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Abstract. Verification algorithms for networks of nonlinear hybrid au-
tomata (HA) can aid us understand and control biological processes such
as cardiac arrhythmia, formation of memory, and genetic regulation. We
present an algorithm for over-approximating reach sets of networks of
nonlinear HA which can be used for sound and relatively complete in-
variant checking. First, it uses automatically computed input-to-state
discrepancy functions for the individual automata modules in the net-
work A for constructing a low-dimensional model M. Simulations of both
A and M are then used to compute the reach tubes for A. These tech-
niques enable us to handle a challenging verification problem involving
a network of cardiac cells, where each cell has four continuous variables
and 29 locations. Our prototype tool can check bounded-time invariants
for networks with 5 cells (20 continuous variables, 29° locations) typi-
cally in less than 15 minutes for up to reasonable time horizons. From
the computed reach tubes we can infer biologically relevant properties of
the network from a set of initial states.
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1 Introduction

Central to understanding and controlling behavior of complex biological net-
works are invariant properties. For example, synchronization of the action po-
tentials of cardiac cells and neurons is responsible for normal functioning of
the heart and for formation of memory [6, 16], and maintenance of synchrony
is an invariant property. Real-time prediction of loss of synchrony can enable
automatic deployment of counter-measures. For instance, embedded defibrilla-
tor devices are being designed to preempt possible cardiac arrest that arises

* The authors are supported by NSA SoS grant (W911NSF-13-0086), AFOSR YIP
grant (FA9550-12-1-0336), NSF CAREER grant (CNS 10-54247), the ERC AdG
VERIWARE, ERC PoC VERIPACE, and the Institute for the Future of Computing,
Oxford Martin School.

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 373-390, 2014.
© Springer International Publishing Switzerland 2014



374 Z. Huang et al.

from loss of synchrony. Offline invariant checks can aid in debugging pacemak-
ers and brain-machine interfaces. Checking invariant properties for networks
of dynamical systems is challenging. Analytical results exist only for modules
with relatively simple dynamics and on special types of topologies such as scale-
free and random graphs [7,9, 38,40, 43]. These approaches cannot be applied
to modules with nonlinear and hybrid dynamics such as the models of cardiac
cells in [11,20]. Aside from the nonlinearities in the modules, the complete net-
work model involves shared continuous variables between modules (ion-channels)
which have limited support in analytical and verification approaches. In the ab-
sence of analytical approaches, one performs simulation experiments which are
computationally inexpensive but fall short of providing guarantees and are of
limited utility in studying invariants for sets of initial states or parameter val-
ues. For example, if we wanted to know if the voltage of an action potential stays
within some range from a set of initial states, then a finite number of simulations
cannot give us a provably correct answer.

In this paper, we present an algorithm for verifying bounded-time invariant
properties of networks of deterministic nonlinear hybrid automata. The under-
lying principle is simulation-based verification which combines numerical simu-
lations with formal analysis [5,14,15]. First, a simulation 1 is computed from a
single initial state v. This v is then bloated by some factor to over-approximate
all executions from a neighborhood B, of v of non-zero measure. By repeat-
ing this process for different v’s, all behaviors from a set of initial states can
be over-approximated and robust invariants can be checked. In [15], we used
user-provided model annotations (discrepancy functions) to statically compute
the bloating factor in a way that can make the over-approximations arbitrar-
ily precise. The resulting algorithm enjoys scalability and relative completeness:
if the system satisfies the invariant robustly, then the algorithm is guaranteed
to terminate. The burden of finding discrepancy functions for large models is
partly alleviated in [26] for nonlinear differential equations. That paper proposes
input-to-state (IS) discrepancy functions for each module A; of a larger system
A= A ...||An. These user-provided, albeit modular, annotations are used to
construct a lower-dimensional nonlinear time-varying system whose trajectories
give the necessary bloating factor for the trajectories of the system A.

These previous results do not extend to hybrid systems with guards and re-
sets, and their applicability is still limited by the annotation required from the
user. One challenge is that individual simulations capture a particular sequence
of locations. However, the states reached in a bloated version of the simula-
tion may intersect with many other guards and visit a completely different se-
quence of locations. Our contributions address this and other technical hurdles,
demonstrating a promising approach for invariant verification of nonlinear hy-
brid networks. (a) We present a new simulation-based verification algorithm
for nonlinear hybrid networks that uses modular input-to-state (IS) discrep-
ancy functions. Modular annotations and the simulation-based approach make it
scalable. The algorithm is sound; it systematically discovers possible transitions
and then generates new simulations for different location sequences. We identify
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general robustness conditions that yield relative-completeness. (b) We develop a
set of techniques for automatically computing input-to-state discrepancy func-
tions for a general class of nonlinear hybrid models. (¢) The performance of
our prototype implementation in checking bounded-time invariants of complex
Simulink models of cardiac cell networks illustrate the promise of the approach
[25]. For networks with 5 cells, each with 4 dimensions and 29 locations, and
multi-affine dynamics (total of 20 continuous variables, 29° locations), invari-
ants for up to reasonable time horizons are established typically in less than
15 minutes. In two minutes, it finds counter-examples of networks with 8 cells.
All of this enables us to check biologically relevant properties for cardiac cells
networks.

