

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 490–493, 2014.
© Springer International Publishing Switzerland 2014

A Tool for Detecting Bad Usability Smells
in an Automatic Way

Julián Grigera1, Alejandra Garrido1,2, and José Matías Rivero1,2

1 LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Argentina
2 CONICET, Argentina

{Julian.Grigera,Garrido,MRivero}@lifia.info.unlp.edu.ar

Abstract. The refactoring technique helps developers to improve not only
source code quality, but also other aspects like usability. The problems
refactoring helps to solve in the specific field of web usability are considered to
be issues that make common tasks complicated for end users. Finding such
problems, known in the jargon as bad smells, is often challenging for
developers, especially for those who do not have experience in usability. In an
attempt to leverage this task, we introduce a tool that automatically finds bad
usability smells in web applications. Since bad smells are catalogued in the
literature together with their suggested refactorings, it is easier for developers to
find appropriate solutions.

1 Introduction

The refactoring technique [1] has been recently brought to the usability field of web
applications, allowing developers to apply usability improvements without altering
the application’s functionality [2]. The problems developers can solve by refactoring,
called bad usability smells are often hard to find, so there are ways to assist this task.

Running usability tests is the most common way to find usability problems [3], but
it requires supervision by usability experts, among other resources. These tests can be
automated to some extent, presenting an attractive alternative to lower the costs.
Some approaches in the literature automate the gathering of data from users [4, 5] but
not the analysis, which still depends on usability experts. Other approaches automate
part of the analysis by comparing users behavior to optimal behavior paths [6, 7], but
this requires prior preparation and subjects to conduct the experiments. There are also
commercial tools like CrazyEgg1 or ClickTale2 that offer statistical data to their
customers by analyzing interaction data from real users instead of tests subjects.
However, even if these tools can represent a cheaper option, the results they obtain
also require analysis from usability experts.

The tool we present in this work also automates the gathering of interaction data from
real users, but in addition, it preprocesses the events on the client side to report concrete
usability problems, easier to interpret than mere statistics. Moreover, the tool presents the
usability issues as bad usability smells, which are problems catalogued in the literature
along with the refactorings that solve them. Using these catalogues, developers can find a

1 http://www.crazyegg.com
2 http://www.clicktale.com

 A Tool for Detecting Bad Usability Smells in an Automatic Way 491

concrete way to correct the detected bad smells. The Bad Smells Finder (as we called our
tool) was developed as the first stage of a process for automatically improving usability
on web applications. We explain this process in the next section.

2 The Process in a Nutshell

Our process for improving web usability is based on the refactoring technique. When
applying refactoring in the context of web usability, developers first must detect bad
usability smells, and then they must find refactorings to solve them, keeping the basic
functionality intact. The tool helps them find bad usability smells.

The automated process for finding bad smells consists in three steps, depicted in
Fig. 1. The Threats Logger is a client-sided script that gathers interaction events
from real users. Instead of logging raw, atomic events, it processes them to generate
usability threats, a concept we devised to represent higher-level interaction events.

Fig. 1. Schematics of the process

The server-sided Bad Smells Finder receives usability threats and stores them for
analysis. When a user requests a report, the Bad Smells Finder processes the threats
and displays the resulting bad smells through the Bad Smells Reporter frontend.

3 The Tool in Action

We will show how the tool works with an example. Consider for instance a web
application where users need to register before they can operate. Whenever a user fills
the registration form, the threats logger captures the form submission event and
evaluates what happens next:

• If no navigation follows, the threats logger considers the submission was
blocked by client-side validation.

• If a navigation is detected, and the form is still on the destination page, the
logger considers there was server-side validation.

• If a navigation is detected, but the form is absent in the destination page, the
logger considers a successful submission.

The tool uses a simple algorithm to identify search forms, where validation rules do
not generally apply. Combining all this information on the client-side, it creates a
Form Submission threat and sends it to the Bad Smells Finder. The script can be set to
verbose mode to show the threats it finds in the browser’s console, as seen in Fig. 2.

