Skip to main content

The Role of Schwann Cells in Peripheral Nerve Function, Injury, and Repair

  • Reference work entry
  • First Online:
Cell Engineering and Regeneration

Abstract

The specialized role of the Schwann cell is reviewed in the context of peripheral nerve, spanning neural development, anatomy, signaling, and function. A particular focus of this chapter is the increasingly important role identified in many studies of Schwann cells in nerve injury and repair. We summarize a range of key studies describing these specialized roles, which include the alignment of Schwann cells along myelinated axons; the protection of signaling pathways between the ganglion bodies, linking the spine and target muscles; and the secretion of growth factors. Myelin structures are reviewed and their organization as nodes for physical protection and as structures that increase action potential velocities of motor and sensory systems. We focus on nerve injury, and mechanisms of nerve wound healing and repair, considering the role of the Schwann cell as it dedifferentiates, proliferates, and redifferentiates. The physical role of the glia in guiding axon regeneration and the role of neurotrophins that communicate via paracrine receptor-mediated signals are considered. Bioengineering strategies are also considered, with innovations in biomaterial scaffolds as medical devices for peripheral nerve repair, with a focus on new technologies and models for evaluation, plus new methods for Schwann and stem cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed Z, Brown RA (1999) Adhesion, alignment, and migration of cultured Schwann cells on ultrathin fibronectin fibres. Cell Motil Cytoskeleton 42:331–343

    CAS  PubMed  Google Scholar 

  • Angius D, Wang H, Spinner RJ, Gutierrez-Cotto Y, Yaszemski MJ, Windebank AJ (2012) A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials 33(32):8034–8039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ao Q et al (2011) The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials 32:787–796

    CAS  PubMed  Google Scholar 

  • Arancibia-Carcamo D, Attwell IL (2014) The node of Ranvier in CNS pathology. Acta Neuropathol 128(2):161–175

    PubMed  PubMed Central  Google Scholar 

  • Bähr M, Hopkins JM, Bunge RP (1991) In vitro myelination of regenerating adult rat retinal ganglion cell axons by schwann cells. Glia 4(5):529–533

    PubMed  Google Scholar 

  • Bailey SB, Eichler ME, Villadiego A, Rich KM (1993) The influence of fibronectin and laminin during Schwann cell migration and peripheral nerve regeneration through silicon chambers. J Neurocytol 22(3):176–184

    CAS  PubMed  Google Scholar 

  • Balakrishnan A, Stykel MG, Touahri Y, Stratton JA, Biernaskie J, Schuurmans C (2016) Temporal analysis of gene expression in the murine Schwann cell lineage and the acutely injured postnatal nerve. PLoS One 11(4):1–32

    Google Scholar 

  • Bandtlow CE, Heumann R, Schwab ME, Thoenen H (1987) Cellular localization of nerve growth factor synthesis by in situ hybridization. EMBO J 6:891–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36(4):568–584

    CAS  PubMed  Google Scholar 

  • Behbehani M, Glen A, Taylor CS, Schuhmacher A, Claeyssens F, Haycock JW (2018) Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model. Int J Bioprinting 4(1):1–12

    Google Scholar 

  • Bell JHA, Haycock JW (2012) Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. Tissue Eng Part B Rev 18(2):116–128

    CAS  PubMed  Google Scholar 

  • Bhatheja K, Field J (2006) Schwann cells: origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol 38(12):1995–1999

    CAS  PubMed  Google Scholar 

  • Blanchard AD et al (1996) Oct-6 (SCIP/Tst-1) is expressed in Schwann cell precursors, embryonic Schwann cells, and postnatal myelinating Schwann cells: comparison with Oct- 1, Krox-20, and Pax-3. J Neurosci Res 46(5):630–640

    CAS  PubMed  Google Scholar 

  • Bremer M et al (2011) Sox10 is required for Schwann-cell homeostasis and myelin maintenance in the adult peripheral nerve. Glia 59(7):1022–1032

    PubMed  Google Scholar 

  • Britsch S et al (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bunge R (1986) Linkage between axonal ensheathment and basal lamina production by Schwann cells. Annu Rev Neurosci 9:305–328