Section 2 provides background for hybrid automata, whereas Section 3 intro-
duces IS discrepancy and techniques for computing them. Section 4 describes
the main algorithm and Section 5 presents its applications in checking cardiac
networks. Finally, Section 6 discusses related works and concludes the paper.

2 Hybrid Automata Modules and Networks

Hybrid Input/Output Automata. (HA) is a framework for specifying interact-
ing modules that evolve discretely and continuously and share information over
continuous variables and discrete transitions [31, 34, 35]. Please see the full ver-
sion [25] for related definitions and notations.

For a variable v, its type, denoted by type(v), is the set of values that it can
take. For a set of variables V, a valuation v maps each v € V to a point in type(v).
Given a valuation v for V, the valuation of a particular variable v’ € V, denoted
by v.v’, is the restriction of v to v’; for a set V' C V, v.V is the restriction of v to
V. Val(V) is the set of all valuations for V. A trajectory for ¥V models continuous
evolution of the values of the variables over a closed interval [0,7] called the
domain. A trajectory £ is a map & : [0,T] — Val(V). Restriction of £ to a subset
of variables X C V is denoted by £ | X. For a trajectory £ of VUU with domain
[0,T], we define &.fstate as (£ | V)(0) and &.Istate as (£ | V)(T). A variable is
continuous if all its trajectories are piece-wise continuous and it is discrete if its
trajectories are piece-wise constant. A HA has a set of continuous variables X’
that evolve along trajectories (defined by differential equations with inputs i)
and can be reset, and a set of discrete variables £ that change with transitions.

Definition 1. A Hybrid I/O Automaton (HA) A is a tuple (L, X,U,0,D,T)
where (a) L is a set of discrete variables. Val(L) is the set of locations. (b) X is
a set of real-valued continuous variables. V := X UL is the set of state variables;
Val(V) is the state space. (¢) U is a set of real-valued input variables; Val(lf) is
the input space. (d) © C Val(V) is a set of start states; (e) D C Val(V) x Val(V)
is a set of discrete transitions. (f) T is the set of trajectories for V UU that is
closed under prefix, suffix, and concatenation [31]. Over any trajectory & € T, L
remains constant. For any state v and piece-wise continuous input trajectory n,
there exists a state trajectory & such that £.fstate = v and either (i) £ | U =1,
or (ii) £ L U matches a prefix of n with a transition enabled at &. Istate.
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A transition (v,v') € D, for any two states v, v/, is written as v.— 4 v’ or as
v — v/ when A is clear from the context. The transitions of A are specified for
pairs of locations in the guard-reset style. For each pair (¢,¢') of locations the
guard Gg o C Val(X) is the set of states from which a transition from location £
to £’ is enabled and the reset map is a continuous function Val(X) — Val(X).

For location ¢ € Val(L), the trajectories of A are defined by a trajectory
invariant I, C Val(X) and a set of ordinary differential equations (ODEs) in-
volving the variables in X and . The ODE is specified by a Lipschitz continuous
function called dynamic mapping f; : Val(X) x Valld) — Val(X). Given a in-
put trajectory n of U and a state v € Val(V), a state trajectory from v with
n is a function &, : [0,T] — Val(V) satistying: (a) &v,n(0) = v, (b) for any

€ [0,T], the time derivative of £ | X at t satisfies the differential equation
WD = Fl(€ L X)(0),0(1), and (0) (€ 4 X)(1) € I and (€ L L)(t) = €. As
in the last two statements, we will drop the subscripts of a trajectory when the
dependence on the initial state and the input is clear. Because of the invariant
Iy, in some location £ € Val(L£) all the trajectories might be of finite duration.
Conditions (i) and (ii) in Definition 1 make the HA input enabled, that is, from
any state A is able to consume any input 7 completely (i) or up to some time
at which it reacts with a transition (ii).

A HA without inputs (U = @) is closed; otherwise, it is open. A HA with
a single location and no transitions is called a dynamical system. We denote
the components of HA A by L4, X4, UA,O4, Da,—4 and T4, and for A; its
components are denoted by L£;, X;,U;, ©;, D;,—; and T;.

Semantics. We assume that the discrete transitions are urgent and deterministic.
That is, from any state v = (x, £) at most one of following two things can happen:
(a) a transition to a unique state (x’,¢), or (b) a trajectory &, of non-zero
duration. A bounded execution of A records the evolution of the variables along
a particular run. A bounded execution fragment is a finite sequence of trajectories
§0):§(1)s - - -» such that, for each i, ;) € T and §;). Istate — §(;41). fstate. A
bounded execution is an execution fragment with £). fstate in ©. A state v is
reachable if it is the last state of some execution. We denote the set of reachable
states of A by Reachy. The reachable states up to a bounded time horizon
T > 0 are denoted by Reach4(T). The reachable states from a subset of initial
states @ C © up to T are denoted by Reach4(0',T). A set Inv C Val(V) is an
invariant of a closed HA A if Reachy C Inv. Checking invariants corresponds
to verifying safety properties. Computing Reach 4 exactly is undecidable but for
the simplest classes of hybrid automata [1,23,32,44].