492 J. Grigera, A. Garrido, and J.M. Rivero

Fig. 2. Threats Logger indicating the detection of a Failed Submission threat

The server-side Bad Smells Finder processes all Form Submission threats to
potentially find a No Client Validation bad smell, which indicates a problematic form
that usually fails to submit without offering any client-side validation whatsoever. To
do this, it compares the amount of successful submissions with the ones that failed
with server validation, according specific criteria for the proportion threshold (e.g.
30% of failed validations indicate a bad smell).

The site owners may then ask for a report by accessing the tool’s Reporter, where
bad smells are listed with data like the URL where it happened, an XPath of the
affected element, and specific extra information depending on each bad smell.

The Bad Smells Finder can detect 12 different kinds of bad usability smells, and
the logics for detecting each one are diverse. Other featured bad smells are:

• No Processing Page: By calculating the average time of a request and
watching DOM mutations, the Bad Smells Finder is able to detect that a
process usually takes a long time, but users are never informed about that
process taking place on the background (i.e. “loading…” widget).

• Unnecessary Bulk Action: Users perform actions on a list of items by first
marking checkboxes, and then selecting the action – e.g. deleting emails on a
webmail application. If the Bad Smells Finder detects that most of the time
users apply actions one item at a time rather than many, then the Unnecessary
Bulk Action is detected, implying that the UI with checkboxes and actions
should be complemented with other mechanism that require less interactions.

• Free Input For Limited Values: A free text input is presented to the user, but
the set of possible values that can be entered belong to a limited set, like
countries or occupations. Two problems ensue: error-proneness, and
unnecessarily time wasted in typing the whole text. The Bad Smells Finder
captures all the inputs and calculates the proportion of repeated (and similar)
values, in order to determine the bad smell’s presence.

 A Tool for Detecting Bad Usability Smells in an Automatic Way 493

The rest of the bad smells are related to navigation issues (like long paths for
frequently accessed pages), and misleading/misused widgets. We are currently
extending the tool to detect more bad usability smells.

4 Tool Implementation and Usage

The tool has two main modules: the Threats Logger, implemented as a client-side
script, and the Bad Smells Finder, a server-sided component that analyzes threats and
reports bad smells.

The client-side Threats Logger (coded in JavaScript using the JQuery3 library)
captures interaction events and then processes them on the client to create (and filter)
usability threats. The server-sided analyzer parses the incoming asynchronous POST
requests from the client script to generate usability threats. When a report is asked, the
analyzer filters all the threats to find potential bad usability smells, and then renders
the bad smells report in the web frontend.

To install the tool, the site owner must include the Threats Logger script in the
application’s header. After completing this step, the Bad Smells Finder starts logging
and reporting bad usability smells right away.

References

1. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the
Design of Existing Code. Object Technology Series. Addison Wesley (1999)

2. Garrido, A., Rossi, G., Distante, D.: Refactoring for Usability in Web Applications. IEEE
Softw. 28, 60–67 (2011)

3. Rubin, J., Chisnell, D.: Handbook of Usability Testing: How to Plan, Design, and Conduct
Effective Tests. Wiley (2008)

4. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the user’s every move. In: Proceedings of
the 15th International Conference on World Wide Web, WWW 2006, p. 203. ACM Press,
New York (2006)

5. Saadawi, G.M., Legowski, E., Medvedeva, O., Chavan, G., Crowley, R.S.: A Method for
Automated Detection of Usability Problems from Client User Interface Events AMIA 2005
Symposium Proceedings, pp. 654–658 (2005)

6. Fujioka, R., Tanimoto, R., Kawai, Y., Okada, H.: Tool for detecting webpage usability
problems from mouse click coordinate logs. In: Jacko, J.A. (ed.) HCI 2007. LNCS,
vol. 4550, pp. 438–445. Springer, Heidelberg (2007)

7. Okada, H., Fujioka, R.: Automated Methods for Webpage Usability & Accessibility
Evaluations. In: Adv. Hum. Comput. Interact, ch. 21, pp. 351–364. In-Tech Publ. (2008)

3 http://jquery.com

	A Tool for Detecting Bad Usability Smells in an Automatic Way
	1 Introduction
	2 The Process in a Nutshell
	3 The Tool in Action
	4 Tool Implementation and Usage
	References