    CAS  PubMed  Google Scholar 

  • Carey DJ, Bunge RP (1981) Factors influencing the release of proteins by cultured Schwann cells. J Cell Biol 91(3):666–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    CAS  PubMed  Google Scholar 

  • Chen HSM, Holmes N, Liu J, Tetzlaff W, Kozlowski P (2017) Validating myelin water imaging with transmission electron microscopy in a rat spinal cord injury model. NeuroImage 153:122–130

    PubMed  Google Scholar 

  • Chen W, Xiao S, Wei Z, Deng C, Nie K, Wang D (2019) Schwann cell-like cells derived from human amniotic mesenchymal stem cells promote peripheral nerve regeneration through a MicroRNA-214/c-Jun pathway. Stem Cells Int 2019:1–13

    Google Scholar 

  • Chernousov MA, Yu WM, Chen ZL, Carey DJ, Strickland S (2008) Regulation of Schwann cell function by the extracellular matrix. Glia 56(14):1498–1507

    PubMed  Google Scholar 

  • Ching RC, Wiberg M, Kingham PJ (2018) Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer. Stem Cell Res Ther 14:124–131

    Google Scholar 

  • Chiono V, Tonda-Turo C (2015) Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol 131:87–104

    PubMed  Google Scholar 

  • Chu TH, Du Y, Wu W (2008) Motor nerve graft is better than sensory nerve graft for survival and regeneration of motoneurons after spinal root avulsion in adult rats. Exp Neurol 212:562

    PubMed  Google Scholar 

  • Couve E, Lovera M, Suzuki K, Schmachtenberg O (2018) Schwann cell phenotype changes in aging human dental pulp. J Dent Res 97(3):347–355

    CAS  PubMed  Google Scholar 

  • Coy RH, Evans OR, Phillips JB, Shipley RJ (2018) An integrated theoretical-experimental approach to accelerate translational tissue engineering. J Tissue Eng Regen Med 12(1):e53–e59

    CAS  PubMed  Google Scholar 

  • Cravioto H (1965) The role of Schwann cells in the development of human peripheral nerves. J Ultrastruct Res 12(5–6):634–651

    CAS  PubMed  Google Scholar 

  • Danielsen N, Kerns JM, Holmquist B, Zhao Q, Lundborg G, Kanje M (1994) Pre-degenerated nerve grafts enhance regeneration by shortening the initial delay period. Brain Res 666(2):250–254

    CAS  PubMed  Google Scholar 

  • Daud MFB, Pawar KC, Claeyssens F, Ryan AJ, Haycock JW (2012) An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 33(25):5901–5913

    CAS  PubMed  Google Scholar 

  • Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14(11):1771–1776

    CAS  PubMed  Google Scholar 

  • Dinis TM et al (2015) 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater 41:43–55

    CAS  PubMed  Google Scholar 

  • Doddrell RDS, Dun XP, Moate RM, Jessen KR, Mirsky R, Parkinson DB (2012) Regulation of Schwann cell differentiation and proliferation by the Pax-3 transcription factor. Glia 60(9):1269–1278

    PubMed  PubMed Central  Google Scholar 

  • Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6(11):1127–1134

    CAS  PubMed  Google Scholar 

  • Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    CAS  PubMed  Google Scholar 

  • Dubey N, Letourneau PC, Tranquillo RT (1999) Guided neurite elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp Neurol 158(2):338–350

    CAS  PubMed  Google Scholar 

  • Dupin E, Real C, Glavieux-Pardanaud C, Vaigot P, Le Douarin NM (2003) Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro. Proc Natl Acad Sci U S A 100:5229–5233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eldridge CF, Bunge MB, Bunge RP, Wood PM (1987) Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 105(2):1023–1034

    CAS  PubMed  Google Scholar 

  • Evans EB, Brady SW, Tripathi A, Hoffman-Kim D (2018) Schwann cell durotaxis can be guided by physiologically relevant stiffness gradients. Biomater Res 22:14

    PubMed  PubMed Central  Google Scholar 

  • Fan H, Liu H, Toh SL, Goh JCH (2008) Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold. Biomaterials 29(8):1017–1027

    CAS  PubMed  Google Scholar 

  • Fan L, Yu Z, Li J, Dang X, Wang K (2014) Schwann-like cells seeded in acellular nerve grafts improve nerve regeneration. BMC Musculoskelet Disord 15:165