For relative completeness, we define robustness of HA. A HA A(c) is a c-
perturbation of A if A(c) is obtained by perturbing the initial set and dynamical
mappings of A by at most c¢. That is, A and A(c) are identical except that
(i) d(@a,04()) < c where d(-,-) is the Hausdorff distance and (ii) for every
location ¢ and any continuous state x € Val(X), the dynamical mappings of
the two HA satisfy |fe,a(x) — fr,a(c)(x)| < c. The c-perturbed reach set of A,
denoted by c-Reach 4, is the set of states reachable by some c-perturbation of A.
For a time bound T > 0, Inv is a robust invariant up to time T if there exists
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a positive constant ¢ > 0 such that c-Reach4(T) C Inv. In this paper we will
present semi-decision procedures for bounded-time robust invariant checking of
networks of deterministic nonlinear HA.

Composition. Large and complex models can be created by composing smaller
automata. The composition operation identifies (“plugs-in”) the input variables
of one automaton A; with the state variables of another automaton!. A pair of
HAs A; and As are compatible if their state variables are disjoint V1 NV, = @.

Definition 2. Given a pair of compatible HAs A, and As the composed au-
tomaton A = A; || Az is (£, X,U,0,D,T), where (a) L := L1 ULy, (b) X :=
X1UXs, (¢) ©=01%x0,, (dA)U=U1UU\ (V1 UVs), (e) D: v — V' iff either
vV =1 VIV and v.Va =V Vs, or v.Vy =9 VIVs and v.V =V .V, and (f) A
trajectory & of VUU is in T iff €L (Vi UU;) € T; for each i € {1,2}.

Note that the composition of two or more HA will define a network. A satisfies the
requirements for Definition 1 and can be constructed by syntactically combining
the guards, resets, and ODEs of its components.

Ezample 1. In the 2-dimensional FitzHugh-Nagumo (FHN) cardiac cell net-
work, the i*" cell automaton A; has a single location, two continuous variables
X = {x1, 22} corresponding to fast and slow currents, and inputs (w1, ui2), cor-
responding to diffusion from neighboring cells, and u;3, a stimulus. The evolution
is given by the ODEs (dynamic mapping): ;1 = (a— 1) (21 — 1)z — Tig+uiz+
,’?2 (ui1 + wia — 2xi1), Tig = €(Bri1 — ywi2 — J), where a, 3,9, 7, € are parameters
of the cell, the u;3 term models direct stimulus input, and the }g (.) term mod-
els the effect of the diffusion coupling with neighboring cells. In Figure 1, three
FHN cells A;, A3 and As are interconnected in a ring and with a pulse genera-
tor. In each cycle, the pulse is activated for S,, time and stays off for S,g time.
The composed system is defined by identifying input variables of one automaton
with the state variables of another. For example, u11 = 21, u12 = x31 defines
the part of the ring where A; gets diffused current inputs from its neighbors and
and u13 = st connects the output of the pulse generator to A;.

3 Annotations for Modules in a Network

We proposed simulation-based robust invariant verification of dynamical and
switched systems in [15]. The approach requires the designers to provide special
annotations called discrepancy functions for each location of the automaton. The
algorithm first computes a validated numerical simulation from an initial state,
say v, and then bloats the simulation using the discrepancy function to compute
arbitrarily precise over-approximations of Reach 4 (Bs(v),T'). Repeating this over
a set of initial states v and with varying precision §, one obtains a decision
procedure for robust invariant checking. Towards our goal of verifying hybrid
networks, in this section we present new techniques for computing discrepancy
functions for such models.

! We do not allow HA to interact via transition synchronization as in [31,35].
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Fig. 1. Ring of 3 FHN-modules with a simple pulse generator. Reach set from a set of
initial states projected on x11 and xi2.

3.1 IS Discrepancy and Approximations

First of all, we will use the definition of Input-to-State (IS) discrepancy func-
tion [26], which enables us to use annotations for individual modules in a dynam-
ical system to then check invariants of the composed system. The IS discrepancy
function for a location ¢ of A (or for a dynamical system) bounds the distance
between two trajectories in location ¢ from different initial states, as a function
of time and the inputs they receive.

Definition 3. For « HA A = (L, X,U,0,D,T), a continuous function V :
Val(X)? — R>¢ is an input-to-state discrepancy function for a location ¢ if

(a) 3 class-K functions (see [26]) oy, s.t., V x,%x" € Val(X), o|x — x|) <
V(x,x') < a|x —x'|), and

(b) 36 : R>0 x R>g = Rx¢ and v € K such that for any x,x’, any pair of input
trajectories u,u’': U, and any t € R>o,

V(& tu(t), & (1) < Blx = x|, 1) + [y y(|uls) — u'(s)|)ds.
In addition, B(-,-) is of class-KC in the first argument and S(-,0) = a(-).

