leave as future
work the implementation of an efficient procedure for testing unrealizability.

Taking now Example 1, the strategy provided by the tool is depicted in Figure 2.
It asks to play first ’toggle” and then keep on playing “’skip” and, depending on the
observation he gets, the system goes in a different state. The state O is for the start, the
state 1 is the “error” state in which the system goes if he receives a wrong observation.
That is, the environment gives an observation even if he cannot go in a state having that
observation. Then, if the observation is correct, after playing the action “toggle” from
the initial states {s1, 2 }, the environment is forced to go in s3 and by playing the action
’skip”, the system forces the environment to stay in s3 and he will know that ¢ is false.
In the strategy, this situation corresponds to the state 2. For this example, Acacia-K
constructed a UCT with 31 states and the total running time is 0.2s.

init >

Fig. 2. Winning strategy synthesized by Acacia-K for Example 1

Example 2 (The 3-Coin Game). Another example that we tried is a game played using
three coins which are arranged on a table with either head or tail up. The system doesn’t
see the coins, but knows at each time the number of tails and heads. Then, the game is
infinitely played as follows. At the beginning the environment chooses an initial con-
figuration and then at each round, the system chooses a coin and the environment has
to flip that coin and inform the system about the new number of heads and tails. The
objective of the system is to reach, at least once, the state in which all the coins have the
heads up and to avoid all the time the state in which all the coins are fails. Depending
on the initial number of tails up, the system may or may not have a winning strategy.

In order to model this, we considered an environment model whose states are labelled
with atomic propositions ci, ca, cs for the three coins, which are not visible for the
system, and two other variables b1, by which are visible and represent the bits encoding
the number of heads in the configuration. The actions of the system are C, C, C3 with
which he chooses a coin and the environment has to flip the coin chosen by the system
by playing only the action done. A picture of the environment is in [6].

Then, the specification is translated into the KLTL " formula K Oer ANea Aeg) A
OK(c1 V ea V c3). Then, assuming that the initial state of the environment has two
heads, the synthesized strategy proposes to "check” the position of every coin by double
flipping. If after one flip, the winning state is not reached, the system flips back the coin
and at the third round he chooses another coin to check. A picture of the strategy can be
found in [6]. For this example, Acacia-K constructs a UCT with 79 states, synthesises
a strategy with 10 states, and the total running time is 3.9s.
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Example 3 (n-Prisoners Enigma). Finally, the last example is about n prisoners in a
prison, each one in his own cell and they cannot communicate. There is a special room
with a light bulb and a switch and a policeman that, at each moment of time, sends only
one prisoner in that room and gives him the possibility to turn on or off the light. The
prisoners can only observe the light when they are in the special room. The guardians
ensure that each prisoner is sent into the room an infinite number of times (fairness
assumption). Before the game starts, the prisoners are allowed to communicate, and
they know the initial state of the light. The goal of the prisoners is to learn whether all
of them have visited the special room at least once — more specifically, whenever all
prisoners have visited the room, one specially designated prisoner must know that fact.

Assume that the light is initially off. Then the winning strategy is that the special
prisoner, say prisoner n, will countupton — 1. Forall 1 < j < n — 1, the fairness
assumption ensures that prisoner 7 will visit the room again and again until the game
stops. The first time j visits the room and the light is off, he turns it on, otherwise
he does nothing. Prisoner n will turn the light off next time he enters the room, and
increment his counter by 1. When the counter reaches n — 1, prisoner n will be sure
that all prisoners have visited the room at least once.

We have tried 3/4/5/6 prisoners versions (including the protagonist) of this problem,
obtaining a one hour timeout for 6 agents. The statistics we obtained are the following:

Pris # |[Mg| |[UCT| [tb — UCT| Aut constr (s) | M| Total time(s)

3 21 144 692 1.79s 12 1.87s

4 53 447 2203 1.98s 16 13.20s

5 129 1310 6514 199.06s 20 553.455 (~ 9 min)
6 305 3633 18125 6081.69s N/A N/A

Again, Acacia-K generates strategies that are natural, the same that one would synthe-
size intuitively. For more details about this example see [6]. This fact is remarkable itself
since, in synthesis, it is often a difficult task to generate small and natural strategies.

8 Conclusion

In this paper, we have defined a Safraless procedure for the synthesis of KLTL™
specifications in environment with imperfect information. This problem is 2ExpTime-
¢ but we have shown that our procedure, based on universal co-Biichi tree automata, can
be implemented efficiently thanks to an antichain symbolic approach. We have imple-
mented a prototype and run some preliminary experiments that prove the feasibility of
our method. While the UCT constructed by the tool are not small (around 1300 states),
our tool can handle them, although in theory, the safety games could be exponentially
larger than the UCT. Moreover, our tool synthesises small strategies that correspond
to the intuitive strategies we would expect, although it goes through a non-trivial au-
tomata construction. As a future work, we want to see if Acacia-K scales well on larger
examples. We also want to extend the tool to handle the full KLTL logic in an effi-
cient way. This paper is an encouraging (and necessary) step towards this objective. In
a first attempt to generalize the specifications, we plan to consider assume-guarantees
specifications K ¢ — 1), where ¢ is an LTL formula and ) a KLTL™ formula.
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