    PubMed  PubMed Central  Google Scholar 

  • Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18(7):397–405

    CAS  PubMed  Google Scholar 

  • Gambhir HS et al (2016) Improved method to track and precisely count Schwann cells post-transplantation in a peripheral nerve injury model. J Neurosci Methods 273:86–95

    CAS  PubMed  Google Scholar 

  • Gao X, Daugherty RL, Tourtellotte WG (2007) Regulation of low affinity neurotrophin receptor (p75NTR) by early growth response (Egr) transcriptional regulators. Mol Cell Neurosci 36:501–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiou M, Bunting SCJ, Davies HA, Loughlin AJ, Golding JP, Phillips JB (2013) Engineered neural tissue for peripheral nerve repair. Biomaterials 34(30):7335–7343

    CAS  PubMed  Google Scholar 

  • Goulart CO et al (2014) A combination of Schwann-cell grafts and aerobic exercise enhances sciatic nerve regeneration. PLoS One 9(10):e110090

    PubMed  PubMed Central  Google Scholar 

  • Gu Y et al (2012) The influence of substrate stiffness on the behavior and functions of Schwann cells in culture. Biomaterials 33(28):6672–6681

    CAS  PubMed  Google Scholar 

  • Guenard V, Kleitman N, Morrissey TK, Bunge RP, Aebischer P (1992) Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci 12(9):3310–3320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haastert K, Mauritz C, Chaturvedi S, Grothe C (2007) Human and rat adult Schwann cell cultures: fast and efficient enrichment and highly effective non-viral transfection protocol. Nat Protoc 2:99

    CAS  PubMed  Google Scholar 

  • Hadlock JP, Sundback T, Hunter C, Cheney D, Vacanti M (2000) A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng 6(2):119–127

    CAS  PubMed  Google Scholar 

  • Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9(1):12

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y et al (2010) Yy1 as a molecular link between neuregulin and transcriptional modulation of peripheral myelination. Nat Neurosci 13(12):1472–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hercher D et al (2019) Spatiotemporal differences in gene expression between motor and sensory autografts and their effect on femoral nerve regeneration in the rat. Front Cell Neurosci 13:182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Höke A et al (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26(38):9646–9655

    PubMed  PubMed Central  Google Scholar 

  • Honkanen H et al (2007) Isolation, purification and expansion of myelination-competent, neonatal mouse Schwann cells. Eur J Neurosci 26(4):953–964

    PubMed  Google Scholar 

  • Hopper AP et al (2014) Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth. Biomed Mater 9(4):045009

    CAS  PubMed  Google Scholar 

  • Hsu SH, Chen CY, Lu PS, Lai CS, Chen CJ (2005) Oriented Schwann cell growth on microgrooved surfaces. Biotechnol Bioeng 92(5):579–588

    CAS  PubMed  Google Scholar 

  • Hudson TW et al (2004) Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 10:1641–1651

    CAS  PubMed  Google Scholar 

  • Hyung S, Yoon Lee B, Park JC, Kim J, Hur EM, Francis Suh JK (2015) Coculture of primary motor neurons and Schwann cells as a model for in vitro myelination. Sci Rep 5:15122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25:101–121

    CAS  PubMed  Google Scholar 

  • Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32(5):414–425

    CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (2002) Signals that determine Schwann cell identity. J Anat 200(4):367–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682

    CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56(14):1552–1565

    PubMed  Google Scholar 

  • Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–31

    Google Scholar 

  • Jesuraj NJ et al (2012) Differential gene expression in motor and sensory Schwann cells in the rat femoral nerve. J Neurosci Res 90(1):96–104

    CAS  PubMed  Google Scholar 

  • Jiang X, Lim SH, Mao Hai-Quan HQ, Chew SY (2010) Current applications and future perspectives of artificial nerve conduits. Exp Neurol 223(1):86–101

    PubMed  Google Scholar 

  • Jiang CQ, Hu J, Xiang JP, Zhu JK, Liu XL, Luo P (2016) Tissue-engineered rhesus monkey nerve grafts for the repair of long ulnar nerve defects: similar outcomes to autologous nerve grafts. Neural Regen Res 11(11):1845–1850