Here &4 ¢, denotes the trajectory of the continuous variables & in location
¢ from state x and with the input trajectory w. The tuple (o, a, 8,7) is called
the witness of the discrepancy function V. The first condition merely bounds V'
in terms of the norm of its arguments. The more important second condition
ensures that the distance between the trajectories is bounded as a function
of 8 and v, and can be reduced arbitrarily by making x — x’ and v — u’.
IS discrepancy is related to integral input-to-state stability [2-4,42]. However,
for our verification algorithms, we do not require neighboring trajectories to
converge over time. Using the IS discrepancy functions along with their witnesses,
we construct a reduced order model M which can be employed to compute
precise over-approximations of Reach 4(7T'). Given a dynamical system (HA with
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one location) A = A ||.Az connected in a ring and IS discrepancy with witnesses
for each of the modules, the IS approximation of A is a (2+1)-dimensional closed
deterministic dynamical system M defined as follows.

Definition 4. For a pair of nonnegative constants (61, 62), the (81, 02)-IS approx-
imation of A is a closed dynamical system with three variables X = {mi, mas, clk}
ingtialized to {$1(d1,0), B2(d2,0),0}, and dynamics X = fpr(x), where

B1(61,x(clk)) 4+ 71 0 ay L (x(my))

faa(x) = | Ba(2,x(clk)) + 72 0 ay ' (x(ma)) | - (1)
1

The variable clk tracks the real time, and both the initial state and the dy-
namics of M depend on the choice of the parameters §; and ds. It can be shown
that the valuations of m; along u (the trajectory of M) give an upperbound on
the distance between any trajectories of A; that start from initial states and are
at most d; apart. The following theorem establishes that the reach set of A from
a set of states can be precisely over-approximated by bloating an individual ex-
ecution £ of A by a factor that is entirely determined by (a) a pair V = (V4, V2)
of IS discrepancy functions of A; and A, along with their witnesses, and (b) the
trajectory p.

Theorem 1 (Theorems 5.4 and 5.7 from [26]). Let & be a trajectory of
A. For any nonnegative pair 6 = (61,02), and any time T > 0, suppose (i is
the trajectory of the (01,02)-IS approximation M. Then Reach4(Bs(v),T) C
Usepo, BL/(t) (& (t)). Further, for any e > 0 and T > 0, 3 01, 62 > 0 such that, for

the (81, 62)-18 approzimation M, Uyeo 7 BX(t) (& (1)) C e-Reach 4(Bs(v),T)).

The precision of the over-approximation can be improved by reducing the
parameters ; and d2, and thus creating a finer covering of the initial set © 4. The
result is generalized to dynamical systems with N modules connected in general
network topologies [26], where the IS approximation is (N + 1)-dimensional.

For a hybrid system A = A;]||. Az, instead of providing annotations for the to-
tal of | Val(£1)| x | Val(L2)]| locations of A, the user has to provide IS discrepancy
functions for | Val(£1)|+| Val(L2)| locations. From there, our algorithm automat-
ically constructs | Val(£1)| x | Val(L2)| IS approximations corresponding to each
location-pair of A. For cardiac cell networks, where all the automata modules
are identical, this means working with | Val(£1)] IS discrepancy functions. The
next proposition gives a technique for computing IS discrepancy functions.

Proposition 1. For a dynamical system with linear input X = f(x)+ Bu, where
B is a matriz, V(x1,X2) = |x1 — X2 is an IS discrepancy function with

V(€ (1), €2(8)) < oty — x| + / MIBI|(v1(7) — va(r))\dr,
0

where Apaz 1S the largest eigenvalue of the Jacobian matriz J = é(gif(x) +
aaxf(X)+I), M = sup,¢po, ermass s the supremum of an exponential function of
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Amaz, and &; is the state trajectory from x; with input trajectory v;. Specifically,
for a linear time invariant system x = Ax 4+ Bu, Apaz 1S the largest eigenvalue
of the matriz A, and M = supc( leAs].

For linear dynamical systems, we use the special case to obtain tight IS dis-
crepancy functions by solving Linear Matrix Inequalities. The more general case
establishes IS discrepancy functions for a larger class of non-linear systems for
which the Jacobian matrix has bounded eigenvalues. For the nonlinear dynamic
maps in this paper, computing the maximum eigenvalue of the Jacobian is solved
using the MATLAB optimization toolbox or by a sum of squares solver [41].

4 Checking Bounded Invariants of HA Networks

First we define simulations for hybrid automata, and then we describe the veri-
fication algorithm that uses simulations and IS discrepancy functions.

4.1 Simulations of Dynamical Systems

For a closed dynamical system A with an initial state v, validated ODE solvers
[10,12,37] can compute a sequence of sets Ry, ..., R; C Val(X) such that the
trajectory &y of A is contained in Ry over the interval [(k — 1)7, k7], where T is
the simulation time-step. We formalize this as follows:

Definition 5. Consider a deterministic closed HA A, an initial state v, an
error bound € > 0, and time step T > 0. Let the location of v.L be ¢ and
& be the execution of A starting from v. A (v, e, 7)-simulation fragment is a
finite sequence p = (Ro, o), ..., (R, t;) where, for each k € {0,...,1}, (a) 0 <
tiy —tk—1 < 7, (b) Ry is contained in the invariant I except possibly the last Ry,
(c) dia(Ry) <€, and (d) for any time t € [ti_1,tx], &v(t).X € Rg.

For relative completeness of verification, we will require that for a desired error
bound € > 0 the diameter of R; can be made smaller than ¢ by reducing the
step size 7. A simulation for a HA is a sequence of simulation fragments (for
different locations) that captures all the transitions of at least one execution.

Definition 6. Consider a HA A, an initial state v, an error bound € > 0, a
time bound T > 0, a transition bound [, and a time step T > 0. Let &, be the
execution from v with &.dur < T, where & .dur is the time duration of the
trajectory &, and with | transitions at times o1,...,0; € R>g; let 09 = 0. A
(v,e,7,T,1)-simulation is a finite sequence b = po,...,p1 where (a) each py =
(Ri1), ti1))s - - - s (Ri(my)» ti(my)) 8 @ (§(or), €, T)-simulation fragment with my,
samples, (b) to = 0, tipm,y—1 = T, and for each k > 0, ty(m,) > tit1)1), and
(¢) ok € [tr1)1), th(ma)]-

A (v,e,7,T,1)-simulation v is a sequence of [ simulation fragments where each

fragment py has mjy, elements with indices k(1), ..., k(mz). The k** transition on
the actual execution &, has to occur between the last sample period of pr_; and
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the first sample interval of pj (condition (c)). In addition, py is a (& (ok), €, 7)-
simulation fragment, that is, it contains the trajectory of A starting from the
post state &, (o) of the k** transition. In Algorithm 2, the subroutine Simulate
computes a simulation of HA of the above type. The simulation v represents
other executions that start near v. Formally, we say an execution fragment &
is captured by v if duration of £ is at most T', £ experiences exactly the same
sequence of locations as recorded in some prefix of ¢, and its k(") transition
occurs in the intervals [ty(m, ), tk41)(1)]-

4.2 Verification Algorithm

We sketch the key ideas that enable the checking of bounded-time invariants of
closed networks of hybrid automata. The main inputs of InvVerify (Algorithm
1) are the specification of the composed automaton A = A4]|...|.An, the open
unsafe set U, and the collection of discrepancy functions and witnesses ISD for
every location of each subsystem. The variable C (line 2) is initialized to a
collection of tuples {(v,d, €, 7)}ke|c|, such that {vi} is a d-cover of O, that is,
O C Uke|c|Bs(Vk), and (d,¢,7) are parameters. For each (v,d,¢,7) in C, the
subroutine ReachFromCover (Algorithm 2) computes flag and a set S. The flag
is set to SAFE if all executions from Bs(v) are disjoint from U up to time
T and in that case v is removed from C. The flag is set to UNSAFE if at
least one execution reaches U, and in that case InvVerify returns UNSAFE and
R. Finally, if the flag is set to REFINE then v is replaced by a finer cover of
ONBs(v). In addition to having d/2-radius balls covering Bs(v), the parameters
€ and 7 are also halved to compute more precise over-approximations. The sets
S and R compute over-approximations of Reach4(Bs(v),T) and Reach4(T),
respectively. ReachFromCover checks safety with respect to U of the states
reachable from Bs(v) up to time T and with at most n > 0 transitions. First, it
computes an over-approximation (R) of Reach(Bs(v),T) with certain precision

Algorithm 1. InvVerify(A, ISD,U, T, eo, o, no): Verifies invariants of hybrid networks.

1 end R < &; 0 < 0o; € < €0;T < To;N < No;

2 C+ {(v,d,6,7) | {v} is a 6-Cover(0)};

3 while C # @ for each (v,d,¢,7) € C do

4 (flag, S) + ReachFromCover(A,v,d,e,7,T,ISD,n);

5 switch flag do

6 case SAFE: C + C\{(v,d,¢,7)}; R < RUS case UNSAFE: return
(UNSAFE,R) case REFINE:

7 C+C\{(v,0,6,7)}; 0 < 8/2;e +€/2;7 + T/2;n < 2n;
8 C+ CU{(v,d,¢,7) | {v} is a 6—Cover(© N Bs(v))};

9 end
10 end
11 end

12 return (SAFE, R);
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Algorithm 2. ReachFromCover(A, ISD,U,v,4d,¢,7,T,n): Over-approx Reach 4(Bs(v)).