    PubMed  PubMed Central  Google Scholar 

  • Jung K, Park JH, Kim S-Y, Jeon NL, Cho S-R, Hyung S (2019) Optogenetic stimulation promotes Schwann cell proliferation, differentiation, and myelination in vitro. Sci Rep 9(1):3487

    PubMed  PubMed Central  Google Scholar 

  • Kaewkhaw R, Scutt AM, Haycock JW (2011) Anatomical site influences the differentiation of adipose-derived stem cells for Schwann-cell phenotype and function. Glia 59(5):734–749

    PubMed  Google Scholar 

  • Kaewkhaw R, Scutt AM, Haycock JW (2012) Integrated culture and purification of rat Schwann cells from freshly isolated adult tissue. Nat Protoc 7(11):1996–2004

    CAS  PubMed  Google Scholar 

  • Kahan I, Moscarello MA (1985) Identification of membrane-embedded domains of lipophilin from human myelin. Biochemistry 24(2):538–544

    CAS  PubMed  Google Scholar 

  • Kaplan HM, Mishra P, Kohn J (2015) The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med 26(8):226

    PubMed  PubMed Central  Google Scholar 

  • Karimi M et al (2014) Rat sciatic nerve reconstruction across a 30 mm defect bridged by an oriented porous PHBV tube with Schwann cell as artificial nerve graft. ASAIO J 60(2):224–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerns JM, Danielsen N, Holmquist B, Kanje M, Lundborg G (1993) The influence of predegeneration on regeneration through peripheral nerve grafts in the rat. Exp Neurol 122(1):28–36

    CAS  PubMed  Google Scholar 

  • Kimura H et al (2018) Stem cells purified from human induced pluripotent stem cell-derived neural crest-like cells promote peripheral nerve regeneration. Sci Rep 8(1):10071

    PubMed  PubMed Central  Google Scholar 

  • Koehler PJ, Bruyn GW, Pearce JM (2000) Neurological eponyms. Oxford University Press, Oxford

    Google Scholar 

  • Koroleva A, Gill AA, Ortega I, Haycock JW, Schlie S, Gittard SD, Chichkov BN, Claeyssens F (2012) Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications. Biofabrication 4:025005

    CAS  PubMed  Google Scholar 

  • Kumar R et al (2016) Adult skin-derived precursor Schwann cells exhibit superior myelination and regeneration supportive properties compared to chronically denervated nerve-derived Schwann cells. Exp Neurol 278:127–142

    CAS  PubMed  Google Scholar 

  • Le N, Nagarajan R, Wang JYT, Araki T, Schmidt RE, Milbrandt J (2005) Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc Natl Acad Sci U S A 102(7):2596–2601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Schmidt CE (2015) Amine-functionalized polypyrrole: inherently cell adhesive conducting polymer. J Biomed Mater Res Part A 103(6):2126–2132

    CAS  Google Scholar 

  • Liu Q et al (2012) Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional Schwann cells. Stem Cells Transl Med 1:266–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Verrilli MA, Picou F, Court FA (2013) Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 61(11):1795–1806

    PubMed  Google Scholar 

  • Martini R, Schachner M (1997) Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia 19(4):298–310

    CAS  PubMed  Google Scholar 

  • Masaeli E et al (2014) Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomed Nanotechnol Biol Med 10(7):1559–1569

    CAS  Google Scholar 

  • Masand SN, Perron IJ, Schachner M, Shreiber DI (2012) Neural cell type-specific responses to glycomimetic functionalized collagen. Biomaterials 33(3):790–797

    CAS  PubMed  Google Scholar 

  • Masson P (1932) Experimental and spontaneous schwannomas (peripheral gliomas): II. Spontaneous schwannomas. Am J Pathol 8(4):389–416.11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meier C, Parmantier E, Brennan A, Mirsky R, Jessen KR (1999) Developing schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB. J Neurosci 19:3847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menorca RMG, Fussell TS, Elfar JC (2013) Nerve physiology. Mechanisms of injury and recovery. Hand Clin 29:317–330

    PubMed  PubMed Central  Google Scholar 

  • Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119(1):45–54

    CAS  PubMed  Google Scholar 

  • Moradzadeh A et al (2008) The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol 212(2):370–376