1 R« &; C <+ {(v,0)}; count < 0;
2 while C # @ for each (v,tp) € C do
3 r  &; ¢ < Simulate(A,v,T — to, €, 7); count < count + 1;

4 for £k =0:1, where ¢ = po, p1,...,p1 do
5 (Sk,7) < BloatWithISD(pk, ISD,r, e, 7, A);
6 end
7 if a transition (¢,£') is enabled from S; but is not captured by ¢ then
8 C + CU{(v,to0) | {v} is the 5-Cover(Re,e' (Sk N Geer)),
9 to is the first time(¢,£’) is enabled};
10 if a transition is captured by 1) but is not enabled for a subset Sj, C Sy then
11 C + CU{(v,to) | {v} is the 6-Cover(Sy),
12 to is the first time the transition is captured};
13 end

14 if (Ujs; NU = @) A (count <n) then R <+ RU (U;s;); C + C\{(O,t0)}
else if (3 R; CU) A (count =1) then return (UNSAFE, R) else
return (REFINE, R)

15 end

16 return (SAFE, R);

(determined by the parameters ¢, €, and 7). If this over-approximation is sufficient
to prove/disprove safety with respect to U then it sets the flag to SAFE or
UNSAFE, and otherwise it returns REFINE. If it detects that more than n
transitions are possible within time 7', then also it returns REFINE.

In computing R in ReachFromCover, the set C stores a set of state-time pairs
that are yet to be processed. If (v,tg) € C then Reach4(Bs(v),T — to) is yet
to be evaluated and added to R. For each (v,tp) in the cover C, a (v,¢,7,T,1)-
simulation ¥ = pg,...p; is computed. The variable count tracks the number
of new simulation branches initiated in a run of the algorithm. Let £ be the
actual execution starting from v and Gy be the guard from location ¢ to ¢
By Definition 6, each pj of v is a simulation fragment. By Definition 4, the
IS approximation is a (small) dynamical system, whose trajectory gives an up-
per bound of the distance between continuous trajectories of A. The subroutine
BloatWithISD(pk, ISD,r,e, 7, A) (i) creates an IS Approximation M of A us-
ing the discrepancy functions in ISD that correspond to the location of py,
(ii) generates a (r,¢,7,T,0)-simulation of M, say pu, (iii) bloats each set R; in
pr. with the valuation of 1(t;) to obtain a set sj, (iv) returns the sequence of
sets Sk = (Sk(1)stk(1))s- -+ (Sk(m)> tk(m)), and finally (v) applies the transition
between pj, and pg11 on the set sy(,,,) and returns 7 as the radius of image of the
reset function. From Theorem 1, Sy contains all continuous trajectories of A that
start from B, (Ry)). It can be checked that U;s; precisely over-approximates
all the executions from B, (v) that are captured by ¢ (Proposition 2-3).

To over-approximate the states reached via executions from Bs(v) that are
not captured by v, the algorithm generates new simulations (line 7-13) and adds
up count. The algorithm transverses S and generates and checks two possible
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cases as described in line 7 and 10. Then the algorithm decides whether the
computed over-approximation R is safe, unsafe, or needs further refinement.

4.3 Soundness and Relative Completeness

We will state the key propositions of the algorithms that are used for proving
correctness. The details of the proofs are given in the technical report [25].
In what follows, all the program variables refer to their valuations at the pt"*
iteration of the while loop of ReachFromCover, unless otherwise stated. That
is, (v, 1) is the time-state pair being explored in the p*” iteration. Propositions 2
and 3 follow from straightforward inductive application of Theorem 1, the fact
that v is a simulation from v with the properties stated in Definition 6, and the
continuity of the reset functions for all location pairs.

Proposition 2. Let ¢ be a simulation from v(P). For any execution fragment &
starting from a state in B5(v(p)), if the transition sequence of & is captured by v
then, for any t € [0,T — t(()p)], £(t) € U;(Zni")sj. Recall that I(my;) denotes the last
index of p; and thus the total number of elements in 1.

Proposition 3. For the execution &, from v, and any r > 0, there exists suffi-
L(mu)

ciently small 6,¢,7, such that U; 21" s; C Usepo, 17—t Br(§v (t))-

Using Proposition 2, we can prove the soundness of the algorithm. We show that
every execution from © can be decomposed into execution segments that are cap-
tured by some simulation generated during the while loop of ReachFromCover.

Theorem 2 (Soundness). If InvVerify returns SAFE then A is safe with re-
spect to U up to T, and if it returns UNSAFE then A is unsafe.

We establish termination of InvVerify under the following robustness assump-
tion.

Assumption 1. (i) A has an average dwell time [24]. That is, there exists
N’ >0 and 7 > 0 such that, for any execution fragment & of A, the number of
transitions occurring in & is upperbounded by N’ + f'f,”'. (ii) One of the following
conditions hold: (a) U is a robust invariant of A up to time T. (b) There exists
¢ > 0, such that all c-perturbations of A reach U with in T.

Assumption 1(i) is standard for well-designed systems and can be automat-
ically checked for certain model classes [36]. Part (ii) is a robustness condition
with respect to the invariant U (complement of U) such that the satisfaction
of the invariant remains unchanged under sufficiently small perturbations to the
models. Since the over-approximation can be computed up to arbitrary precision
(Proposition 3), InvVerify is guaranteed to terminate.

Theorem 3 (Relative completeness). Under Assumption 1, InvVerify ter-
minates.
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5 Checking Invariants for Cardiac Cell Networks

We present a challenging case study modeling a cardiac cell that involves non-
linear HA networks. The purpose of the case study is to demonstrate the effec-
tiveness of InvVerify. Our case study is the minimal ventricular (MV) model
of Bueno-Orovio et al. [11] that generates action ptential (APs) on cardiac
rings [17]. Unlike the FHN model of Example 1, the MV model can reproduce
realistic and important AP phenomena, e.g. alternans [22], and yet is computa-
tionally more efficient than some of the other models in the literature. Using the
techniques from Grosu et al. [19], we abstract the MV model into a network of
multi-affine hybrid (MAH ) automata (see Figure 2). On the resulting network
we check a key invariant property.

5.1 The MAH Cardiac Cell Network Model

The MV model describes the flow of currents through a cell. The model is defined
by four nonlinear PDEs representing the transmembrane potential x1(d,t), the
fast channel gate z2(d, t), and two slow channel gates, z3(d,t) and z4(d, t). All
of the four variables are time and position d := (dy, dy, d,) € R* dependent. For
one dimensional tissue, i.e., d := d,, the evolution of transmembrane potential
is given by:

&rl(dm,t) o 821'1(dm,t)
ot =D 8d% +€(1'1,t) *(Jﬁ+Jso+J51)a (2)

where D € R is the diffusion coefficient, e(d, t) is the external stimulus applied
to the cell, Jg is the fast inward current, Jg; is the slow inward current and
Jso is the slow outward current. The currents Jg, Jso and Jg are described by
Heaviside function. To define the propagation of the action potential on a cardiac
ring of length L, we set the boundary conditions to: x;(0,t) = z;(L,t) for all
i€{0,...,4} and t € R.

MAH approximation. One alternative to solving these highly nonlinear PDEs is
to discretize space and hybridize the dynamics. The result is the MAH model.
Following the approach of [19] we first hybridize the dynamics and obtain a HA
with 29 locations. The basic idea is to approximate the Heaviside function from
Ja, Jso and Jg with a sequence of ramp functions. Each location of the resulting
HA contains a multi-affine ODE such as:

1 = —0.93521 + 12.7022 — 8.0193z 122 + 0.5292374 + 0.87 4 st
Zo = —0.68922; 23 = —0.002523; 24 = 0.0293z; — 0.0625x4 4 0.0142,

where st is the time-varying stimulus input. Urgent transitions from each location
¢; to the next (and predecessor) location ¢;11, i € [29], are enabled by the guards
of the form zy > 0 and z, < 0;, where 0;, 0, are the constants arising from ramp
approximations of the Heaviside functions.
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Next, we discretize the 2nd order derivative Dazngl‘iw’t) from Eq. (2) with a
discretization step of A using 2nd order central difference method and obtain
D‘rl(derA’t)*méd;’tHIl(dm*A’t). Informally, A represents the spatial discretiza-
tion and corresponds to the length of the cell in the ring. This 2nd order central
difference term is added to the right hand side of the dynamic mapping for z; (in
each location) to obtain the final MAH model of a single cardiac cell. Note that
by using the central difference method the approximation error for the original
MV model is of the order O(A?). To check invariants of a cardiac ring of length
L, we connect all of the | zj HA into a network such that the input variables of
every HA A;, i € H 2]], are identified with the variable x(;;1); of the successor
Aiy1 and the state variable z(;_1); of A;_1 in the ring. We consider scenarios
where one HA in the ring gets a sequence of stimuli from a pulse generator and
for the remaining HA st(t) := 0.

5.2 Experimental Results

For understanding the effect of stimuli on cardiac tissue (cell networks) the
key invariant properties of interest are of the form z1 < 0,44, Where 0,4, is
a threshold voltage value. Other properties about timing of action potentials
can be constructed using these building block invariants and additional timers.
We implemented the algorithms of Section 4 in MATLAB programs that take as
input Simulink/Stateflow models of FHM and MAH networks (see Figure 2). For

Fig. 2. Top left: top-level Simulink/Stateflow model for a ring of five MAH cells; the
Pacemaker block stimulates one cell. Center: Stateflow model of a single MAH cell. Top
right: dynamics and guards in 3 locations of a single cell. Bottom: reach set projected
on z11 (AP) for stimulation period of 1000 msec (left) and 600 msec (right) with x-axis
for time and y-axis for voltage.
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Table 1. (a) Scaling with network size. N: number of cells in the ring network, 0maz:
threshold voltage defining invariant, Sims: number of simulations, Refs: max. number
of refinements, RT: running time in seconds. (b) Verification of FHM networks with
time horizon T=1200 ms, initial set uncertainty +0.01 mV. (c) Comparison of running
time with S-taliro over 3 cell MAH networks for cases where both tools find counter-
examples.