    PubMed  PubMed Central  Google Scholar 

  • Murray-Dunning JW, McArthur C, Sun SL, McKean T, Ryan R, Haycock AJ (2011) Three-dimensional alignment of Schwann cells using hydrolysable microfiber scaffolds: strategies for peripheral nerve repair. In: Haycock JW (ed) 3D cell culture: methods and protocols, methods in molecular biology, vol 695. Springer Science+Business Media, pp 155–166

    Google Scholar 

  • Owens CM, Marga F, Forgacs G, Heesch CM (2013) Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5:045007

    PubMed  PubMed Central  Google Scholar 

  • Painter MW et al (2014) Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. Neuron 83(2):331–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson DB et al (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181(4):625–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez ER, García Cruz DM, Araque Monrós MC, Gómez-Pinedo U, Pradas MM, Escobar Ivirico JL (2013) Polymer chains incorporating caprolactone and arginine-glycine-aspartic acid functionalities: synthesis, characterization and biological response in vitro of the Schwann cell. J Bioact Compat Polym 28(1):50–65

    Google Scholar 

  • Poliak E, Peles S (2003) The local differentiation of myelinated axons at nodes of Ranvier. Natl Rev 4(12):968

    CAS  Google Scholar 

  • Radoslaw X, Valmikinathan J, Kalyon CM, Yu DM (2013) Laminin functionalizes biomimetic nanofibres for nerve tissue engineering. J Biomater Tissue Eng 3(4):494–502

    Google Scholar 

  • Riethmacher D, Sonnenberg-Riethmacher E, Brinkmann V, Yamaai T, Lewin GR, Birchmeier C (1997) Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389:725–730

    CAS  PubMed  Google Scholar 

  • Roberts SL et al (2017) Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development 144(17):3114–3125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ronchi G et al (2019) The median nerve injury model in pre-clinical research – a critical review on benefits and limitations. Front Cell Neurosci 13:288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu EJ et al (2007) Misexpression of Pou3f1 results in peripheral nerve hypomyelination and axonal loss. J Neurosci 27(43):11552–11559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saladin KS (2014) The nervous system I: nervous tissue. In: Human Anatomy. McGraw-Hill, New York, pp 349–368

    Google Scholar 

  • Schuh CMAP et al (2016) Extracorporeal shockwave treatment: a novel tool to improve Schwann cell isolation and culture. Cytotherapy 18:760–770

    CAS  PubMed  Google Scholar 

  • Schuh CMAP, Day AGE, Redl H, Phillips J (2018) An optimized collagen-fibrin blend engineered neural tissue promotes peripheral nerve repair. Tissue Eng A 4(1):200–210

    Google Scholar 

  • Schulz F et al (2013) Gold nanoparticles functionalized with a fragment of the neural cell adhesion molecule L1 stimulate L1-mediated functions. Nanoscale 5(21):10605–10617

    CAS  PubMed  Google Scholar 

  • Secer HI, Daneyemez M, Tehli O, Gonul E, Izci Y (2008) The clinical, electrophysiologic, and surgical characteristics of peripheral nerve injuries caused by gunshot wounds in adults: a 40-year experience. Surg Neurol 69:143

    PubMed  Google Scholar 

  • Sherman L, Stocker KM, Morrison R, Ciment G (1993) Basic fibroblast growth factor (bFGF) acts intracellularly to cause the transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes. Development 118(4):1313–1326

    CAS  PubMed  Google Scholar 

  • Simons M, Trotter J (2007) Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol 17(5):533–540

    CAS  PubMed  Google Scholar 

  • Skardal A, Mack D, Atala A, Soker S (2013) Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. J Mech Behav Biomed Mater 17:307–316

    CAS  PubMed  Google Scholar 

  • Stampfli R (1954) Saltatory conduction in nerve. Physiol Rev 34(1):101–112

    CAS  PubMed  Google Scholar 

  • Stoll G, Jander S, Myers RR (2002) Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripher Nerv Syst 7:13–27

    PubMed  Google Scholar 

  • Stolt CC, Wegner M (2016) Schwann cells and their transcriptional network: evolution of key regulators of peripheral myelination. Brain Res 1641:101–110