N Omazr Sims Refs RT z;1 < Omax
N Omaz Sims Refs RT(s) zi1 < 0maz 3 1.5 1 0 1.5 v
3 2 16 0 104.8 v 3 1.0 16 1 204 v
3 1.65 16 0 103.8 v 5 1.5 8 2 92 v
3 155 17 1 110.6 v 5 1.0 NA NA 1.1 X
3 1.5 NA NA 9.0 X 8 1.5 1 0 1.8 v
5 2 3 0 208.0 v 8 1.0 24 3 335 v
5165 5 1 2816 v (b)
5 1.65 170 125 945.0 v
1.5 NA NA 4
5 5 63 x T  S-taliro Our tool
8 2 3 0 240.1 v
100 24.2 3.1
8 1.65 73 9 2376.5 v
8 1.5 NA NA 119.7 1000 274 o3
: : x 10000 55.5  62.9
a
) ()

all the locations the IS-discrepancy functions are computed using the techniques
of Section 3. The cells being identical, essentially Val(£) IS discrepancy functions
are sufficient. We computed the Jacobian matrices for each location by hand.
Exploiting the loose coupling of the variables, in this case, we are able to find
a closed form upperbound for the maximum eigenvalue for the Jacobians. The
results presented here are based on experiments performed on a Intel Xeon V2
desktop computer using Simulink’s ode45 simulation engine. Table 2(a) shows
typical running times of our prototype on MAH networks of size 3, 5, and 8 cells
with different invariant properties (defined by x1 < €y,4.). These are for a time
horizon (T) of 1200 ms with a stimulus of 5 ms exciting one of the cells every
600 ms. The uncertainty in the initial set is #0.0001 mV for each of the cells
in the network (for comparison, the invariant ranges for the first few locations
are 0.003 mV), except for the 2% network with 5 cells, where the initial set has
higher uncertainty of £0.0001 mV. With this larger initial set, even with the
same threshold, the algorithm requires many more refinements and simulations
to prove the invariant. Analogous results for 3, 5, and 8 cell FHN networks are
shown in Table 2(b), with the longer time horizon 7' = 10000 ms and greater
uncertainty in the initial set of £0.01 mV. The two orders of magnitude faster
running time (even for the same number of simulations) can be explained by
the lower dimension (2) of FHN cells, and the absence of any transitions which
spawn new branches in the execution of MAH -simulations. A comparable tool
that can check for counter-examples in this class of HA models models is S-
taliro [5]. We were able to find counter-examples using S-taliro for the 3 cell
MAH networks with similar initial states (running times shown in Table 2(c)).



Invariant Verification of Nonlinear Hybrid Automata Networks 387

On average, for smaller time horizons (T') S-taliro found counter-examples faster,
but for longer T' (and appropriate initial sets) the running times were comparable
to our prototype.

It is known that electrical alternans initiate and destabilize reentrant waves
which my induce cardiac arrhythmia such as ventricular fibrillation [27]. The
electrical alternans involve long-short beat-to-beat alternation of AP duration
at fast pacing rates. In Figure 2 (bottom left) we plot the reach set from a set of
initial states with pacing rate of 1000 msec and observe that the AP durations
do not change, whereas at a pacing rate of 600 msec (bottom right) the AP
durations alternate. The reach set approximations computed by our tool enable
us to prove absence of alternans over bounded-time horizons and also to find
initial states from which they may arise.

6 Related Work, Discussion and Conclusions

Networks of timed automata to model the propagation of APs in human heart
are employed in the Virtual Heart Model [28-30,39] and hybrid automata are
used in [8,45]. In [18,33], the authors develop a model of the cardiac conduction
system that addresses the stochastic behavior of the heart, validated via simula-
tion. However, the hybrid behavior of the heart is not considered. Grosu et al. [21]
carry out automated formal analysis of a realistic cardiac cell model. In [19] a
method to learn and to detect the emergent behavior (i.e. the spiral formation)
is proposed. Simulation-based analysis of general nonlinear HA has been inves-
tigated in [5], where a search for counter-examples is carried out using sampling
and stochastic optimization. Our approach is designed to prove bounded-time
invariants. Other promising tools include Breach [14] and Flow™* [13]; their ap-
plication to cardiac cell networks will be an interesting direction to explore once
support for these types of Simulink/Stateflow models is established.

In this paper, we present an algorithm to check robust bounded-time invari-
ants for networks of nonlinear hybrid automata. We used automatically com-
puted input-to-state discrepancy functions for individual locations of individual
automata modules to over-approximate reachable states of the network. All of
the developed techniques and the symmetry in the network of cells enabled us
to check key invariants of networks of nonlinear cardiac cells, where each cell
has four continuous variables and 29 locations. We will extend our algorithms to
support richer classes of properties specified in metric or signal temporal logic.
These results also suggest new strategies for pacemaker control algorithms, for
example, for avoiding alternans and other undesirable behavior.
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