    CAS  PubMed  Google Scholar 

  • Stratton JA et al (2017) Purification and characterization of schwann cells from adult human skin and nerve. eNeuro 4(3):1–15

    Google Scholar 

  • Strem BM et al (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54(3):132–141

    CAS  PubMed  Google Scholar 

  • Sun B, Peng J, Wang S, Liu X, Zhang K, Zhang Z, Wang C, Jing X, Zhou C, Wang Y (2018) Applications of stem cell-derived exosomes in tissue engineering and neurological diseases. Rev Neurosci 29:531

    CAS  PubMed  Google Scholar 

  • Taveggia C, Bolino A (2018) In: Woodhoo A (ed) DRG neuron/Schwann cells myelinating cocultures BT – myelin: methods and protocols. Springer New York, New York, pp 115–129

    Google Scholar 

  • Taveggia C et al (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47(5):681–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tohill MP, Mann DJ, Mantovani CM, Wiberg M, Terenghi G (2004) Green fluorescent protein is a stable morphological marker for Schwann cell transplants in bioengineered nerve conduits. Tissue Eng 10(9–10):1359–1367

    CAS  PubMed  Google Scholar 

  • Tonazzini I, Moffa M, Pisignano D, Cecchini M (2017) Neuregulin 1 functionalization of organic fibers for Schwann cell guidance. Nanotechnology 28:155303

    PubMed  Google Scholar 

  • Tsuang Y-H et al (2011) Effects of low intensity pulsed ultrasound on rat Schwann cells metabolism. Artif Organs 35(4):373–383

    PubMed  Google Scholar 

  • Väänänen HK (2005) Mesenchymal stem cells. Ann Med 37(7):469–479

    PubMed  Google Scholar 

  • Wakao S, Matsuse D, Dezawa M (2014) Mesenchymal stem cells as a source of schwann cells: their anticipated use in peripheral nerve regeneration. Cells Tissues Organs 200:31–41

    CAS  PubMed  Google Scholar 

  • Wang PH, Tseng IL, Hsu SH (2011) Bioengineering approaches for guided peripheral. J Med Biol Eng 31(3):151–160

    Google Scholar 

  • Wang Y et al (2012) Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neurosci Lett 514:96–101

    CAS  PubMed  Google Scholar 

  • Wang Y et al (2017) The effect of co-transplantation of nerve fibroblasts and Schwann cells on peripheral nerve repair. Int J Biol Sci 13(12):1507–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley-Livingston CA, Ellisman MH (1980) Development of axonal membrane specializations defines nodes of Ranvier and precedes Schwann cell myelin elaboration. Dev Biol 79:334–355

    CAS  PubMed  Google Scholar 

  • Wood PM (1976) Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res 115:361–375

    CAS  PubMed  Google Scholar 

  • Wood PM, Schachner M, Bunge RP (1990) Inhibition of schwann cell myelination in vitro by antibody to the L1 adhesion molecule. J Neurosci 10:3635–3645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhoo A et al (2009) Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 12(7):839–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wang L, Guo B, Shao Y, Ma PX (2016) Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials 87:18–31

    CAS  PubMed  Google Scholar 

  • Xie J et al (2014) Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces 6(12):9472–9480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y et al (2008) Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res 1239:49–55

    CAS  PubMed  Google Scholar 

  • Yang M, Rawson JL, Zhang EW, Arnold PB, Lineaweaver W, Zhang F (2011) Comparisons of outcomes from repair of median nerve and ulnar nerve defect with nerve graft and tubulization: a meta-analysis. J Reconstr Microsurg 27(8):451–460

    PubMed  Google Scholar 

  • Yuan Y, Zhang P, Yang Y, Wang X, Gu X (2004) The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials 25(18):4273–4278

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. A. P. Schuh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schuh, C.M.A.P., Sandoval-Castellanos, A.M., De Gregorio, C., Contreras-Kallens, P., Haycock, J.W. (2020). The Role of Schwann Cells in Peripheral Nerve Function, Injury, and Repair. In: Gimble, J., Marolt Presen, D., Oreffo, R., Wolbank, S., Redl, H. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-08831-0_5

Download citation

Publish with us

Policies and ethics